Impacts of Slow-Release Urea in Ruminant Diets: A Review
Abstract
1. Introduction
2. SRU Development
2.1. NPN Sources for Ruminants
2.2. Urea Applications
2.3. Slow-Release Urea Overview
- Lipid-coated urea: Urea is coated with lipids (e.g., waxes, fats, or oils) to slow its solubility and hydrolysis in the rumen [5].
- Calcium–urea: A urea–calcium chloride complex designed for controlled release [23].
- Starea: Extruded urea combined with corn and sulfur, offering a slower release rate [24].
3. SRU Mode of Action and Benefits
3.1. Slow Nitrogen Release
3.2. Nitrogen and Energy Synchronization
3.3. Impact on Microbial Environment
3.4. Environmental Impact and Feed Cost
4. Production Responses
4.1. Ruminal Fermentation
4.2. Microbial Protein Synthesis
4.3. Feed Intake, Digestibility, and Milk Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Rota Graziosi, A.; Gislon, G.; Colombini, S.; Bava, L.; Rapetti, L. Partial Replacement of Soybean Meal with Soybean Silage and Responsible Soybean Meal in Lactating Cows Diet: Part 2, Environmental Impact of Milk Production. Ital. J. Anim. Sci. 2022, 21, 645–658. [Google Scholar] [CrossRef]
- Storm, E.; Brown, D.S.; Ørskov, E.R. The Nutritive Value of Rumen Micro-Organisms in Ruminants. Br. J. Nutr. 1983, 50, 479–485. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Z.; Shen, Z.; Tian, Y.; Shen, H. Dietary Energy Level Promotes Rumen Microbial Protein Synthesis by Improving the Energy Productivity of the Ruminal Microbiome. Front. Microbiol. 2019, 10, 847. [Google Scholar] [CrossRef]
- Highstreet, A.; Robinson, P.H.; Robison, J.; Garrett, J.G. Response of Holstein Cows to Replacing Urea with with a Slowly Rumen Released Urea in a Diet High in Soluble Crude Protein. Livest. Sci. 2010, 129, 179–185. [Google Scholar] [CrossRef]
- Broderick, G.A. Review: Optimizing Ruminant Conversion of Feed Protein to Human Food Protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef]
- Myer, P.R.; Clemmons, B.A.; Schneider, L.G.; Ault, T.B. Microbiomes in Ruminant Protein Production and Food Security. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Bach, A. Key Indicators for Measuring Dairy Cow Performance. In FAO Animal Production and Health Proceedings, Proceedings of the FAO Symposium: Optimization of Feed Use Efficiency in Ruminant Production Systems, Bangkok, Thailand, 27 November 2012; FAO: Rome, Italy, 2012; pp. 33–44. [Google Scholar]
- Grossi, S.; Compiani, R.; Rossi, L.; Dell’anno, M.; Castillo, I.; Sgoifo Rossi, C.A. Effect of Slow-Release Urea Administration on Production Performance, Health Status, Diet Digestibility, and Environmental Sustainability in Lactating Dairy Cows. Animal 2021, 11, 2405. [Google Scholar] [CrossRef]
- Nichols, K.; de Carvalho, I.P.C.; Rauch, R.; Martín-Tereso, J. Review: Unlocking the Limitations of Urea Supply in Ruminant Diets by Considering the Natural Mechanism of Endogenous Urea Secretion. Animal 2022, 16, 100537. [Google Scholar] [CrossRef]
- Xin, H.S.; Schaefer, D.M.; Liu, Q.P.; Axe, D.E.; Meng, Q.X. Effects of Polyurethane Coated Urea Supplement on in Vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-Flaked Corn-Based Diet. Asian-Australas. J. Anim. Sci. 2010, 23, 491–500. [Google Scholar] [CrossRef]
- Kertz, A.F. Urea Feeding to Dairy Cattle: A Historical Perspective and Review. Prof. Anim. Sci. 2010, 26, 257–272. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the Safety and Efficacy of Urea for Ruminants. EFSA J. 2012, 10, 2624. [Google Scholar] [CrossRef]
- Barbosa, J.G.; Costa, R.G.; Medeiros, A.N.D.; Queiroga, R.D.C.R.D.E.; Batista, Â.M.V.; Medeiros, G.R.D.; Beltrão Filho, E.M. Use of Different Urea Levels in the Feeding of Alpine Goats. Rev. Bras. Zootec. 2012, 41, 1713–1719. [Google Scholar] [CrossRef]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using Milk Urea Nitrogen to Predict Nitrogen Excretion and Utilization Efficiency in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef]
- Symonds, H.W.; Mather, D.L.; Collis, K.A. The Maximum Capacity of the Liver of the Adult Dairy Cow to Metabolize Ammonia. Br. J. Nutr. 1981, 46, 481–486. [Google Scholar] [CrossRef]
- Antonelli, A.C.; Torres, G.A.S.; Soares, P.C.; Mori, C.S.; Sucupira, M.C.A.; Ortolani, E.L. Ammonia Poisoning Causes Muscular but Not Liver Damage in Cattle. Arq. Bras. Med. Veterinária Zootec. 2007, 59, 8–13. [Google Scholar] [CrossRef]
- Ortolani, E.L.; Mori, C.S.; Filho, J.A.R. Ammonia Toxicity from Urea in a Brazilian Dairy Goat Flock. Vet. Hum. Toxicol. 2000, 42, 87–89. [Google Scholar]
- Cherdthong, A.; Wanapat, M. Development of Urea Products as Rumen Slow-Release Feed for Ruminant Production: A Review. Aust. J. Basic Appl. Sci. 2010, 4, 2232–2241. [Google Scholar]
- Joysowal, M.; Tyagi, A.K.; Tyagi, N.; Kumar, S.; Keshri, A.; Singh, D. Use of Slow Release Ammonia Products in Ruminant Diet: A Review. J. Entomol. Zool. Stud. 2019, 7, 882–888. [Google Scholar]
- Galo, E.; Emanuele, S.M.; Sniffen, C.J.; White, J.H.; Knapp, J.R. Effects of a Polymer-Coated Urea Product on Nitrogen Metabolism in Lactating Holstein Dairy Cattle. J. Dairy Sci. 2003, 86, 2154–2162. [Google Scholar] [CrossRef]
- Taylor-Edwards, C.C.; Hibbard, G.; Kitts, S.E.; McLeod, K.R.; Axe, D.E.; Vanzant, E.S.; Kristensen, N.B.; Harmon, D.L. Effects of Slow-Release Urea on Ruminal Digesta Characteristics and Growth Performance in Beef Steers. J. Anim. Sci. 2009, 87, 200–208. [Google Scholar] [CrossRef]
- Huntington, G.B.; Harmon, D.L.; Kristensen, N.B.; Hanson, K.C.; Spears, J.W. Effects of a Slow-Release Urea Source on Absorption of Ammonia and Endogenous Production of Urea by Cattle. Anim. Feed. Sci. Technol. 2006, 130, 225–241. [Google Scholar] [CrossRef]
- Kozerski, N.D.; Ítavo, L.C.V.; dos Santos, G.T.; Ítavo, C.C.B.F.; Benchaar, C.; Dias, A.M.; Difante, G.D.S.; Leal, E.S. Extruded Urea-Corn Product Can Partially Replace True Protein Sources in the Diet for Lactating Jersey Cows. Anim. Feed. Sci. Technol. 2021, 282, 115129. [Google Scholar] [CrossRef]
- Mumpton, F.A. Uses of Natural Zeolites in Agriculture and Industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef]
- Kardaya, D.; Sudrajat, D.; Dihansih, E. Efficacy of Dietary Urea-Impregnated Zeolite in Improving Rumen Fermentation Characteristics of Local Lamb. Media Peternak. 2012, 35, 207. [Google Scholar] [CrossRef]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. Meta-Analysis and Sustainability of Feeding Slow-Release Urea in Dairy Production. PLoS ONE 2021, 16, e0246922. [Google Scholar] [CrossRef]
- Sinclair, L.A.; Garnsworthy, P.C.; Newbold, J.R.; Buttery, P.J. Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release in Diets with a Similar Carbohydrate Composition on Rumen Fermentation and Microbial Protein Synthesis in Sheep. J. Agric. Sci. 1995, 124, 463–472. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, L.; Jin, L.; Yan, S.; Niu, D.; Yang, W. Effect of Commercial Slow-Release Urea Product on in Vitro Rumen Fermentation and Ruminal Microbial Community Using RUSITEC Technique. J. Anim. Sci. Biotechnol. 2022, 13, 56. [Google Scholar] [CrossRef]
- Inostroza, J.F.; Shaver, R.D.; Cabrera, V.E.; Tricárico, J.M. Effect of Diets Containing a Controlled-Release Urea Product on Milk Yield, Milk Composition, and Milk Component Yields in Commercial Wisconsin Dairy Herds and Economic Implications. Prof. Anim. Sci. 2010, 26, 175–180. [Google Scholar] [CrossRef]
- Ceconi, I.; Ruiz-Moreno, M.J.; Dilorenzo, N.; Dicostanzo, A.; Crawford, G.I. Effect of Slow-Release Urea Inclusion in Diets Containing Modified Corn Distillers Grains on Total Tract Digestibility and Ruminal Fermentation in Feedlot Cattle. J. Anim. Sci. 2015, 93, 4058–4069. [Google Scholar] [CrossRef]
- Ribeiro, S.S.; Vasconcelos, J.T.; Morais, M.G.; Ítavo, C.B.C.F.; Franco, G.L. Effects of Ruminal Infusion of a Slow-Release Polymer-Coated Urea or Conventional Urea on Apparent Nutrient Digestibility, in Situ Degradability, and Rumen Parameters in Cattle Fed Low-Quality Hay. Anim. Feed. Sci. Technol. 2011, 164, 53–61. [Google Scholar] [CrossRef]
- Holder, V.B. The Effects of Slow Release Urea on Nitrogen Metabolism in Cattle. Ph.D. Dissertation, University of Kentucky, Lexington, KY, USA, 2012. Available online: https://uknowledge.uky.edu/animalsci_etds/6 (accessed on 14 October 2024).
- Alipour, D.; Saleem, A.M.; Sanderson, H.; Brand, T.; Santos, L.V.; Mahmoudi-Abyane, M.; Marami, M.R.; McAllister, T.A. Effect of Combinations of Feed-Grade Urea and Slow-Release Urea in a Finishing Beef Diet on Fermentation in an Artificial Rumen System. Transl. Anim. Sci. 2020, 4, 839–847. [Google Scholar] [CrossRef]
- Chegeni, A.; Li, Y.L.; Deng, K.D.; Jiang, C.G.; Diao, Q.Y. Effect of Dietary Polymer-Coated Urea and Sodium Bentonite on Digestibility, Rumen Fermentation, and Microbial Protein Yield in Sheep Fed High Levels of Corn Stalk. Livest. Sci. 2013, 157, 141–150. [Google Scholar] [CrossRef]
- Salami, S.A.; Devant, M.; Apajalahti, J.; Holder, V.B.; Salomaa, S.; Keegan, J.D.; Moran, C.A. Slow-Release Urea as a Sustainable Alternative to Soybean Meal in Ruminant Nutrition. Sustainability 2021, 13, 2464. [Google Scholar] [CrossRef]
Study | Inclusion Rate of SRU | Production Responses |
---|---|---|
Highstreet et al. [5] | In vivo: 113.5 g/d per cow | No differences in milk yield, DMI No differences in total tract digestibility of CP and aNDF Increased milk fat (0.068 kg/d, p = 0.01) and protein (0.041 kg/d, p = 0.01) in early lactation cows |
Xin et al. [11] | In vitro: 1.7% DM In vivo: 0.6% DM | No differences in total or individual VFA concentrations using in vitro methods compared to the control group Greater DMI (22.78 vs. 20.19 kg/d) in in vivo trial |
Galo et al. [21] | In vivo: 0.77% DM | No differences in microbial protein production Greater total tract apparent DM and CP digestibility in cows |
Taylor-Edwards et al. [22] | In vivo 1: 1.8% DM In vivo 2: 0.6% DM | No differences in total and individual VFA concentrations using in vivo methods No significant differences in DMI in in vivo trial |
Salami et al. [27] | Mean: 0.58% DM (meta-analysis) | No significant differences in milk yield (p > 0.05) Improved feed efficiency (+3%) and NUE (+4%) |
Guo et al. [29] | In vitro: 0.28% or 0.56% DM | Improved microbial nitrogen efficiency with SRU supplementation No differences in fermentation pH and total VFA production, whereas acetate-to-propionate ratio increased |
Inostroza et al. [30] | In vivo: 114 g/d per cow | Greater milk yield (+0.5 kg/d per cow, p < 0.01) Indicated that changes in IOFC were more positive when the prices of corn and SRU were lower and when the prices of soybean meal and milk were greater |
Ceconi et al. [31] | In vivo: 0.67% DM | Maintained intermediate NH3 levels No significant differences on ruminal pH, total VFA, branched-chain VFA, acetate, or butyrate molar proportions Lower acetate-to-propionate ratio No differences in the digestibility of OM, NDF, CP, or starch |
Ribeiro et al. [32] | In vivo: 30.4 g/kg of diet | Intermediate NH3 levels in the SRU group Significant differences in pH (p < 0.05) among treatments, but no interaction between treatment and time Increased CP digestibility (p < 0.01) with NPN treatments |
Holder [33] | In vivo: 0.87% or 0.97% DM | Reduced rumen NH3 and plasma urea concentrations Greater acetate-to-propionate ratio in cattle |
Alipour et al. [34] | In vitro: 0.5–1.75% DM | SRU levels had a quadratic effect on the disappearance of NDF and ADF, with a plateau at 1% SRU inclusion level in finishing beef diet in vitro No significant differences in total microbial protein synthesis |
Chegeni et al. [35] | In vivo: 1.8% DM | No significant differences in DMI in in vivo trial with sheep No significant differences in the pH and total VFA, whereas the acetate-to-propionate ratio tended to be lower |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.-W.; Faciola, A.P. Impacts of Slow-Release Urea in Ruminant Diets: A Review. Fermentation 2024, 10, 527. https://doi.org/10.3390/fermentation10100527
Ma S-W, Faciola AP. Impacts of Slow-Release Urea in Ruminant Diets: A Review. Fermentation. 2024; 10(10):527. https://doi.org/10.3390/fermentation10100527
Chicago/Turabian StyleMa, Szu-Wei, and Antonio P. Faciola. 2024. "Impacts of Slow-Release Urea in Ruminant Diets: A Review" Fermentation 10, no. 10: 527. https://doi.org/10.3390/fermentation10100527
APA StyleMa, S.-W., & Faciola, A. P. (2024). Impacts of Slow-Release Urea in Ruminant Diets: A Review. Fermentation, 10(10), 527. https://doi.org/10.3390/fermentation10100527