The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing
Abstract
:1. Introduction
2. Methods and Results
2.1. Atomic Structures of GNM with Holes of Different Geometry
2.2. Conductive Properties of GNM
2.3. Virtual Growing of VACNT(11,10)-Graphene
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194. [Google Scholar] [CrossRef]
- Yang, J.; Ma, M.; Li, L.; Zhang, Y.; Huang, W.; Dong, X.C. Graphene nanomesh: New versatile materials. Nanoscale 2014, 22, 13301–13313. [Google Scholar] [CrossRef]
- Zang, P.; Gao, S.; Dang, L.; Liu, Z.; Lei, Z. Green synthesis of holey graphene sheets and their assembly into aerogel with improved ion transport property. Electrochim. Acta 2016, 212, 171–178. [Google Scholar] [CrossRef]
- Jhajharia, S.K.; Selvaraj, K. Non-templated ambient nanoperforation of graphene: A novel scalable process and its exploitation for energy and environmental applications. Nanoscale 2015, 7, 19705–19713. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Hu, N.; Wei, L.; Su, Y.; Wei, H.; Yao, L.; Li, X.; Zhang, Y. A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors. J. Mater. Chem. A 2016, 4, 9739–9743. [Google Scholar] [CrossRef]
- Lin, Y.; Han, X.; Campbell, C.J.; Kim, J.W.; Zhao, B.; Luo, W.; Dai, J.; Hu, L.; Connell, J.W. Holey graphene nanomanufacturing: Structure, composition, and electrochemical properties. Adv. Funct. Mater. 2015, 25, 2920–2927. [Google Scholar] [CrossRef]
- Nithya, V.D. A review on holey graphene electrode for supercapacitor. J. Energy Storage 2021, 44, 103380. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.F.; Shi, Q.W.; Yang, J.; Liu, F. Band-gap scaling of graphene nanohole superlattices. Phys. Rev. B 2009, 80, 233405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, W.; Ragab, T.; Basaran, C. Mechanical and electronic properties of graphene nanomesh heterojunctions. Comput. Mater. Sci. 2018, 153, 64–72. [Google Scholar] [CrossRef]
- Zhong, M.M.; Yuan, H.K.; Huang, C.; Wang, G. Electronic properties of porous graphene and its hydrogen storage potentials. J. Alloys Compd. 2018, 766, 104–111. [Google Scholar] [CrossRef]
- Barkov, P.V.; Glukhova, O.E. Holey Graphene: Topological Control of Electronic Properties and Electric Conductivity. Nanomaterials 2021, 11, 1074. [Google Scholar] [CrossRef]
- Berrada, S.; Nguyen, V.H.; Querlioz, D.; Saint-Martin, J.; Alarcón, A.; Chassat, C.; Bournel, A.; Dollfus, P. Graphene nanomesh transistor with high on/off ratio and good saturation behavior. Appl. Phys. Lett. 2013, 103, 183509. [Google Scholar] [CrossRef] [Green Version]
- Sakkaki, B.; Saghai, H.R.; Darvish, G.; Khatir, M. Electronic and optical properties of passivated graphene nanomeshes: An ab initio study. Opt. Mater. 2021, 122, 111707. [Google Scholar] [CrossRef]
- Esfandiar, A.; Kybert, N.J.; Dattoli, E.N.; Han, G.H.; Lerner, M.B.; Akhavan, O.; Irajizad, A.; Johnson, A.T.C. DNA-decorated graphene nanomesh for detection of chemical vapors. Appl. Phys. Lett. 2013, 103, 183110. [Google Scholar] [CrossRef]
- Paul, R.K.; Badhulika, S.; Saucedo, N.M.; Mulchandani, A. Graphene Nanomesh As Highly Sensitive Chemiresistor Gas Sensor. Anal. Chem. 2012, 84, 8171–8178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumatani, A.; Miura, C.; Kuramochi, H.; Ohto, T.; Wakisaka, M.; Nagata, Y.; Ida, H.; Takahashi, Y.; Hu, K.; Jeong, S.; et al. Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Sci. Adv. 2019, 6, 1900119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiga, N.; Waheeda, A.; Sajidb, M.; Khanc, I.; Kawded, A.-N.; Sohaile, M. Porous graphene-based electrodes: Advances in electrochemical sensing of environmental contaminants. Trends Environ. Anal. Chem. 2021, 30, e00120. [Google Scholar] [CrossRef]
- Tylianakis, E.; Psofogiannakis, G.M.; Froudakis, G.E. Li-doped pillared graphene oxide: A graphene-based nanostructured material for hydrogen storage. J. Phys. Chem Lett. 2010, 1, 2459–2464. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, C.; Yan, Z.; Zhu, Y.; Peng, Z.; Hauge, R.H.; Natelson, D.; Tour, J.M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78. [Google Scholar] [CrossRef]
- Duan, K.; Li, L.; Hu, Y.; Wang, X. Pillared graphene as an ultra-high sensitivity mass sensor. Sci. Rep. 2017, 7, 14012. [Google Scholar] [CrossRef] [Green Version]
- Slepchenkov, M.M.; Shmygin, D.S.; Zhang, G.; Glukhova, O.E. Controlling anisotropic electrical conductivity in porous graphene-nanotube thin films. Carbon 2020, 165, 139–149. [Google Scholar] [CrossRef]
- Shunaev, V.V.; Glukhova, O.E. Pillared Graphene Structures Supported by Vertically Aligned Carbon Nanotubes as the Potential Recognition Element for DNA Biosensors. Materials 2020, 13, 5219. [Google Scholar] [CrossRef]
- Yarifard, M.; Davoodi, J.; Rafii-Tabar, H. In-plane thermal conductivity of graphene nanomesh: A molecular dynamics study. Comput. Mater. Sci. 2016, 111, 247–251. [Google Scholar] [CrossRef]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Gaus, M.; Goez, A.; Elstner, M. Parametrization and Benchmark of DFTB3 for Organic Molecules. J. Chem. Theory Comput. 2013, 9, 338–354. [Google Scholar] [CrossRef]
- Available online: https://dftbplus.org/ (accessed on 10 January 2021).
- Keldysh, L.V. Diagram Technique for Nonequilibrium Processes. JETP 1965, 20, 1018–1026. [Google Scholar]
- Datta, S. Quantum Transport: Atom to Transistor, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; p. 404. [Google Scholar]
- Li, M.; Liu, X.; Zhao, X.; Yang, F.; Wang, X.; Li, Y. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Top. Curr. Chem. 2017, 375, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, S.; Zhu, Z.; Zhang, J.; Wei, F.; Li, Y. Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation. MRS Bull. 2017, 42, 809–818. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Chen, J.; Ding, L.; Liu, X.; Yao, F.; Li, M.; Zhang, D.; Zhang, Z.; Liu, X.; et al. Selective Growth of Chirality-Enriched Semiconducting Nanotubes by Using Bimetallic Catalysts from Salt Precursors. Nanoscale 2013, 10, 6922–6927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Glukhova, O.E. New automatic method for generating atomistic models of multi-branched and arbitrary-shaped seamless junctions of carbon nanostructures. Comput. Mater. Sci. 2020, 184, 109943. [Google Scholar] [CrossRef]
- Qian, H.-J.; Eres, G.; Irle, S. Quantum chemical molecular dynamics simulation of carbon nanotube–graphene fusion. Mol. Simul. 2017, 13, 1269–1276. [Google Scholar] [CrossRef]
Current Direction | Armchair | Zigzag | ||||||
---|---|---|---|---|---|---|---|---|
Hole’s Form | Circle | Circle | Hexagon | Hexagon | Circle | Circle | Hexagon | Hexagon |
Passivation | Pure | H | Pure | H | Pure | H | Pure | H |
Eg, eV | 0.14 | 0.21 | 0.12 | 0.17 | 0.14 | 0.21 | 0.12 | 0.17 |
G, µS | 3.16 | 0.91 | 5.16 | 1.99 | 1.92 | 0.49 | 3.21 | 1.46 |
R, MOhm | 0.32 | 1.09 | 0.19 | 0.50 | 0.52 | 2.04 | 0.31 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shunaev, V.V.; Glukhova, O.E. The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing. C 2022, 8, 8. https://doi.org/10.3390/c8010008
Shunaev VV, Glukhova OE. The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing. C. 2022; 8(1):8. https://doi.org/10.3390/c8010008
Chicago/Turabian StyleShunaev, Vladislav V., and Olga E. Glukhova. 2022. "The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing" C 8, no. 1: 8. https://doi.org/10.3390/c8010008
APA StyleShunaev, V. V., & Glukhova, O. E. (2022). The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing. C, 8(1), 8. https://doi.org/10.3390/c8010008