Effect of Lentilactobacillus buchneri on Chemical and Microbial Compositions of Herba Leonuri (Leonurus japonicus Houtt.)-Contained Alfalfa Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physical and Chemical Analysis
2.3. Bacterial Community Analysis
2.4. Statistical Analysis
3. Results
3.1. Change in Chemical Composition of the Samples during Fermentation
3.2. Fermentation Characteristics of Silage
3.3. Bacterial α-Diversity of Silage
3.4. Bacterial Composition of Silage
3.5. Beta Diversity of Silage
3.6. MetaStat Analysis of Silage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrero, M.; Gerber, P.; Vellinga, T.; Garnett, T.; Leip, A.; Opio, C.; Westhoek, H.; Thornton, P.; Olesen, J.; Hutchings, N.; et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim. Feed. Sci. Technol. 2011, 166–167, 779–782. [Google Scholar] [CrossRef]
- Gilbert, W.; Thomas, L.; Coyne, L.; Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 2021, 15, 100123. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Han, C.; Shi, Z.; Li, J.; Luo, E. Rebuilding the crop-livestock integration system in China—Based on the perspective of circular economy. J. Clean. Prod. 2023, 393, 136347. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Si, B.; Tan, X.; Xu, J.; Xu, W.; Zhou, L.; Chen, J.; Zhang, Y.; Zhou, X. Valorization of livestock manure for bioenergy production: A perspective on the fates and conversion of antibiotics. Resour. Conserv. Recycl. 2022, 183, 106352. [Google Scholar] [CrossRef]
- Zhang, K.; Ruan, R.; Zhang, Z.; Zhi, S. An exhaustive investigation on antibiotics contamination from livestock farms within sensitive reservoir water area: Spatial density, source apportionment and risk assessment. Sci. Total. Environ. 2022, 847, 157688. [Google Scholar] [CrossRef]
- Yang, B.; Hu, Y.; Cheng, N.; Su, Z.; Zhong, Y.; Cao, Z.; Cao, L.; Huang, W.; Wang, Z.; Xiao, W. Anti-inflammatory labdane diterpenoids from Leonurus japonicus Houtt. Phytochemistry 2020, 173, 112223. [Google Scholar] [CrossRef]
- Tahmouzi, S.; Ghodsi, M. Optimum extraction of polysaccharides from motherwort leaf and its antioxidant and antimicrobial activities. Carbohydr. Polym. 2014, 112, 396–403. [Google Scholar] [CrossRef]
- Miao, L.-L.; Zhou, Q.-M.; Peng, C.; Liu, Z.-H.; Xiong, L. Leonurus japonicus (Chinese motherwort), an excellent traditional medicine for obstetrical and gynecological diseases: A comprehensive overview. Biomed. Pharmacother. 2019, 117, 109060. [Google Scholar] [CrossRef]
- Okoye, C.O.; Okoye, C.O.; Wang, Y.; Wang, Y.; Gao, L.; Gao, L.; Wu, Y.; Wu, Y.; Li, X.; Li, X.; et al. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Tang, X.; Li, M.; Lu, G.; Huang, X.; Li, L.; Zhang, M.; Xie, Y.; Chen, C.; Li, P. Effect of lactic acid bacteria, yeast, and their mixture on the chemical composition, fermentation quality, and bacterial community of cellulase-treated Pennisetum sinese silage. Front. Microbiol. 2022, 13, 1047072. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Henderson, A.; Heron, S. The Biochemistry of Silage; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Yan, Y.; Li, X.; Guan, H.; Huang, L.; Ma, X.; Peng, Y.; Li, Z.; Nie, G.; Zhou, J.; Yang, W.; et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 2019, 279, 166–173. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Yan, L.; Chen, L.; Chen, Y.; Gou, W.; You, M.; Cheng, Q.; Chen, C. Inclusion of abandoned rhubarb stalk enhanced anaerobic fermentation of alfalfa on the Qinghai Tibetan Plateau. Bioresour. Technol. 2022, 347, 126347. [Google Scholar] [CrossRef]
- Xu, F.; Wang, C.; Wang, H.; Xiong, Q.; Wei, Y.; Shao, X. Antimicrobial action of flavonoids from Sedum aizoon L. against lactic acid bacteria in vitro and in refrigerated fresh pork meat. J. Funct. Foods 2018, 40, 744–750. [Google Scholar] [CrossRef]
- Xie, Y.; Sun, H.; Zhang, C.; Cheng, Q.; Zheng, Y.; Wang, C.; Xiao, B.; Li, P.; Chen, C. Ambient ultraviolet radiation: A new factor affecting anaerobic fermentation of oat and subsequent methane emissions. Bioresour. Technol. 2022, 355, 127243. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Zedan, H.; Hosseini, S.M.; Mohammadi, A. The effect of tarragon (Artemisia dracunculus) essential oil and high molecular weight Chitosan on sensory properties and shelf life of yogurt. LWT 2021, 147, 111613. [Google Scholar] [CrossRef]
- Li, P.; Liao, C.; Yan, L.; Zhang, C.; Chen, L.; You, M.; Cheng, Q.; Chen, C. Effects of small-scale silo types and additives on silage fermentation and bacterial community of high moisture alfalfa on the Qinghai-Tibetan Plateau. Anim. Feed. Sci. Technol. 2023, 299, 115594. [Google Scholar] [CrossRef]
- Wang, X.; Tian, L.; Li, Y.; Zhong, C.; Tian, C. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting. Bioresour. Technol. 2022, 359, 127458. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, C.; Ronczka, S.; Preiß-Weigert, A.; Ostertag, J.; Klaffke, H.; Schafft, H.; Lahrssen-Wiederholt, M. Pyrrolizidine alkaloids in natural and experimental grass silages and implications for feed safety. Anim. Feed. Sci. Technol. 2015, 207, 253–261. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Li, F.; Usman, S.; Zhang, Y.; Ding, Z. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplanti bacillus Plantarum and Pediococcus acidilactici strains with high-antioxidant activity. Anim. Feed. Sci. Technol. 2022, 288, 115301. [Google Scholar] [CrossRef]
- Romero, J.; Zhao, Y.; Balseca-Paredes, M.; Tiezzi, F.; Gutierrez-Rodriguez, E.; Castillo, M. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. J. Dairy Sci. 2017, 100, 1812–1828. [Google Scholar] [CrossRef]
- Xu, S.; Yang, J.L.; Qi, M.; Smiley, B.; Rutherford, W.; Wang, Y.; A McAllister, T.; Xu, S.; Yang, J.L.; Qi, M.; et al. Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage1. J. Anim. Sci. 2019, 97, 1273–1285. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an Inoculant and of Weissella and Leuconostoc spp. from Forage Crops on Silage Fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef]
- Shang, X.; Pan, H.; Wang, X.; He, H.; Li, M. Leonurus japonicus Houtt.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 152, 14–32. [Google Scholar] [CrossRef]
- Parvin, S.; Wang, C.; Li, Y.; Nishino, N. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Anim. Feed. Sci. Technol. 2010, 160, 160–166. [Google Scholar] [CrossRef]
- Chen, L.; Bai, S.; You, M.; Xiao, B.; Li, P.; Cai, Y. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Anim. Feed. Sci. Technol. 2020, 269, 114669. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Gou, W.; Cheng, Q.; Bai, S.; Cai, Y. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mixtures prepared with microbial inoculant and chemical additive. Anim. Feed. Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Jung, J.S.; Ravindran, B.; Soundharrajan, I.; Awasthi, M.K.; Choi, K.C. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. Bioresour. Technol. 2022, 345, 126485. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.-L.; Han, L.-F.; Wang, R.-F.; Yang, Z.-C. Bioassay-guided isolation of an antimycobacterial compound from Leonurus japonicus Houtt. S. Afr. J. Bot. 2019, 121, 92–97. [Google Scholar] [CrossRef]
Items | DM | WSC | NDF | ADF | CP | |
---|---|---|---|---|---|---|
% FM | % DM | |||||
Treatment (T) × Storage period (S) | ||||||
CK | 3 days | 38.59 | 7.61 a | 42.35 | 27.83 a | 18.84 |
7 days | 38.73 | 4.94 bc | 38.89 | 26.69 ab | 18.31 | |
15 days | 37.2 | 4.73 c | 41.31 | 28.35 a | 18.22 | |
30 days | 36.94 | 4.60 c | 36.51 | 22.28 b | 18.78 | |
L | 3 days | 33.88 | 6.05 b | 40.36 | 26.57 ab | 19.76 |
7 days | 37.37 | 5.15 bc | 42.73 | 28.27 a | 17.71 | |
15 days | 35.91 | 5.13 bc | 37.44 | 24.73 ab | 19.44 | |
30 days | 35.89 | 4.98 b | 39.42 | 27.88 a | 18.31 | |
SEM | 0.308 | 0.132 | 0.589 | 0.509 | 0.156 | |
Treatment (T) | ||||||
CK | 37.87 a | 5.47 | 39.77 | 26.29 | 18.54 | |
L | 35.76 | 5.33 | 39.99 | 26.86 | 18.81 | |
Storage period (S) | ||||||
3 days | 36.24 | 6.83 | 41.36 | 27.2 | 19.30 | |
7 days | 38.05 | 5.04 | 40.81 | 27.48 | 18.01 | |
15 days | 36.56 | 4.93 | 39.38 | 26.54 | 18.83 | |
30 days | 36.42 | 4.79 | 37.97 | 25.08 | 18.55 | |
Significance (p-value) | ||||||
T | 0.004 | 0.595 | 0.850 | 0.582 | 0.402 | |
S | 0.182 | <0.001 | 0.212 | 0.374 | 0.061 | |
T × S | 0.154 | 0.049 | 0.093 | 0.031 | 0.122 |
Items | pH | Lactic Acid | Acetic Acid | Propionic Acid | Butyric Acid | Ammonia-N | |
---|---|---|---|---|---|---|---|
%DM | %TN | ||||||
Treatment (T) × Storage period (S) | |||||||
CK | 3 days | 5.29 | 2.49 | 3.30 | 0.85 | 0.00 | 3.65 |
7 days | 5.21 | 4.44 | 3.92 | 1.28 | 0.13 | 3.89 | |
15 days | 5.00 | 4.97 | 3.27 | 1.36 | 0.12 | 4.47 | |
30 days | 4.94 | 5.97 | 3.77 | 1.96 | 0.17 | 4.85 | |
L | 3 days | 5.20 | 2.18 | 3.55 | 0.68 | 0.03 | 4.07 |
7 days | 5.32 | 3.51 | 4.95 | 1.29 | 0.11 | 4.57 | |
15 days | 4.95 | 4.28 | 4.91 | 1.73 | 0.09 | 4.14 | |
30 days | 4.95 | 6.11 | 4.48 | 2.11 | 0.21 | 5.60 | |
SEM | 0.019 | 0.095 | 0.134 | 0.039 | 0.007 | 0.096 | |
Treatment (T) | |||||||
CK | 5.11 | 4.47 a | 3.57 | 1.36 | 0.11 | 4.22 | |
L | 5.11 | 4.02 | 4.47 a | 1.45 | 0.11 | 4.59 | |
Storage period (S) | |||||||
3 days | 5.25 a | 2.34 d | 3.43 | 0.77 d | 0.02 c | 3.86 b | |
7 days | 5.27 a | 3.98 c | 4.44 | 1.29 c | 0.12 b | 4.23 b | |
15 days | 4.98 b | 4.63 b | 4.09 | 1.55 b | 0.11 b | 4.30 b | |
30 days | 4.95 b | 6.04 a | 4.13 | 2.04 a | 0.19 a | 5.23 a | |
Significance (p-value) | |||||||
T | 0.862 | 0.031 | 0.001 | 0.275 | 0.693 | 0.067 | |
S | <0.001 | <0.001 | 0.094 | <0.001 | <0.001 | 0.001 | |
T × S | 0.306 | 0.241 | 0.345 | 0.130 | 0.338 | 0.212 |
Items | Chao1 | Dominance | Observed Otus | Pielou’s E | Shannon | Simpson | Goods Coverage | |
---|---|---|---|---|---|---|---|---|
Treatment (T) × Storage period (S) | ||||||||
CK | 3 days | 231.28 | 0.08 b | 231.00 | 0.62 ab | 4.76 a | 0.92 s | 0.999 |
7 days | 264.99 | 0.09 b | 264.33 | 0.63 ab | 4.99 a | 0.91 a | 0.999 | |
15 days | 328.47 | 0.07 b | 328.00 | 0.66 a | 5.41 a | 0.93 a | 0.999 | |
30 days | 315.02 | 0.05 b | 314.33 | 0.67 a | 5.31 a | 0.95 a | 0.999 | |
L | 3 days | 180.20 | 0.48 a | 179.00 | 0.34 c | 2.52 b | 0.52 b | 0.999 |
7 days | 442.13 | 0.38 a | 441.67 | 0.41 c | 3.51 b | 0.62 b | 0.999 | |
15 days | 120.33 | 0.44 a | 120.00 | 0.36 c | 2.49 b | 0.56 b | 0.999 | |
30 days | 506.81 | 0.15 b | 506.67 | 0.56 b | 4.93 a | 0.85 a | 0.999 | |
SEM | 38.192 | 0.014 | 38.205 | 0.010 | 0.124 | 0.014 | - | |
Treatment (T) | ||||||||
CK | 284.94 | 0.07 | 284.42 | 0.65 | 5.12 | 0.93 | 0.999 | |
L | 312.37 | 0.36 | 311.84 | 0.42 | 3.36 | 0.64 | 0.999 | |
Storage period (S) | ||||||||
3 days | 205.74 | 0.28 | 205.00 | 0.48 | 3.64 | 0.72 | 0.999 | |
7 days | 353.56 | 0.24 | 353.00 | 0.52 | 4.25 | 0.77 | 0.999 | |
15 days | 224.40 | 0.26 | 224.00 | 0.51 | 3.95 | 0.75 | 0.999 | |
30 days | 410.92 | 0.10 | 410.50 | 0.62 | 5.12 | 0.90 | 0.999 | |
Significance (p-value) | ||||||||
T | 0.724 | <0.001 | 0.724 | <0.001 | <0.001 | <0.001 | - | |
S | 0.207 | 0.002 | 0.207 | 0.002 | 0.004 | 0.002 | - | |
T × S | 0.232 | 0.006 | 0.231 | 0.020 | 0.014 | 0.006 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liao, C.; Tang, X.; Wang, B.; Lu, G.; Chen, C.; Huang, X.; Li, L.; Li, P.; Chen, C. Effect of Lentilactobacillus buchneri on Chemical and Microbial Compositions of Herba Leonuri (Leonurus japonicus Houtt.)-Contained Alfalfa Silage. Fermentation 2024, 10, 519. https://doi.org/10.3390/fermentation10100519
Zhang M, Liao C, Tang X, Wang B, Lu G, Chen C, Huang X, Li L, Li P, Chen C. Effect of Lentilactobacillus buchneri on Chemical and Microbial Compositions of Herba Leonuri (Leonurus japonicus Houtt.)-Contained Alfalfa Silage. Fermentation. 2024; 10(10):519. https://doi.org/10.3390/fermentation10100519
Chicago/Turabian StyleZhang, Mingjie, Chaosheng Liao, Xiaolong Tang, Bi Wang, Guangrou Lu, Cheng Chen, Xiaokang Huang, Lin Li, Ping Li, and Chao Chen. 2024. "Effect of Lentilactobacillus buchneri on Chemical and Microbial Compositions of Herba Leonuri (Leonurus japonicus Houtt.)-Contained Alfalfa Silage" Fermentation 10, no. 10: 519. https://doi.org/10.3390/fermentation10100519
APA StyleZhang, M., Liao, C., Tang, X., Wang, B., Lu, G., Chen, C., Huang, X., Li, L., Li, P., & Chen, C. (2024). Effect of Lentilactobacillus buchneri on Chemical and Microbial Compositions of Herba Leonuri (Leonurus japonicus Houtt.)-Contained Alfalfa Silage. Fermentation, 10(10), 519. https://doi.org/10.3390/fermentation10100519