Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Animals and Sample Collection
2.2. Ileum VFA Determination
2.3. DNA Extraction and Detection
2.4. RNA Extraction and Detection
2.5. Fluorescent Quantitative PCR Primer Design and Amplification
2.6. Ileum 16S rRNA Sequencing
2.7. Data Statistics
3. Results
3.1. Determination of VFA Concentrations and Proportions in the Ileum of Tibetan Sheep at Different Ages
3.2. Determination of Ileum Flora Density of Tibetan Sheep at Different Ages
3.3. Determination of VFA-Related Gene Expression in the Ileum of Tibetan Sheep at Different Ages
3.4. Correlation Analysis of Ileum VFA Concentration and Bacterial Population Density of Tibetan Sheep at Different Ages
3.5. Correlation Analysis between VFA Concentration and Transport-Related Gene Expression in the Ileum of Tibetan Sheep at Different Ages
3.6. Association Analysis of Ileum Microbiota-VFAs and Their Transport-Related Genes in Tibetan Sheep of Different Ages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, D.; Dong, X.; Dong, Z. Prokaryote diversity in the rumen of yak (bos grunniens) and jinnan cattle (bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 2005, 11, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Guo, X.S.; Degen, A.A.; Zhang, Y.; Liu, H.; Mi, J.D.; Ding, L.M.; Wang, H.C.; Qiu, Q.; Long, R.J. Urea kinetics and nitrogen balance and requirements for maintenance in Tibetan sheep when fed oat hay. Small Rumin. Res. 2015, 129, 60–68. [Google Scholar] [CrossRef]
- Liu, X.; Sha, Y.Z.; Dingkao, R.; Zhang, W.; Lv, W.B.; Wei, H.; Shi, H.; Hu, J.; Wang, J.Q.; Li, S.; et al. Interactions between rumen microbes, vfas, and host genes regulate nutrient absorption and epithelial barrier function during cold season nutritional stress in Tibetan Sheep. Front. Microbiol. 2020, 11, 593062. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Chen, X.; Huo, D.; Arifuzzaman, M.; Qiao, S.; Jin, W.-B.; Shi, H.; Li, X.V.; Iliev, I.D.; Artis, D.; et al. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 2024, 32, 661–675.e10. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Medina, L.A.; Koch, H.; Sing, K.W.; Soh, E.J.Y.; Ascher, J.S.; Jaffé, R.; Moran, N.A. Dynamic microbiome evolution in social bees. Sci. Adv. 2017, 3, e1600513. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xue, F.; Nan, X.; Tang, Z.; Wang, K.; Beckers, Y.; Jiang, L.; Xiong, B. Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front. Microbiol. 2017, 8, 1818. [Google Scholar] [CrossRef]
- Ross, A.A.; Müller, K.M.; Weese, J.S.; Neufeld, J.D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl. Acad. Sci. USA 2018, 115, E5786–E5795. [Google Scholar] [CrossRef]
- Arntzen, M.Ø.; Várnai, A.; Mackie, R.I.; Eijsink, V.G.; Pope, P.B. Outer membrane vesicles from fibrobacter succinogenes s85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ. Microbiol. 2017, 19, 2701–2714. [Google Scholar] [CrossRef]
- Doreau, M.; Demeyer, D.; van Nevel, C.J. Transformations and effects of unsaturated fatty acids in the rumen. Consequences on milk fat secretion. In Milk Composition, Production and Biotechnology; Welch, R.A.S., Ed.; CAB International: Wallingford, UK, 1997; pp. 73–92. [Google Scholar]
- Penner, G.; Taniguchi, M.; Guan, L.; Beauchemin, K.; Oba, M. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. J. Dairy Sci. 2009, 92, 2767–2781. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-Chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145, 396–406.e10. [Google Scholar] [CrossRef] [PubMed]
- Zhan, K.; Gong, X.X.; Chen, Y.Y.; Jiang, M.C.; Yang, T.Y.; Zhao, G.Q. Short-Chain fatty acids regulate the immune responses via g protein-coupled receptor 41 in bovine rumen epithelial cells. Front. Immunol. 2019, 10, 2042. [Google Scholar] [CrossRef] [PubMed]
- Février, C.; Gotterbarm, G.; Jaguelin-Peyraud, Y.; Lebreton, Y.; Legouevec, F.; Aumaitre, A. Effects of adding potassium diformate and phytase excess for weaned piglets. In Digestive Physiology of Pigs, Proceedings of the 8th Symposium, Swedish University of Agricultural Sciences, Uppsala, Sweden, 20–22 June 2000; CABI Publishing: Wallingford, UK, 2001; pp. 192–194. [Google Scholar]
- Dieho, K.; van Baal, J.; Kruijt, L.; Bannink, A.; Schonewille, J.T.; Carreño, D.; Hendriks, W.H.; Dijkstra, J. Effect of supplemental concentrate during the dry period or early lactation on rumen epithelium gene and protein expression in dairy cattle during the transition period. J. Dairy Sci. 2017, 100, 7227–7245. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Y.; Wang, J.; Hou, Q.L.; Wang, Y.; Hu, Z.Y.; Shi, K.R.; Yan, Z.G.; Wang, Z.H. Effect of hay supplementation timing on rumen microbiota in suckling calves. MicrobiologyOpen 2018, 7, e00430. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Chen, T.; Li, Y.B.; Tang, Y.; Huang, Z.H. Gut microbiota are associated with sex and age of host: Evidence from semi-provisioned rhesus macaques in southwest Guangxi, China. Ecol. Evol. 2021, 11, 8096–8122. [Google Scholar] [CrossRef]
- Elliott, R.; Ash, A.; Calderon-Cortes, F.; Norton, B.; Bauchop, T. The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. 1987, 109, 13–17. [Google Scholar] [CrossRef]
- De la Cuesta-Zuluaga, J.; Kelley, S.T.; Chen, Y.; Escobar, J.S.; Mueller, N.T.; Ley, R.E.; McDonald, D.; Huang, S.; Swafford, A.D.; Knight, R.; et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems 2019, 4, e00261-19. [Google Scholar] [CrossRef]
- Amato, K.R.; Leigh, S.R.; Kent, A.; Mackie, R.I.; Yeoman, C.J.; Stumpf, R.M.; Wilson, B.A.; Nelson, K.E.; White, B.A.; Garber, P.A. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 2015, 69, 434–443. [Google Scholar] [CrossRef]
- Wang, F.X.; Sha, Y.Z.; Liu, X.; He, Y.Y.; Hu, J.; Wang, J.Q.; Li, S.B.; Shao, P.Y.; Chen, X.W.; Yang, W.X.; et al. Study of the Interactions between muscle fatty acid composition, meat quality-related genes and the ileum microbiota in Tibetan Sheep at Different Ages. Foods 2024, 13, 679. [Google Scholar] [CrossRef]
- Connor, E.; Li, R.; Baldwin, R.; Li, C. Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes. Animal 2010, 4, 993–1007. [Google Scholar] [CrossRef]
- Booijink, C.C.G.M.; Zoetendal, E.G.; Kleerebezem, M.; de Vos, W.M. Microbial communities in the human small intestine: Coupling diversity to metagenomics. Futur. Microbiol. 2007, 2, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Sekiguchi, Y.; Kamagata, Y. rRNA-based analysis to monitor succession of faecal bacterial communities in holstein calves. Lett. Appl. Microbiol. 2010, 51, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, J.; Mahfuz, S.; Long, S.; Wu, D.; Gao, J.; Piao, X. Supplementation of mixed organic acids improves growth performance, meat quality, gut morphology and volatile fatty acids of broiler chicken. Animals 2021, 11, 3020. [Google Scholar] [CrossRef]
- Kaplan-Shabtai, V.; Indugu, N.; Hennessy, M.L.; Vecchiarelli, B.; Bender, J.S.; Stefanovski, D.; Lage, C.F.D.A.; Raisanen, S.E.; Melgar, A.; Nedelkov, K.; et al. Using structural equation modeling to understand interactions between bacterial and archaeal populations and volatile fatty acid proportions in the rumen. Front. Microbiol. 2021, 12, 611951. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.Z.; He, Y.Y.; Liu, X.; Zhao, S.G.; Hu, J.; Wang, J.Q.; Li, S.B.; Li, W.H.; Shi, B.G.; Hao, Z.Y. Rumen epithelial development- and metabolism-related genes regulate their micromorphology and vfas mediating plateau adaptability at different ages in tibetan sheep. Int. J. Mol. Sci. 2022, 23, 16078. [Google Scholar] [CrossRef]
- Liu, J.; Xu, T.; Zhu, W.; Mao, S. High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. Br. J. Nutr. 2014, 112, 416–427. [Google Scholar] [CrossRef]
- Fang, C.L.; Sun, H.; Wu, J.; Niu, H.H.; Feng, J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J. Anim. Physiol. Anim. Nutr. 2014, 98, 680–685. [Google Scholar] [CrossRef]
- Zhao, J.B.; Liu, P.; Wu, Y.; Guo, P.T.; Liu, L.; Ma, N.; Levesque, C.; Chen, Y.Q.; Zhao, J.S.; Zhang, J.; et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem. 2018, 66, 7995–8004. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Penner, G.B.; Stumpff, F.; Gaebel, G. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 2011, 89, 1092–1107. [Google Scholar] [CrossRef]
- Boyer, M.J.; Barnard, M.; Hedley, D.W.; Tannock, I.F. Regulation of intracellular pH in subpopulations of cells derived from spheroids and solid tumours. Br. J. Cancer 1993, 68, 890–897. [Google Scholar] [CrossRef]
- Castells, L.; Bach, A.; Aris, A.; Terré, M. Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract. J. Dairy Sci. 2013, 96, 5226–5236. [Google Scholar] [CrossRef] [PubMed]
- Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; de’Angelis, N.; de’Angelis, G.L.; van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep. 2018, 8, 13974. [Google Scholar] [CrossRef] [PubMed]
- Waters, J.L.; Ley, R.E.J.B.b. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.H.; Kim, J.H.; Kim, H.M.; Lee, E.S.; Shin, D.H.; Kim, S.; Shin, M.; Kim, S.H.; Lee, J.H.; Kim, Y.J. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties. Biosci. Biotechnol. Biochem. 2015, 79, 1535–1541. [Google Scholar] [CrossRef]
- Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. J. Biol. Chem. 1991, 266, 1574–1578. [Google Scholar] [CrossRef]
- Hentges, D.J. Inhibition of Shigella flexneri by the normal intestinal flora. II. Mechanisms of inhibition by coliform organisms. J. Bacteriol. 1969, 97, 513–517. [Google Scholar] [CrossRef]
- Pongpech, P.; Hentges, D.J. Inhibition of Shigella sonnei and enterotoxigenic Escherichia coli by volatile fatty acids in mice. Microb. Ecol. Health Dis. 1989, 2, 153–161. [Google Scholar]
- Prohaszka, L.; Baron, F. Antibacterial effect of volatile fatty acids on enterobacteriaceae in the large intestine. Acta Vet. Acad. Sci. Hung. 1982, 30, 9–16. [Google Scholar]
- Lin, H.; An, Y.; Hao, F.; Wang, Y.; Tang, H. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Sci. Rep. 2016, 6, 21618. [Google Scholar] [CrossRef]
VFAs Concentration (mmol/L) | 4 M | 1.5 Y | 3.5 Y | 6 Y | p |
---|---|---|---|---|---|
Acetic acid | 4.94 ± 1.990 b | 9.70 ± 1.201 a | 5.21 ± 0.691 b | 4.53 ± 1.220 b | <0.01 |
Propionic acid | 0.69 ± 0.431 c | 1.76 ± 0.010 a | 1.16 ± 0.140 b | 1.26 ± 0.080 b | <0.01 |
Isobutyric acid | 0.31 ± 0.082 a | 0.13 ± 0.003 b | 0.32 ± 0.030 a | 0.28 ± 0.010 a | <0.01 |
Butyric acid | 0.53 ± 0.171 a | 0.43 ± 0.010 ab | 0.28 ± 0.010 b | 0.44 ± 0.040 ab | <0.01 |
Isovaleric acid | 0.19 ± 0.060 b | 0.26 ± 0.031 b | 0.19 ± 0.051 b | 0.96 ± 0.030 a | <0.01 |
Valeric acid | 0.29 ± 0.061 c | 0.26 ± 0.010 c | 0.43 ± 0.001 b | 0.61 ± 0.050 a | <0.01 |
Total VFAs | 6.94 ± 1.670 b | 12.53 ± 1.221 a | 7.58 ± 0.481 b | 8.08 ± 1.300 b | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Sha, Y.; He, Y.; Liu, X.; Chen, X.; Yang, W.; Chen, Q.; Gao, M.; Huang, W.; Wang, J.; et al. Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep. Fermentation 2024, 10, 509. https://doi.org/10.3390/fermentation10100509
Wang F, Sha Y, He Y, Liu X, Chen X, Yang W, Chen Q, Gao M, Huang W, Wang J, et al. Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep. Fermentation. 2024; 10(10):509. https://doi.org/10.3390/fermentation10100509
Chicago/Turabian StyleWang, Fanxiong, Yuzhu Sha, Yanyu He, Xiu Liu, Xiaowei Chen, Wenxin Yang, Qianling Chen, Min Gao, Wei Huang, Jiqing Wang, and et al. 2024. "Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep" Fermentation 10, no. 10: 509. https://doi.org/10.3390/fermentation10100509
APA StyleWang, F., Sha, Y., He, Y., Liu, X., Chen, X., Yang, W., Chen, Q., Gao, M., Huang, W., Wang, J., Hao, Z., & Wang, L. (2024). Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep. Fermentation, 10(10), 509. https://doi.org/10.3390/fermentation10100509