Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Inoculum Preparation
2.2. BMP Analysis and Co-Digestion Experiment
2.3. Analytical Methods
2.3.1. Chemical, Proximate, Elemental, and Higher Heating Value (HHV) Analysis
2.3.2. Biogas Production, Composition, and Specific CH4 Yield
2.3.3. Theoretical CH4 Yield (TMY)
2.3.4. Kinetic Model
2.3.5. Synergistic Effect
2.3.6. Statistical Analysis
3. Results
3.1. Characteristics of BCSW, CF, and SS
3.2. Energy Content of BCSW, CF, and SS
3.3. Anaerobic Digestion of BCSW, CF, and SS
3.4. Co-Digestion of BCSW with CF or SS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Koo, T.; Han, G.; Shin, S.G.; Hwang, S. Anaerobic digestion of cattle offal: Protein and lipid-rich substrate degradation and population dynamics of acidogens and methanogens. Bioprocess Biosyst. Eng. 2015, 38, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kadam, R.; Jang, H.; Seo, D.; Park, J. Elucidating Synergetic Effects of Anaerobic Co-Digestion of Slaughterhouse Waste with Livestock Manures. Energies 2024, 17, 3027. [Google Scholar] [CrossRef]
- Animal and Plant Quarantine Agency (APQA). 도축실적. 2024. Available online: http://www.qia.go.kr/livestock/clean/viewTcsjWebAction.do?id=205588 (accessed on 18 September 2024).
- Habchi, S.; Pecha, J.; Sanek, L.; Karouach, F.; Bari, H.E. Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective. J. Environ. Manag. 2024, 366, 121920. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.M.; Kim, S.H.; Shin, K.S.; Kim, C.H. Effects of substrate to inoculum ratio on the biochemical methane potential of piggery slaughterhouse wastes. Asian-australas. J. Anim. Sci. 2014, 27, 600. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Febrisiantosa, A.; Ahn, D.H.; Choung, Y.W.; Suresh, A. Biochemical Methane Potential of Swine Slaughter Waste, Swine Slurry, and Its Codigestion Effect. Energies 2021, 14, 7103. [Google Scholar] [CrossRef]
- Ware, A.; Power, N. What is the effect of mandatory pasteurisation on the biogas transformation of solid slaughterhouse wastes? Waste Manag. 2016, 48, 503–512. [Google Scholar] [CrossRef]
- Ripoll, V.; Agabo-García, C.; Solera, R.; Perez, M. Anaerobic digestion of slaughterhouse waste in batch and anaerobic sequential batch reactors. Biomass Convers. Biorefin. 2023, 13, 11457–11468. [Google Scholar] [CrossRef]
- Tsegaye, D.; Khan, M.M.; Leta, S. Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase. Sustainability 2023, 15, 5544. [Google Scholar] [CrossRef]
- Borowski, S.; Kubacki, P. Co-digestion of pig slaughterhouse waste with sewage sludge. Waste Manag. 2015, 40, 119–126. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Codigestion of solid wastes: A review of its uses and perspectives including modeling. Crit. Rev. Biotechnol. 2011, 31, 99–111. [Google Scholar] [CrossRef]
- Pagés-Díaz, J.; Westman, J.; Taherzadeh, M.J.; Pereda-Reyes, I.; Horváth, I.S. Semi-continuous co-digestion of solid cattle slaughterhouse wastes with other waste streams: Interactions within the mixtures and methanogenic community structure. Chem. Eng. J. 2015, 273, 28–36. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Meneses Quelal, O.; Pilamunga Hurtado, D. Anaerobic Fermentation of Slaughterhouse Waste—Codigestion with Wheat Straw to Determine Methane Biochemical Potential and Kinetic Analysis. Fermentation 2023, 9, 726. [Google Scholar] [CrossRef]
- Rodríguez-Abalde, Á.; Flotats, X.; Fernández, B. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine. Waste Manag. 2017, 61, 521–528. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.L.; Suresh, A. Underground anaerobic digester to solve the energy balance problem in temperate regions: A pilot study. Appl. Eng. Agric. 2015, 31, 643–651. [Google Scholar] [CrossRef]
- Choi, H.L.; Sudiarto, S.I.A.; Renggaman, A. Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 2014, 116, 772–780. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Q.; Wu, S.; Qi, D.; Li, W.; Zuo, Z.; Dong, R. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Kafle, G.K.; Kim, S.H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Appl. Energy 2013, 103, 61–72. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Salam, P.A. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- Yin, C.Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef]
- Moukazis, I.; Pellera, F.-M.; Gidarakos, E. Slaughter by-products treatment using anaerobic digestion. Waste Manag. 2018, 71, 652–662. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Moreira, M.T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Pagés-Díaz, J.; Pereda-Reyes, I.; Sanz, J.L.; Lundin, M.; Taherzadeh, M.J.; Horváth, I.S. A comparison of process performance during the anaerobic mono-and co-digestion of slaughterhouse waste through different operational modes. J. Environ. Sci. 2018, 64, 149–156. [Google Scholar] [CrossRef]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol. 2010, 101, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.; Jang, A.; Yim, S.; Kim, I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Xie, S.; Lawlor, P.G.; Frost, J.P.; Hu, Z.; Zhan, X. Effect of swine manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated swine manure and grass silage. Bioresour. Technol. 2011, 102, 5728–5733. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Ni, B.-J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Factories 2015, 14, 33. [Google Scholar] [CrossRef]
- Silvestre, G.; Rodríguez-Abalde, A.; Fernández, B.; Flotats, X.; Bonmatí, A. Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour. Technol. 2011, 102, 6830–6836. [Google Scholar] [CrossRef]
- Alves, M.M.; Pereira, M.A.; Sousa, D.Z.; Cavaleiro, A.J.; Picavet, M.; Smidt, H.; Stams, A.J. Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2009, 2, 538–550. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Romero-Güiza, M.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
Code | Substrate (% VS Basis) 1 | Substrate (g VS) 1 | Inoculum (g VS) 1 | ||||
---|---|---|---|---|---|---|---|
BCSW | CF | SS | BCSW | CF | SS | ||
C1 | 100 | 0 | 0 | 0.5 | 0 | 0 | 0.5 |
C2 | 0 | 100 | 0 | 0 | 0.5 | 0 | 0.5 |
C3 | 0 | 0 | 100 | 0 | 0 | 0.5 | 0.5 |
C4 | 67 | 33 | 0 | 0.33 | 0.17 | 0 | 0.5 |
C5 | 50 | 50 | 0 | 0.25 | 0.25 | 0 | 0.5 |
C6 | 33 | 67 | 0 | 0.17 | 0.33 | 0 | 0.5 |
C7 | 67 | 0 | 33 | 0.33 | 0 | 0.17 | 0.5 |
C8 | 50 | 0 | 50 | 0.25 | 0 | 0.25 | 0.5 |
C9 | 33 | 0 | 67 | 0.17 | 0 | 0.33 | 0.5 |
Parameters 1 | BCSW 2 | CF 2 | SS 2,3 | p-Values 4 |
---|---|---|---|---|
TS (%FM) | 16.7 ± 0.3 b | 32.1 ± 0.2 c | 4.1 ± 0.2 a | 1.41 × 10−7 |
VS (%DM) | 93.2 ± 0.6 b | 91.2 ± 2.1 b | 67.6 ± 0.8 a | 4.44 × 10−5 |
FS (%DM) | 6.8 ± 0.6 a | 8.8 ± 2.1 a | 32.4 ± 0.8 b | 4.44 × 10−5 |
TKN (%DM) | 3.2 ± 0.3 a | 2.5 ± 0.3 a | 4.5 ± 0.1 b | 0.0089 |
Protein (%DM) | 19.8 ± 1.9 a | 15.4 ± 1.7 a | 28.1 ± 0.9 b | 0.0089 |
Fat (%DM) | 57.4 ± 0.3 c | 3.1 ± 0.1 a | 5.6 ± 0.2 b | 3.33 × 10−7 |
NDF (%DM) | 18.9 ± 0.6 a | 61.3 ± 0.1 c | 27.4 ± 0.8 b | 1.14 × 10−5 |
ADF (%DM) | 13.1 ± 0.5 b | 23.5 ± 0.6 c | 10.7 ± 0.0 a | 0.00019 |
Hemicellulose (%DM) | 5.8 ± 0.2 a | 37.9 ± 0.5 c | 16.7 ± 0.8 b | 2.65 × 10−5 |
Parameter 1 | BCSW 2 | CF 2 | SS 2,3 | p-Values 4 |
---|---|---|---|---|
Carbon (%DM) | 58.4 ± 1.9 c | 45.1 ± 2.0 b | 37.3 ± 0.3 a | 0.002 |
Hydrogen (%DM) | 8.8 ± 0.5 b | 5.9 ± 0.3 a | 5.2 ± 0.0 a | 0.004 |
Oxygen (%DM) | 22.1 ± 3.5 a | 31.9 ± 0.1 b | 23.7 ± 0.7 a | 0.032 |
Nitrogen (%DM | 3.7 ± 0.0 a | 2.8 ± 0.4 a | 4.8 ± 0.1 b | 0.007 |
Sulfur (%DM) | 0.6 ± 0.2 b | 0.2 ± 0.0 a | 1.0 ± 0.1 b | 0.009 |
Empirical formula | C25H45O7N1S0.1 | C60H94O32N3S0.1 | C10H16O5N1S0.1 | |
TMY (Nml CH4/g VSadded) | 738.8 ± 54.7 b | 533.5 ± 22.3 a | 529.5 ± 9.0 a | 0.014 |
SMY (Nml CH4/g VSadded) | 582.2 ± 3.3 c | 431.5 ± 15.4 b | 310.1 ± 9.0 a | 2.04 × 10−7 |
Ddeg (%) | 78.8 ± 0.4 b | 80.9 ± 2.9 b | 58.6 ± 1.7 a | 1.47 × 10−5 |
Parameter 1 | BCSW 2 | CF 2 | SS 2,3 | p-Values 4 |
---|---|---|---|---|
Mmax (Nml CH4/g VSadded) | 578.5 ± 14.4 c | 397.2 ± 15.3 b | 289.8 ± 8.6 a | 5.12 × 10−7 |
Rmax (Nml CH4/g VSadded/d) | 30.8 ± 2.6 b | 22.0 ± 0.8 a | 20.1 ± 0.9 a | 0.0005 |
λ (days) | 10.2 ± 1.7 b | 8.3 ± 0.4 b | 0.2 ± 0.1 a | 4.31 × 10−5 |
R2 | 0.999 | 0.998 | 0.989 | |
T90 (days) | 32.7 ± 2.4 b | 29.9 ± 0.4 b | 17.4 ± 0.3 a | 2.71 × 10−5 |
Teff (days) | 22.5 ± 2.3 b | 21.6 ± 0.4 b | 17.2 ± 0.2 a | 0.007 |
Parameter 1 | Sole Digestion 2 | Co-digestion between BCSW and CF 2 | Co-digestion between BCSW and SS 2 | p-Values 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | ||
Mmax (Nml CH4/g VSadded) | 578.5 ± 14.4 d | 397.2 ± 15.3 b | 289.8 ± 8.6 a | 557.9 ± 16.7 d | 496.8 ± 12.2 c | 422.0 ± 13.8 b | 508.5 ± 35.8 c | 484.0 ± 8.9 c | 430.7 ± 16.9 b | 2.58 × 10−12 |
Rmax (Nml CH4/g VSadded/d) | 30.8 ± 2.6 c | 22.0 ± 0.8 a | 20.1 ± 0.9 a | 30.8 ± 1.4 c | 29.6 ± 1.8 c | 24.7 ± 0.3 b | 42.5 ± 1.9 d | 34.5 ± 0.9 c | 35.0 ± 0.7 c | 5.49 × 10−12 |
λ (days) | 10.2 ± 1.7 c | 8.3 ± 0.4 c | 0.2 ± 0.1 a | 8.2 ± 1.0 c | 7.5 ± 1.7 b,c | 7.1 ± 1.6 b,c | 7.4 ± 0.1 b,c | 4.9 ± 0.6 b | 2.4 ± 0.1 a,b | 1.37 × 10−8 |
R2 | 0.999 | 0.998 | 0.989 | 0.998 | 0.999 | 0.999 | 0.998 | 0.998 | 0.997 | |
T90 (days) | 32.7 ± 2.4 d | 29.9 ± 0.4 c,d | 17.4 ± 0.3 a | 29.9 ± 1.7 c,d | 27.5 ± 1.5 c | 27.5 ± 1.7 c | 21.7 ± 0.5 b | 21.7 ± 0.3 b | 17.1 ± 0.4 a | 2.05 × 10−11 |
Teff (days) | 22.5 ± 2.3 c | 21.6 ± 0.4 c | 17.2 ± 0.2 b | 21.7 ± 0.8 c | 20.1 ± 0.9 c | 20.4 ± 0.8 c | 14.3 ± 0.5 a | 16.8 ± 0.2 a,b | 14.7 ± 0.3 a,b | 5.83 × 10−9 |
Mineral (mg/Kg) | BCSW 1 | CF 1 | SS 1,2 | p-Values 3 |
---|---|---|---|---|
Cobalt (Co) | 0.7 ± 0.3 a | 2.2 ± 0.1 b | 10.4 ± 0.1 c | 3.00 × 10−5 |
Iron (Fe) | 1111.5 ± 14.7 a | 975 ± 346.1 a | 10,872 ± 135.8 b | 3.52 × 10−5 |
Molybdenum (Mo) | 8.9 ± 5.8 a | 0.9 ± 0.1 a | 13.0 ± 0.1 a | 0.076 |
Nickel (Ni) | 3.4 ± 0.7 a | 4.9 ± 0.4 a | 25.0 ± 0.1 b | 3.52 × 10−5 |
Tungsten (W) | 0.0 ± 0.0 a | 5.5 ± 0.5 b | 22.1 ± 0.0 c | 1.06 × 10−5 |
Zinc (Zn) | 626.8 ± 195.3 a | 576.3 ± 43.2 a | 2239 ± 19.9 b | 0.001 |
Code 1 | Experimental Mmax 2 | Simulated Mmax 2,3 | α 4 |
---|---|---|---|
C1 | 578.5 ± 14.4 | 578.5 ± 14.4 | |
C2 | 397.2 ± 15.3 | 397.2 ± 15.3 | |
C3 | 289.8 ± 8.6 | 289.8 ± 8.6 | |
C4 | 557.9 ± 16.7 | 518.1 ± 14.3 | 0.93 ± 0.01 |
C5 | 496.8 ± 12.2 | 487.8 ± 14.4 | 0.98 ± 0.01 |
C6 | 422.0 ± 13.8 | 457.6 ± 14.6 | 1.08 ± 0.01 |
C7 | 508.5 ± 35.8 | 482.3 ± 10.7 | 1.05 ± 0.05 |
C8 | 484.0 ± 8.9 | 434.2 ± 9.3 | 1.12 ± 0.02 |
C9 | 430.7 ± 16.9 | 386.1 ± 8.4 | 1.12 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renggaman, A.; Choi, H.L.; Sudiarto, S.I.A.; Suresh, A.; Jeon, Y.C. Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry. Fermentation 2024, 10, 510. https://doi.org/10.3390/fermentation10100510
Renggaman A, Choi HL, Sudiarto SIA, Suresh A, Jeon YC. Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry. Fermentation. 2024; 10(10):510. https://doi.org/10.3390/fermentation10100510
Chicago/Turabian StyleRenggaman, Anriansyah, Hong Lim Choi, Sartika Indah Amalia Sudiarto, Arumuganainar Suresh, and Yong Cheol Jeon. 2024. "Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry" Fermentation 10, no. 10: 510. https://doi.org/10.3390/fermentation10100510
APA StyleRenggaman, A., Choi, H. L., Sudiarto, S. I. A., Suresh, A., & Jeon, Y. C. (2024). Biomethane Potential of Beef Cattle Slaughterhouse Waste and the Impact of Co-Digestion with Cattle Feces and Swine Slurry. Fermentation, 10(10), 510. https://doi.org/10.3390/fermentation10100510