Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Management and Anaerobic Fermentation of Whole-Plant Maize
2.2. Chemical Composition
2.3. In Vitro Rumen Incubation
2.4. Gas Measurement
2.5. pH and Dry Matter Degradation
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. In Vitro Rumen Total Gas Production
3.2. In Vitro Rumen Methane Production
3.3. In Vitro Rumen Carbon Monoxide Production
3.4. In Vitro Rumen Hydrogen Sulfide Production
3.5. Rumen Fermentation Characteristics and Methane Conversion Efficiency
4. Discussion
4.1. In Vitro Rumen Total Gas Production
4.2. In Vitro Rumen Methane Production
4.3. In Vitro Rumen Carbon Monoxide Production
4.4. In Vitro Rumen Hydrogen Sulfide Production
4.5. Rumen Fermentation Characteristics and Methane Conversion Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN (United Nations). The Sustainable Development Agenda. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 15 November 2023).
- Owens, F.N.; Basalan, M. Ruminal Fermentation. In Rumenology; Millen, D., de Beni, A.M., Lauritano, P.R., Eds.; Springer: Cham, Switzerland, 2016; pp. 63–102. [Google Scholar] [CrossRef]
- Davison, T.M.; Black, J.L.; Moss, J.F. Red meat—An essential partner to reduce global greenhouse gas emissions. Anim. Front. 2020, 10, 14–21. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Obaisi, A.I.; Elghandour, M.M.Y.; Oyebamiji, K.J.; Salem, A.Z.M.; Morakinyo-Fasipe, O.T.; Camacho-Díaz, L.M. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations—An overview. J. Clean. Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Hernández, R.P.E.; Mellado, M.; Adegbeye, M.J.; Salem, A.Z.M.; Covarrubias, J.L.P.; Elghandour, M.M.M.Y.; Omotoso, O.B. Effects of long-term supplementation of Caesalpinia coriaria fruit extract on ruminal methane, carbon monoxide, and hydrogen sulfide production in sheep. Biomass Conv. Bioref. 2022, 1–14. [Google Scholar] [CrossRef]
- Pereira, A.M.; de Lurdes, N.E.D.M.; Borba, A.E.S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Anim. Microbiome 2022, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef] [PubMed]
- García-Lara, S.; Serna-Saldívar, S.O. Corn history and culture. In Corn Chemistry and Technology, 3rd ed.; Serna-Saldivar, S.O., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Bellon, M.R.; Dulloo, E.; Sardos, J.; Thormann, I.; Burdon, J.J. In situ conservation-harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol. Appl. 2017, 10, 965–977. [Google Scholar] [CrossRef]
- Janzen, G.M.; Aguilar-Rangel, M.R.; Cíntora-Martínez, C.; Blöcher-Juárez, K.A.; González-Segovia, E.; Studer, A.J.; Runcie, D.E.; Flint-Garcia, S.A.; Rellán-Álvarez, R.; Sawers, R.J.H.; et al. Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evol. Appl. 2022, 15, 817–837. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Rivas-Jacobo, M.A.; Mendoza, P.S.I.; Sangerman-Jarquín, D.M.; Sánchez, H.M.Á.; Herrera, C.C.A.; Rojas, G.A.R. Forage evaluation of maize from various origins of Mexico in the semi-arid region. Rev. Mex. Cienc. Agríc. 2020, 11, 93–104. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Muck, R.E. Ensiling in 2050: Some challenges and opportunities. Grass Forage Sci. 2019, 74, 178–187. [Google Scholar] [CrossRef]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef]
- Vargas, T.V.; Hernández, R.M.E.; Gutiérrez, L.J.; Plácido, C.J.M.; Jiménez, C.A. Clasificación climática del estado de Tamaulipas, México. CienciaUAT 2007, 2, 15–19. [Google Scholar]
- AOAC. Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists International: Arlington, VA, USA, 1997. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Zicarelli, F.; Sarubbi, F.; Iommelli, P.; Grossi, M.; Lotito, D.; Tudisco, R.; Infascelli, F.; Musco, N.; Lombardi, P. Nutritional Characteristics of Corn Silage Produced in Campania Region Estimated by Near Infrared Spectroscopy (NIRS). Agronomy 2023, 13, 634. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, E.R.; Ballesteros-Rodea, G.; Salem, A.Z.M.; Reyes-Hernández, J.; Herrera-Corredor, C.A.; Hernández-Meléndez, J.; Limas-Martínez, A.G.; López-Aguirre, D.; Rivas-Jacobo, M.A. The Impact of Genotype on Chemical Composition, Feeding Value and In Vitro Rumen Degradability of Fresh and Ensiled Forage of Native Maize (Zea mays L.) from Mexico. Agriculture 2023, 13, 2161. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fibre Analysis (Apparatus, Reagents, Procedures and Some Applications); Agricultural Research Service USDA: Washington, DC, USA, 1970; pp. 1–24.
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, E.R.; Maggiolino, A.; Elghandour, M.M.M.Y.; Rivas-Jacobo, M.A.; Ballesteros-Rodea, G.; Palo, P.D.; Salem, A.Z.M. Impact of co-ensiling of maize with Moringa oleifera on the production of greenhouse gases and the characteristics of fermentation in ruminants. Animals 2023, 13, 764. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System) Institute. User’s Guide: Statistics, Version 9.0; SAS Institute: Cary, NC, USA, 2002.
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Moraïs, S.; Mizrahi, I. Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol. Rev. 2019, 43, 362–379. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Nguyen, T.T.; Reid, I.D.; Yanke, J.L.; Wang, P.; Abbott, D.W.; Tsang, A.; McAllister, T. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 2018, 9, 1581. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Noel, S.J.; Lund, P.; Larsen, M.; Weisbjerg, M.R.; Børsting, C.F. Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior. J. Dairy Sci. 2022, 105, 9523–9541. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation-updates focusing on the performance of microorganisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef]
- Chen, C.; Xin, Y.; Li, X.; Ni, H.; Zeng, T.; Du, Z.; Guan, H.; Wu, Y.; Yang, W.; Cai, Y.; et al. Effects of Acremonium cellulase and heat-resistant lactic acid bacteria on lignocellulose degradation, fermentation quality, and microbial community structure of hybrid elephant grass silage in humid and hot areas. Front. Microbiol. 2022, 13, 1066753. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.J.; Li, J.F.; Dong, Z.H.; Wang, S.R.; Guo, G.; Shao, T. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability, and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim. Prod. Sci. 2019, 59, 376–383. [Google Scholar] [CrossRef]
- Wang, S.R.; Zhao, J.; Yu, C.Q.; Li, J.F.; Tao, X.X.; Chen, S.F.; Shao, T. Nutritional evaluation of wet brewers’ grains as substitute for common vetch in ensiled total mixed ration. Ital. J. Anim. Sci. 2020, 19, 1015–1025. [Google Scholar] [CrossRef]
- Jančík, F.; Kubelková, P.; Loučka, R.; Jambor, V.; Kumprechtová, D.; Homolka, P.; Koukolová, V.; Tyrolová, Y.; Výborná, A. Shredlage processing affects the digestibility of maize silage. Agronomy 2022, 12, 1164. [Google Scholar] [CrossRef]
- He, Y.; Mouthier, T.M.; Kabel, M.A.; Dijkstra, J.; Hendriks, W.H.; Struik, P.C.; Cone, J.W. Lignin composition is more important than content for maize stem cell wall degradation. J. Sci. Food Agric. 2018, 98, 384–390. [Google Scholar] [CrossRef]
- Yan-Lu, W.; Wei-Kang, W.; Qi-Chao, W.; Fan, Z.; Wen-Juan, L.; Sheng-Li, L.; Wei, W.; Zhi-Jun, C.; Hong-Jian, Y. In situ rumen degradation characteristics and bacterial colonization of corn silages differing in ferulic and p-coumaric acid contents. Microorganisms 2022, 10, 2269. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Xie, T.Y.; Janssen, P.H.; Sun, X.Z.; Beauchemin, K.A.; Tan, Z.L.; Gao, M. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates. J. Nutr. 2016, 146, 1714–1721. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shi, W.; Huang, L.T.; Ding, C.L.; Dai, C.C. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage. Anim. Sci. J. 2016, 87, 525–535. [Google Scholar] [CrossRef]
- Sun, H.; Cui, X.; Li, R.; Guo, J.; Dong, R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresour. Technol. 2021, 342, 125928. [Google Scholar] [CrossRef]
- Rooke, J.A.; Wallace, R.J.; Duthie, C.A.; McKain, N.; de Souza, S.M.; Hyslop, J.J.; Ross, D.W.; Waterhouse, T.; Roehe, R. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. Br. J. Nutr. 2014, 112, 398–407. [Google Scholar] [CrossRef]
- Duvnjak, M.; Butorac, A.; Kljak, K.; Nišavić, M.; Cindrić, M.; Grbeša, D. The evaluation of γ-zein reduction using mass spectrometry-the influence of proteolysis type in relation to starch degradability in silages. Fermentation 2022, 8, 551. [Google Scholar] [CrossRef]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.S.; Adesogan, A.T.; Nussio, L.G.; Daniel, J.L.P. Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Esen, S.; Cabi, E.; Koç, F. Effect of freeze-dried kefir culture inoculation on nutritional quality, in vitro digestibility, mineral concentrations, and fatty acid composition of white clover silages. Biomass Convers. Biorefin. 2022, 1–12. [Google Scholar] [CrossRef]
- Haarstad, K.; Bergersen, O.; Sørheim, R. Occurrence of carbon monoxide during organic waste degradation. J. Air Waste Manag. Assoc. 2006, 56, 575–580. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lens, P.N.; Veiga, M.C.; Kennes, C. Selective butanol production from carbon monoxide by an enriched anaerobic culture. Sci. Total Environ. 2022, 806, 150579. [Google Scholar] [CrossRef] [PubMed]
- Techtmann, S.M.; Colman, A.S.; Robb, F.T. ‘That which does not kill us only makes us stronger’: The role of carbon monoxide in thermophilic microbial consortia. Environ. Microbiol. 2009, 11, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Diender, M.; Stams, A.J.M.; Sousa, D.Z. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front. Microbiol. 2015, 6, 1275. [Google Scholar] [CrossRef]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Naveira, Á.; Veiga, M.C.; Kennes, C. H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J. Chem. Technol. Biotechnol. 2017, 92, 712–731. [Google Scholar] [CrossRef]
- Shah, A.M.; Ma, J.; Wang, Z.; Hu, R.; Wang, X.; Peng, Q.; Amevor, F.K.; Goswami, N. Production of hydrogen sulfide by fermentation in rumen and its impact on health and production of animals. Processes 2020, 8, 1169. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Meng, Q.; Zhou, Z. Effect of high sulfur diet on rumen fermentation, microflora, and epithelial barrier function in steers. Animals 2021, 11, 2545. [Google Scholar] [CrossRef]
- Salvador-Reyes, R.; Rebellato, A.P.; Pallone, J.A.L.; Ferrari, R.A.; Clerici, M.T.P.S. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Res. Int. 2021, 140, 110044. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.R.A.A.; Gul, K.; Dar, B.N. Wholegrains: A review on the amino acid profile, mineral content, physicochemical, bioactive composition, and health benefits. Int. J. Food Sci. Technol. 2022, 57, 1849–1865. [Google Scholar] [CrossRef]
- Schlegel, P.; Wyss, U.; Arrigo, Y.; Hess, H.D. Changes in macro-and micromineral concentrations in herbage during the harvesting and conservation processes. Grass Forage Sci. 2018, 73, 918–925. [Google Scholar] [CrossRef]
- Jenkins, T. The link between endotoxins and mycotoxins. Sci. Solut. 2018, 53, 8–10. [Google Scholar]
- Lyle, R.R.; Johnson, R.R.; Wilhite, J.V. Rumen characteristics in steers as affected by adaptation from forage to all concentrate diets. J. Anim. Sci. 1981, 53, 1383–1390. [Google Scholar] [CrossRef]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing sub-acute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Kolver, E.S.; De Veth, M.J. Prediction of ruminal pH from pasture-based diets. J. Dairy Sci. 2002, 85, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, Q.; Wang, C.; Song, C.; Lyu, Y.; Li, J.; Shan, A. The interaction between temperature and citric acid treatment in the anaerobic fermentation of Chinese cabbage waste. J. Clean. Prod. 2023, 383, 135502. [Google Scholar] [CrossRef]
Item 2 | Genotype of Maize 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hybrid | Amarillo | Olotillo | Tampiqueño | Tuxpeño | ||||||
Fresh | Fermented | Fresh | Fermented | Fresh | Fermented | Fresh | Fermented | Fresh | Fermented | |
pH | 6.00 | 3.60 | 6.19 | 3.80 | 6.19 | 3.80 | 6.12 | 3.76 | 6.21 | 3.80 |
DM | 319.2 | 305.4 | 307.6 | 290.7 | 307.6 | 290.7 | 321.1 | 284.1 | 307.9 | 294.5 |
OM | 920.6 | 927.6 | 927.6 | 929.9 | 927.6 | 929.9 | 921.3 | 936.3 | 916.3 | 920.8 |
CP | 108.0 | 83.1 | 102.9 | 83.5 | 102.9 | 83.5 | 104.9 | 85.6 | 102.6 | 85.8 |
EE | 23.9 | 36.0 | 26.4 | 38.0 | 26.4 | 38.0 | 21.9 | 34.0 | 24.5 | 36.0 |
NDF | 597.1 | 475.6 | 662.3 | 598.2 | 662.3 | 598.2 | 616.6 | 594.6 | 588.6 | 529.4 |
ADF | 316.8 | 269.0 | 363.7 | 360.8 | 363.7 | 360.8 | 350.5 | 323.1 | 305.2 | 288.8 |
Lignin | 38.4 | 41.2 | 44.1 | 48.9 | 44.1 | 48.9 | 42.5 | 48.6 | 37.0 | 42.1 |
NFC | 191.6 | 332.9 | 136.0 | 210.2 | 136.0 | 210.2 | 177.8 | 221.9 | 205.0 | 269.5 |
Starch | 132.0 | 171.5 | 36.9 | 90.3 | 36.9 | 90.3 | 61.1 | 125.4 | 37.2 | 53.0 |
WSC | 50.7 | 41.4 | 32.3 | 60.3 | 32.3 | 60.3 | 51.2 | 67.3 | 74.0 | 76.0 |
NH3-N | 19.7 | 27.1 | 21.0 | 46.2 | 21.0 | 46.2 | 27.6 | 44.1 | 25.0 | 41.2 |
Lactic acid | 2.7 | 37.4 | 9.8 | 50.0 | 9.8 | 50.0 | 6.3 | 44.7 | 2.5 | 20.1 |
Acetic acid | 2.6 | 27.2 | 2.5 | 26.5 | 2.5 | 26.5 | 2.6 | 25.3 | 2.5 | 12.5 |
Butyric acid | 0.7 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.4 | 0.1 | 0.7 | 1.1 |
Genotype of Maize | State of the WPM 1 | TG Production | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters 2 | mL TG g−1 DM Incubated | mL TG g−1 DM Degraded | ||||||||
b | c | Lag | 6 h | 24 h | 48 h | 6 h | 24 h | 48 h | ||
Hybrid | Fresh | 394.83 | 0.0285 | 2.16 | 107.10 | 273.02 | 388.15 | 606.61 | 1545.26 | 2197.05 |
Fermented | 562.63 | 0.0301 | 3.19 | 132.11 | 255.39 | 540.31 | 408.59 | 789.97 | 1671.68 | |
Amarillo | Fresh | 398.20 | 0.0283 | 2.18 | 129.52 | 298.08 | 396.64 | 936.66 | 2155.41 | 2868.15 |
Fermented | 564.37 | 0.0302 | 3.09 | 136.81 | 265.16 | 526.81 | 453.27 | 878.57 | 1745.24 | |
Olotillo | Fresh | 304.13 | 0.0213 | 1.66 | 125.55 | 283.41 | 282.48 | 752.58 | 1698.19 | 2343.23 |
Fermented | 396.07 | 0.0283 | 2.17 | 95.04 | 183.04 | 390.61 | 343.14 | 661.91 | 1022.67 | |
Tampiqueño | Fresh | 449.90 | 0.0250 | 2.46 | 168.40 | 312.37 | 436.93 | 1030.70 | 1913.60 | 2674.16 |
Fermented | 616.13 | 0.0316 | 3.37 | 115.00 | 248.92 | 574.06 | 390.64 | 845.09 | 1949.11 | |
Tuxpeño | Fresh | 463.70 | 0.0258 | 2.54 | 161.37 | 321.54 | 452.19 | 1318.12 | 2625.35 | 3690.42 |
Fermented | 579.07 | 0.0285 | 3.17 | 141.82 | 265.05 | 538.93 | 476.41 | 893.32 | 1821.66 | |
SEM 3 | 42.264 | 0.00060 | 0.231 | 5.500 | 15.540 | 39.028 | 23.632 | 60.653 | 139.426 | |
p-value | ||||||||||
Genotype | 0.0438 | 0.0002 | 0.0438 | 0.0002 | 0.0996 | 0.0428 | <0.0001 | <0.0001 | 0.0003 | |
Fermentation | 0.0093 | 0.6537 | 0.0093 | 0.0090 | 0.0009 | 0.0337 | <0.0001 | <0.0001 | <0.0001 | |
Genotype × Fermentation | 0.1570 | <0.0001 | 0.1569 | 0.0005 | 0.4120 | 0.1490 | <0.0001 | 0.0003 | 0.0236 |
Genotype of Maize | State of the WPM 1 | CH4 Production | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters 2 | mL CH4 g−1 DM Incubated | mL CH4 g−1 DM Degraded | ||||||||
b | c | Lag | 6 h | 24 h | 48 h | 6 h | 24 h | 48 h | ||
Hybrid | Fresh | 80.01 | 0.0884 | 13.86 | 1.14 | 13.87 | 80.18 | 6.47 | 78.53 | 467.36 |
Fermented | 109.29 | 0.1740 | 18.93 | 0.77 | 5.41 | 108.80 | 2.37 | 16.73 | 335.91 | |
Amarillo | Fresh | 85.01 | 0.0886 | 14.72 | 1.40 | 16.20 | 85.28 | 10.15 | 117.11 | 616.70 |
Fermented | 96.37 | 0.1696 | 16.69 | 0.85 | 6.01 | 95.88 | 2.80 | 19.90 | 317.49 | |
Olotillo | Fresh | 50.15 | 0.0867 | 14.50 | 1.28 | 12.82 | 56.35 | 7.65 | 76.51 | 454.13 |
Fermented | 67.96 | 0.1253 | 16.69 | 0.84 | 7.81 | 69.22 | 3.05 | 28.13 | 181.53 | |
Tampiqueño | Fresh | 93.37 | 0.0854 | 16.17 | 2.47 | 17.70 | 93.63 | 15.13 | 109.45 | 572.80 |
Fermented | 106.85 | 0.1539 | 18.51 | 0.73 | 5.79 | 106.74 | 2.46 | 19.57 | 364.76 | |
Tuxpeño | Fresh | 96.20 | 0.0832 | 16.66 | 2.10 | 17.86 | 102.51 | 17.11 | 144.46 | 695.91 |
Fermented | 113.12 | 0.1983 | 18.64 | 1.78 | 9.86 | 114.89 | 5.95 | 30.69 | 587.50 | |
SEM 3 | 21.631 | 0.0091 | 3.746 | 0.089 | 0.696 | 18.274 | 0.453 | 3.061 | 63.820 | |
p-value | ||||||||||
Genotype | 0.0639 | 0.0005 | 0.0639 | <0.0001 | 0.0103 | 0.0116 | <0.0001 | <0.0001 | 0.0006 | |
Fermentation | 0.1289 | <0.0001 | 0.1288 | <0.0001 | 0.0596 | <0.0001 | <0.0001 | 0.0049 | <0.0001 | |
Genotype × Fermentation | 0.1717 | 0.0004 | 0.1717 | <0.0001 | 0.0252 | 0.0445 | <0.0001 | <0.0001 | 0.4281 |
Genotype of Maize | State of the WPM 1 | CH4 Production | |||||
---|---|---|---|---|---|---|---|
mL CH4 100 mL−1 TG | g CH4 kg−1 DM | ||||||
6 h | 24 h | 48 h | 6 h | 24 h | 48 h | ||
Hybrid | Fresh | 1.07 | 5.08 | 20.67 | 5.31 | 64.49 | 372.85 |
Fermented | 0.58 | 2.11 | 20.23 | 3.56 | 25.17 | 505.94 | |
Amarillo | Fresh | 1.08 | 5.43 | 21.50 | 6.53 | 75.31 | 396.57 |
Fermented | 0.62 | 2.27 | 18.19 | 3.93 | 27.96 | 445.85 | |
Olotillo | Fresh | 1.02 | 4.50 | 19.95 | 5.94 | 59.60 | 262.04 |
Fermented | 0.88 | 4.28 | 17.72 | 3.91 | 36.30 | 321.85 | |
Tampiqueño | Fresh | 1.47 | 5.72 | 21.43 | 11.49 | 83.06 | 435.37 |
Fermented | 0.62 | 2.27 | 19.44 | 3.38 | 26.90 | 496.35 | |
Tuxpeño | Fresh | 1.30 | 5.50 | 22.67 | 9.75 | 83.06 | 476.69 |
Fermented | 1.26 | 3.72 | 21.32 | 8.26 | 45.82 | 534.23 | |
SEM 2 | 0.067 | 0.231 | 1.840 | 0.414 | 3.235 | 84.973 | |
p-value | |||||||
Genotype | 0.0004 | 0.0370 | 0.0003 | <0.0001 | 0.0103 | 0.0116 | |
Fermentation | <0.0001 | <0.0001 | 0.1200 | <0.0001 | <0.0001 | 0.0596 | |
Genotype × Fermentation | 0.0021 | 0.0004 | 0.0005 | <0.0001 | 0.0252 | 0.0445 |
Genotype of Maize | State of the WPM 1 | CO Production | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters 2 | mL CO g−1 DM Incubated | mL CO g−1 DM Degraded | ||||||||
b | c | Lag | 6 h | 24 h | 48 h | 6 h | 24 h | 48 h | ||
Hybrid | Fresh | 0.0224 | 0.0004 | 0.0000 | 0.0007 | 0.0069 | 0.0454 | 0.0036 | 0.0388 | 0.2568 |
Fermented | 3.3718 | 0.0011 | 0.0076 | 0.0054 | 0.0353 | 0.2078 | 0.0165 | 0.1086 | 0.6406 | |
Amarillo | Fresh | 0.0763 | 0.0000 | 0.0001 | 0.0007 | 0.0066 | 0.0414 | 0.0050 | 0.0474 | 0.2992 |
Fermented | 0.2939 | 0.0001 | 0.0008 | 0.0029 | 0.0208 | 0.1411 | 0.0097 | 0.0689 | 0.4664 | |
Olotillo | Fresh | 0.0215 | 0.0001 | 0.0000 | 0.0005 | 0.0055 | 0.0356 | 0.0019 | 0.0267 | 0.1293 |
Fermented | 0.0535 | 0.0000 | 0.0001 | 0.0005 | 0.0074 | 0.0404 | 0.0030 | 0.0328 | 0.2421 | |
Tampiqueño | Fresh | 0.0277 | 0.0002 | 0.0000 | 0.0010 | 0.0059 | 0.0407 | 0.0058 | 0.0364 | 0.2494 |
Fermented | 0.1236 | 0.0009 | 0.0002 | 0.0034 | 0.0209 | 0.1465 | 0.0115 | 0.0718 | 0.4999 | |
Tuxpeño | Fresh | 0.0259 | 0.0001 | 0.0000 | 0.0008 | 0.0048 | 0.0371 | 0.0066 | 0.0394 | 0.3021 |
Fermented | 0.0420 | 0.0002 | 1.3104 | 0.0185 | 0.1245 | 0.5351 | 0.0624 | 0.4209 | 1.8125 | |
SEM 3 | 0.7330 | 0.0003 | 0.2861 | 0.0011 | 0.0095 | 0.0441 | 0.0039 | 0.0326 | 0.1530 | |
p-value | ||||||||||
Genotype | 0.0639 | 0.4423 | 0.1774 | 0.4089 | 0.0001 | 0.0022 | 0.0087 | <0.0001 | 0.0023 | |
Fermentation | 0.1289 | 0.2710 | 0.1834 | 0.3150 | <0.0001 | 0.0004 | 0.0003 | 0.0002 | 0.0026 | |
Genotype × Fermentation | 0.1717 | 0.4350 | 0.7120 | 0.4089 | 0.0001 | 0.0018 | 0.0075 | 0.0003 | 0.0025 |
Genotype of Maize | State of the WPM 1 | H2S Production | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters 2 | mL H2S g−1 DM Incubated | mL H2S g−1 DM Degraded | ||||||||
b | c | Lag | 6 h | 24 h | 48 h | 6 h | 24 h | 48 h | ||
Hybrid | Fresh | 0.0951 | 0.0002 | 0.0007 | 0.0079 | 0.0443 | 0.2128 | 0.0447 | 0.2509 | 0.4367 |
Fermented | 0.1138 | 0.0002 | 0.0009 | 0.0049 | 0.0331 | 0.1522 | 0.0151 | 0.1023 | 0.1857 | |
Amarillo | Fresh | 0.1230 | 0.0002 | 0.0009 | 0.0112 | 0.0530 | 0.1776 | 0.0808 | 0.3834 | 0.6496 |
Fermented | 0.0907 | 0.0002 | 0.0007 | 0.0040 | 0.0237 | 0.1678 | 0.0133 | 0.0783 | 0.1391 | |
Olotillo | Fresh | 0.1080 | 0.0002 | 0.0008 | 0.0091 | 0.0452 | 0.1669 | 0.0544 | 0.2713 | 0.4758 |
Fermented | 0.0618 | 0.0001 | 0.0004 | 0.0066 | 0.0261 | 0.0910 | 0.0241 | 0.0939 | 0.1700 | |
Tampiqueño | Fresh | 0.1311 | 0.0002 | 0.0010 | 0.0145 | 0.0513 | 0.2122 | 0.0875 | 0.3125 | 0.5257 |
Fermented | 0.0741 | 0.0002 | 0.0005 | 0.0036 | 0.0253 | 0.1638 | 0.0124 | 0.0864 | 0.2084 | |
Tuxpeño | Fresh | 0.1303 | 0.0002 | 0.0010 | 0.0155 | 0.0492 | 0.2263 | 0.1266 | 0.4010 | 0.7289 |
Fermented | 0.1480 | 0.0003 | 0.0011 | 0.0070 | 0.0379 | 0.1871 | 0.0234 | 0.1276 | 0.1962 | |
SEM 3 | 0.0155 | 0.0000 | 0.0001 | 0.0010 | 0.0036 | 0.0039 | 0.0052 | 0.0168 | 0.0167 | |
p-value | ||||||||||
Genotype | 0.0639 | 0.2100 | 0.0462 | 0.1873 | 0.0221 | 0.6327 | 0.6276 | 0.0001 | 0.0075 | |
Fermentation | 0.1289 | 0.1678 | 0.7274 | 0.1500 | <0.0001 | <0.0001 | 0.0044 | <0.0001 | <0.0001 | |
Genotype × Fermentation | 0.1717 | 0.2915 | 0.0930 | 0.2144 | 0.0251 | 0.2811 | 0.3025 | 0.0003 | 0.0203 |
Genotype of Maize | State of the WPM 1 | Ruminal Fermentation Characteristics 2 | CH4 Conversion Efficiency 3 | |||||
---|---|---|---|---|---|---|---|---|
pH | DMD | SCFA | ME | CH4:SCFA | CH4:ME | CH4:OM | ||
Hybrid | Fresh | 7.35 | 60.32 | 6.04 | 6.75 | 66.57 | 9.56 | 14.90 |
Fermented | 6.56 | 69.95 | 5.65 | 6.55 | 27.62 | 3.83 | 5.82 | |
Amarillo | Fresh | 7.56 | 60.22 | 6.60 | 7.07 | 71.13 | 10.66 | 17.63 |
Fermented | 6.55 | 69.47 | 5.87 | 6.69 | 29.71 | 4.10 | 6.23 | |
Olotillo | Fresh | 7.25 | 55.56 | 6.27 | 6.84 | 58.92 | 8.69 | 13.85 |
Fermented | 6.33 | 61.79 | 4.04 | 5.69 | 56.19 | 6.38 | 8.44 | |
Tampiqueño | Fresh | 7.26 | 55.59 | 6.91 | 7.19 | 74.83 | 11.55 | 19.22 |
Fermented | 6.78 | 65.23 | 5.51 | 6.47 | 29.72 | 4.18 | 6.54 | |
Tuxpeño | Fresh | 7.27 | 57.12 | 7.12 | 7.25 | 71.99 | 11.34 | 19.06 |
Fermented | 6.93 | 65.90 | 5.86 | 6.61 | 48.72 | 6.41 | 9.84 | |
SEM 4 | 0.031 | 1.112 | 0.345 | 0.177 | 3.034 | 0.379 | 0.750 | |
p-value | ||||||||
Genotype | <0.0001 | <0.0001 | 0.0996 | 0.0899 | 0.0373 | 0.0105 | 0.0105 | |
Fermentation | <0.0001 | 0.0055 | 0.0009 | 0.0009 | <0.0001 | <0.0001 | <0.0001 | |
Genotype × Fermentation | <0.0001 | 0.4667 | 0.4119 | 0.4124 | 0.0004 | 0.0014 | 0.0249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado-Ramírez, E.R.; Elghandour, M.M.M.Y.; Rivas-Jacobo, M.A.; Calabrò, S.; Vastolo, A.; Cutrignelli, M.I.; Hernández-Ruiz, P.E.; Figueroa-Pacheco, E.B.; Salem, A.Z.M. Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize. Fermentation 2024, 10, 42. https://doi.org/10.3390/fermentation10010042
Alvarado-Ramírez ER, Elghandour MMMY, Rivas-Jacobo MA, Calabrò S, Vastolo A, Cutrignelli MI, Hernández-Ruiz PE, Figueroa-Pacheco EB, Salem AZM. Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize. Fermentation. 2024; 10(1):42. https://doi.org/10.3390/fermentation10010042
Chicago/Turabian StyleAlvarado-Ramírez, Edwin Rafael, Mona Mohamed Mohamed Yasseen Elghandour, Marco Antonio Rivas-Jacobo, Serena Calabrò, Alessandro Vastolo, Monica Isabella Cutrignelli, Pedro Enrique Hernández-Ruiz, Edson Brodeli Figueroa-Pacheco, and Abdelfattah Zeidan Mohamed Salem. 2024. "Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize" Fermentation 10, no. 1: 42. https://doi.org/10.3390/fermentation10010042
APA StyleAlvarado-Ramírez, E. R., Elghandour, M. M. M. Y., Rivas-Jacobo, M. A., Calabrò, S., Vastolo, A., Cutrignelli, M. I., Hernández-Ruiz, P. E., Figueroa-Pacheco, E. B., & Salem, A. Z. M. (2024). Influence of Genotype and Anaerobic Fermentation on In Vitro Rumen Fermentation Characteristics and Greenhouse Gas Production of Whole-Plant Maize. Fermentation, 10(1), 42. https://doi.org/10.3390/fermentation10010042