The Effect of Adding Green and Black Tea Waste Extracts on Rumen Fermentation Parameters by In Vitro Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Tea Waste and Extraction
2.2. Chemical Composition of the Basal Diet
2.3. Methane Emission
2.4. Protozoa Population
2.5. Determination of Ammonia Nitrogen
2.6. In Vitro Disappearance Technique
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds
3.2. Methane Production and Rumen Ecosystem
3.3. In Vitro Disappearance
3.4. Volatile Fatty Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lackner, M.; Sajjadi, B.; Chen, W.Y. Handbook of Climate Change Mitigation and Adaptation, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- IPCC. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/04/ipcc_ar5_leaflet.pdf (accessed on 31 October 2014).
- Chang, J.; Peng, S.; Yin, Y.; Ciais, P.; Havlik, P.; Herrero, M. The Key Role of Production Efficiency Changes in Livestock Methane Emission Mitigation. AGU Adv. 2021, 2, e2021AV000391. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 10 October 2024).
- Islam, M.; Lee, S.-S. Advanced estimation and mitigation strategies: A cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 2019, 61, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Ebrahimi, M.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Al-Jumaili, W.S. Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil)—A Review of Ten-Year Studies. Ann. Anim. Sci. 2019, 19, 3–29. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Y.; Zhuang, J.; Yao, S.; Liu, L.; Jiang, X.; Xia, T. Discovery and characterization of tannase genes in plants: Roles in hydrolysis of tannins. New Phytol. 2020, 226, 1104–1116. [Google Scholar] [CrossRef]
- Abdullah, M.A.M.; Farghaly, M.M.; Youssef, I.M.I. Effect of feeding Acacia nilotica pods to sheep on nutrient digestibility, nitrogen balance, ruminal protozoa and rumen enzymes activity. J. Anim. Physiol. Anim. Nutr. 2018, 102, 662–669. [Google Scholar] [CrossRef]
- Guo, S.; Awasthi, M.K.; Wang, Y.; Xu, P. Current understanding in conversion and application of tea waste biomass: A review. Bioresour. Technol. 2021, 338, 125530. [Google Scholar] [CrossRef]
- Gheshlagh, N.S.; Paya, H.; Taghizadeh, A.; Mohammadzadeh, H.; Palangi, V.; Mehmannavaz, Y. Comparative effects of extracted polyphenols from black and green tea wastes on in-vitro fermentability of feed ingredients. Semin. Ciênc. Agrár. 2021, 42, 2005–2022. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Ramdani, D.; Budinuryanto, D.C.; Mayasari, N. The effect of paddy straw and concentrate containing green tea dust on performance and nutrient digestibility in feedlot lambs. Turk. J. Veter.-Anim. Sci. 2020, 44, 668–674. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Takahashi, J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian-Australas. J. Anim. Sci. 2014, 27, 1426. [Google Scholar] [CrossRef]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed. Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Ramdani, D.; Jayanegara, A.; Chaudhry, A.S. Biochemical Properties of Black and Green Teas and Their Insoluble Residues as Natural Dietary Additives to Optimize In Vitro Rumen Degradability and Fermentation but Reduce Methane in Sheep. Animals 2022, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Alkaloid and polyphenol analysis by HPLC in green and black tea powders and their potential use as additives in ruminant diets. In Proceedings of the 1st International Conference and Exhibition on Powder Technology Indonesia (ICePTi) 2017, Jatinangor, Indonesia, 8–9 August 2017. [Google Scholar]
- Alirezalu, K.; Hesari, J.; Eskandari, M.H.; Valizadeh, H.; Sirousazar, M. Effect of Green Tea, Stinging Nettle and Olive Leaves Extracts on the Quality and Shelf Life Stability of Frankfurter Type Sausage. J. Food Process. Preserv. 2017, 41, e13100. [Google Scholar] [CrossRef]
- Makkar, H.P. Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage: Achievements, result implications, and future research. Anim. Feed. Sci. Technol. 2005, 122, 3–12. [Google Scholar] [CrossRef]
- Sallam, S.M.A.H.; da Silva Bueno, I.C.; de Godoy, P.B.; Nozella, E.F.; Vitti, D.M.S.S.; Abdalla, A.L. Ruminal fermentation and tannins bioactivity of some browses using a semi-automated gas production technique. Trop. Subtrop. Agroecosyst. 2010, 12, 1–10. [Google Scholar]
- Ivan, M.; Neill, L.; Entz, T. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J. Anim. Sci. 2000, 78, 750–759. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Holden, L. Comparison of Methods of In Vitro Dry Matter Digestibility for Ten Feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Chemical Composition, Plant Secondary Metabolites, and Minerals of Green and Black Teas and the Effect of Different Tea-to-Water Ratios during Their Extraction on the Composition of Their Spent Leaves as Potential Additives for Ruminants. J. Agric. Food Chem. 2013, 61, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Muthumani, T.; Kumar, R.S. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 2007, 101, 98–102. [Google Scholar] [CrossRef]
- Paya, H.; Taghizadeh, A.; Lashkari, S.; Shirmohammadi, S. Evaluation of rumen fermentation kinetics of some by-products using in situ and in vitro gas production technique. Slovak J. Anim. Sci. 2012, 45, 127–133. [Google Scholar]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed. Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Ramdani, D. Evaluation of Tea and Spent Tea Leaves as Additives for Their Use in Ruminant Diets. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2014. [Google Scholar]
- Nasehi, M.; Torbatinej, N.M.; Rezaie, M.; Ghoorchi, T. Effect of Polyethylene Glycol Addition on Nutritive Value of Green and Black Tea Co-products in Ruminant Nutrition. Asian J. Anim. Veter.-Adv. 2017, 12, 254–260. [Google Scholar] [CrossRef]
- Sinz, S.; Marquardt, S.; Soliva, C.R.; Braun, U.; Liesegang, A.; Kreuzer, M. Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-Australas J. Anim. Sci. 2019, 32, 966. [Google Scholar] [CrossRef]
- Kolling, G.J.; Stivanin, S.C.B.; Gabbi, A.M.; Machado, F.S.; Ferreira, A.L.; Campos, M.M.; Fischer, V. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. J. Dairy Sci. 2018, 101, 4221–4234. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.T.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J. Anim. Sci. 2015, 28, 530–537. [Google Scholar] [CrossRef]
- Shahbazi, H.; Sadeghi, A.; Fazaeli, H.; Raisali, G.; Chamani, M.; Shawrang, P. Effects of Electron Beam Irradiation on Dry Matter Degradation of Wheat Straw in the Rumen. Pak. J. Biol. Sci. 2008, 11, 676–679. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.; Patra, A.; Sahlu, T.; Varel, V.; Wells, J. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed. Sci. Technol. 2008, 144, 212–227. [Google Scholar] [CrossRef]
- Demİrtaș, A.; Öztürk, H.; Pİșkİn, İ.; Demirkıran, D.; Salgırl, Y.; Fidanc, U.R.; Emre, B. Effects of rosemary and sage extracts on ruminal fermentation using the rumen simulation technique (RUSITEC). Vet. Fak. Derg. 2011, 37, 127–134. [Google Scholar]
- Mcnabb, W.C.; Waghorn, G.C.; Peters, J.S.; Barry, T.N. The effect of condensed tannins in Lotus pedunculatus on the solubilization and degradation of ribulose-1,5-bisphosphate carboxylase (EC4.1.1.39; Rubisco) protein in the rumen and the sites of Rubisco digestion. Br. J. Nutr. 1996, 76, 535–549. [Google Scholar] [CrossRef]
- Soroor, M.E.N.; Moeini, M.M. The influence of Ziziphus zizyphus fruit on in vitro fermentation parameters, protozoa population and methane gas production. Iran. J. Appl. Anim. 2016, 47, 113–122. [Google Scholar]
- Abarghoyi, M.J.; Rouzbehan, Y. The effects of several levels of grape pomace extract on in vitro intestinal digestibility of dairy cow. Anim. Sci. J. 2015, 28, 13–28. [Google Scholar]
- Benchaar, C.; McAllister, T.; Chouinard, P. Digestion, Ruminal Fermentation, Ciliate Protozoal Populations, and Milk Production from Dairy Cows Fed Cinnamaldehyde, Quebracho Condensed Tannin, or Yucca schidigera Saponin Extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef]
- Carulla, J.E.; Kreuzer, M.; Machmüller, A.; Hess, H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 2005, 56, 961–970. [Google Scholar] [CrossRef]
- Aerts, R.J.; Barry, T.N.; McNabb, W.C. Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ. 1999, 75, 1–12. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Shelton, I.D. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 1997, 128, 365–372. [Google Scholar] [CrossRef]
- Dschaak, C.; Williams, C.; Holt, M.; Eun, J.-S.; Young, A.; Min, B. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 2011, 94, 2508–2519. [Google Scholar] [CrossRef] [PubMed]
- Baah, J.; Ivan, M.; Hristov, A.; Koenig, K.; Rode, L.; McAllister, T. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers. Anim. Feed. Sci. Technol. 2007, 137, 126–137. [Google Scholar] [CrossRef]
- Vogels, G.D.; Hoppe, W.F.; Stumm, C.K. Association of methanogenic bacteria with rumen. Appl. Environ. Microbiol. 1980, 40, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, H.; Naserian, A.A.; Valizadeh, R.; Asoodeh, A.; Haghparast, A.R. Influence of ruminal pistachio by-products aqueous extract infusion on nitrogen balance and rumen fermentation parameters in baluchi male sheep. Iran. J. Anim. Sci. Res. 2020, 12, 135–149. [Google Scholar]
alfalfa | 21.49 |
corn silage | 20.56 |
straw | 4.08 |
wheat bran | 0.81 |
rice bran | 0.16 |
sugar beet molasses | 1.32 |
cottonseed | 5.06 |
sugar beet pulp | 3.73 |
barley grain | 13.39 |
corn grain | 12.56 |
corn gluten | 5.03 |
soybean meal | 8.23 |
soybean seed | 0.82 |
urea | 0.29 |
dicalcium phosphate | 0.31 |
calcium carbonate | 0.41 |
magnesium oxide | 0.17 |
sodium chloride | 0.17 |
sodium bicarbonate | 0.86 |
vitamin premix | 0.57 |
Nutrient composition | |
ME (Mcal/kg DM) | 2.42 |
CP (%DM) | 15.2 |
ASH (%DM) | 6.6 |
EE (%DM) | 4.1 |
NDF (%DM) | 33.1 |
ADF (%DM) | 24.3 |
Total Phenolic Compounds | Total Tannins | Condensed Tannins | |
---|---|---|---|
Green tea waste extract | 20.3 a | 14.8 a | 5.9 a |
Black tea waste extract | 18.7 b | 12.7 b | 5.0 b |
SEM | 0.034 | 0.368 | 0.062 |
p-value | <0.0001 | 0.016 | <0.0001 |
Treatment | |||||
---|---|---|---|---|---|
Treat 1 | Treat 2 | Control | SEM | p-Value | |
Methane (% of total gas produced) | 5.63 c | 13.37 b | 18.50 a | 1.28 | 0.001 |
protozoa population (106 per mL of rumen fluid) | 1.58 b | 2.08 b | 3.21 a | 0.18 | 0.0002 |
ammonia nitrogen (mg/deciliter) | 2.78 c | 4.64 b | 7.1 a | 0.02 | 0.0001 |
Treatment | |||||
---|---|---|---|---|---|
Treat 1 | Treat 2 | Control | SEM | p-Value | |
Acetic acid | 77.82 b | 84.36 a | 72.76 b | 1.62 | 0.006 |
Propionic acid | 16.01 b | 16.19 b | 16.61 a | 0.10 | 0.02 |
Butyric acid | 17.15 b | 18.22 a | 17.43 b | 0.20 | 0.02 |
Isobutyric acid | 1.20 a | 0.28 b | 0.50 b | 0.10 | 0.002 |
Valeric acid | 1.45 c | 1.53 b | 1.72 a | 0.01 | 0.0001 |
Isovaleric acid | 2.29 | 2.38 | 2.48 | 0.07 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paya, H.; Gheshlagh, N.S.; Taghizadeh, A.; Besharati, M.; Lackner, M. The Effect of Adding Green and Black Tea Waste Extracts on Rumen Fermentation Parameters by In Vitro Techniques. Fermentation 2024, 10, 517. https://doi.org/10.3390/fermentation10100517
Paya H, Gheshlagh NS, Taghizadeh A, Besharati M, Lackner M. The Effect of Adding Green and Black Tea Waste Extracts on Rumen Fermentation Parameters by In Vitro Techniques. Fermentation. 2024; 10(10):517. https://doi.org/10.3390/fermentation10100517
Chicago/Turabian StylePaya, Hamid, Nazak Shokrani Gheshlagh, Akbar Taghizadeh, Maghsoud Besharati, and Maximilian Lackner. 2024. "The Effect of Adding Green and Black Tea Waste Extracts on Rumen Fermentation Parameters by In Vitro Techniques" Fermentation 10, no. 10: 517. https://doi.org/10.3390/fermentation10100517
APA StylePaya, H., Gheshlagh, N. S., Taghizadeh, A., Besharati, M., & Lackner, M. (2024). The Effect of Adding Green and Black Tea Waste Extracts on Rumen Fermentation Parameters by In Vitro Techniques. Fermentation, 10(10), 517. https://doi.org/10.3390/fermentation10100517