Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of Functionalized Fullerenes
3.1.1. Synthesis of Malonate Substrates
3.1.2. Synthesis of C60/C70/Sc3N@C80 Fullerene Derivatives
3.2. Modification of Graphene
3.2.1. Preparation of Graphene
3.2.2. Functionalization of Graphene by π–π Stacking
3.3. Electrochemical Measurements
3.4. Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhao, J.; Burke, A.F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021, 59, 276–291. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.K.; Humayun, M.; Usman, M.; Shah, S.S.; Bibi, S.; Hasnain, B.S.U.; Ahmad, S.M.; Khan, A.; Shah, N.; et al. A review of supercapacitors: Materials design, modification, and applications. Energies 2021, 14, 7779. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Bhatt, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Pham, H.D.; Nanjundan, A.K.; Fernando, J.F.S.; Jayaramulu, K.; Golberg, D.; Han, Y.-K.; Dubal, D.P. True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors. Small 2020, 16, 2002806. [Google Scholar] [CrossRef]
- Naskar, P.; Kundu, D.; Maiti, A.; Chakraborty, P.; Biswas, B.; Banerjee, A. Frontiers in hybrid ion capacitors: A review on advanced materials and emerging devices. ChemElectroChem 2021, 8, 1393–1429. [Google Scholar] [CrossRef]
- Lal, M.S.; Lavanya, T.; Ramaprabhu, S. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite. Beilstein J. Nanotechnol. 2019, 10, 781–793. [Google Scholar]
- Yang, C. Review of graphene supercapacitors and different modified graphene electrodes. Smart Grid Renew Energy 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Nagarajarao, S.H.; Nandagudi, A.; Viswanatha, R.; Basavaraja, B.M.; Santosh, M.S.; Praveen, B.M.; Pandith, A. Recent developments in supercapacitor electrodes: A mini review. Chem. Eng. 2022, 6, 5. [Google Scholar] [CrossRef]
- Niyogi, S.; Bekyarova, E.; Hong, J.; Khizroev, S.; Berger, C.; de Heer, W.; Haddon, R.C. Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2011, 2, 2487–2498. [Google Scholar] [CrossRef]
- Bakandritsos, J.A.; Jakubec, P.; Pykal, M.; Otyepka, M. Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 2019, 13, 25–33. [Google Scholar] [CrossRef]
- Clancy, A.J.; Au, H.; Rubio, N.; Coulter, G.O.; Shaffer, M.S. Understanding and controlling the covalent functionalisation of graphene. Dalton Trans. 2020, 49, 10308–10318. [Google Scholar] [CrossRef] [PubMed]
- Ebrish, M.A.; Olson, E.J.; Koester, S.J. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene. ACS Appl. Mater. Interfaces 2014, 6, 10296–10303. [Google Scholar] [CrossRef] [PubMed]
- Jana, M.; Saha, S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C.; Kuila, T. Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 7323–7331. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, H.; Yang, X.; Zang, L. Tailoring electronic properties of graphene by π–π stacking with aromatic molecules. Phys. Chem. Lett. 2011, 2, 2897–2905. [Google Scholar] [CrossRef]
- Yong, V.; Hahn, H. Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors. Adv. Nanopart. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, R.; Saha, U.; Goswami, T.H.; Srivastava, A.; Prasad, N.E. ‘Pillar effect’ of chemically bonded fullerene in enhancing supercapacitance performances of partially reduced fullerenol graphene oxide hybrid electrode material. Electrochim. Acta 2018, 283, 269–290. [Google Scholar] [CrossRef]
- Senthilkumar, ak.; Prabakar, S.J.R.; Park, C.; Jeong, S.; Lah, M.S.; Pyo, M. Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. J. Mater. Chem. A 2016, 4, 1663–1670. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, L.; Wang, S.; Marathe, A.; Chaudhuri, J.; Li, G. Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 2011, 21, 5386–5391. [Google Scholar] [CrossRef]
- Fedorczyk, A.; Krogul-Sobczak, A.; Piotrowski, P. Anthracene modified graphene for C60/C70 fullerenes capture and construction of energy storage materials. Chem. Pap. 2021. [Google Scholar] [CrossRef]
- Alsulam, I.K.; Alharbi, T.M.D.; Moussa, M.; Raston, C.L. High-yield continuous-flow synthesis of spheroidal C60@Graphene composites as supercapacitors. ACS Omega 2019, 4, 19279–19286. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.G.; Merrill, M.D.; Wood, B.C.; Montalvo, E.; Worsley, M.A.; Baumann, T.F.; Biener, J.J. Battery/supercapacitor hybrid via non-covalent functionalization of graphene macro-assemblies. Mater. Chem. A 2014, 2, 17764–17770. [Google Scholar] [CrossRef]
- De la Torre, M.D.L.; Tomé, A.C.; Silva, A.M.S.; Cavaleiro, J.A.S. Synthesis of [60]fullerene–quercetin dyads. Tetrahedron Lett. 2002, 43, 4617–4620. [Google Scholar] [CrossRef]
- Fujino, S.; Yamaji, M.; Okamoto, H.; Mutai, T.; Yoshikawa, I.; Houjou, H.; Tani, F. Systematic investigations on fused π-system compounds of seven benzene rings prepared by photocyclization of diphenanthrylethenes. Photochem. Photobiol. Sci. 2017, 16, 925–934. [Google Scholar] [CrossRef]
- Piotrowski, P.; Mech, W.; Zarębska, K.; Krajewski, M.; Korona, K.P.; Kamińska, M.; Skompska, M.; Kaim, A. Mono- and di-pyrene [60]fullerene and [70]fullerene derivatives as potential components for photovoltaic devices. Molecules 2021, 26, 1561. [Google Scholar] [CrossRef]
- Bingel, C. Cyclopropanierung von fullerenen. Chem. Ber. 1993, 126, 1957–1959. [Google Scholar] [CrossRef]
- Pinzón, J.R.; Zuo, T.; Echegoyen, L. Synthesis and electrochemical studies of bingel–hirsch derivatives of M3N@Ih-C80 (M = Sc, Lu). Chem. Eur. J. 2010, 16, 4864–4869. [Google Scholar] [CrossRef]
- Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W.R.; Rudolf, P.; Prato, M. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 2010, 4, 3527–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zhao, H.; Yu, F.; Yang, J. Design of an extended experiment with electrical double layer capacitors: Electrochemical energy storage devices in green chemistry. Sustainability 2018, 10, 3630. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Guo, Q.; Gao, H.-L.; Qin, X. Synthesis of C60/graphene composite as electrode in supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 477–482. [Google Scholar] [CrossRef]
- Zólyomi, V.; Koltai, J.; Kürti, J. Resonance Raman spectroscopy of graphite and graphene. Phys. Status Solidi B 2011, 248, 2435–2444. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Roscher, S.; Hoffman, R.; Ambacher, O. Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal. Methods 2019, 11, 1224–1228. [Google Scholar] [CrossRef] [Green Version]
- Kuzmany, H.; Pfeiffer, R.; Hulman, M.; Kramberger, C. Raman spectroscopy of fullerenes and fullerene–nanotube composites. Philos. Trans. R. Soc. Lond. A 2004, 362, 2375–2406. [Google Scholar] [CrossRef]
- Chen, L.; Batchelor-McAuley, C.; Rasche, B.; Johnston, C.; Hindle, N.; Compton, R.G. Surface area measurements of graphene and graphene oxide samples: Dopamine adsorption as a complement or alternative to methylene blue? Appl. Mater. Today 2020, 18, 100506. [Google Scholar] [CrossRef]
- Rubino, R.S.; Takeuchi, E.S. The study of irreversible capacity in lithium-ion anodes prepared with thermally oxidized graphite. J. Power Sources 1999, 81–82, 373–377. [Google Scholar] [CrossRef]
- Morgan, D.J. Comments on the XPS analysis of carbon materials. C 2021, 7, 51. [Google Scholar] [CrossRef]
- Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231. [Google Scholar] [CrossRef]
- Campanera, J.M.; Bo, C.; Poblet, J.M. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew. Chem. Int. Ed. 2005, 44, 7230–7233. [Google Scholar] [CrossRef] [PubMed]
- Campanera, J.M.; Bo, C.; Olmstead, M.M.; Balch, A.L.; Poblet, J.M. Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3). J. Phys. Chem. A 2002, 106, 12356–12364. [Google Scholar] [CrossRef]
- Marrani, A.G.; Motta, A.; Amato, F.; Schrebler, R.; Zanoni, R.; Dalchiele, E.A. Effect of electrolytic medium on the electrochemical reduction of graphene oxide on Si(111) as probed by XPS. Nanomaterials 2022, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Onoe, J.; Nakao, A.; Takeuchi, K. XPS study of a photopolymerized C60 film. Phys. Rev. B 1997, 55, 10051. [Google Scholar] [CrossRef]
- Bertóti, I. Characterization of nitride coatings by XPS. Surf. Coat. Technol. 2002, 151–152, 194–203. [Google Scholar] [CrossRef]
- Reddy, P.H.; Das, S.; Dutta, D.; Dhar, A.; Kir’yanov, A.V.; Pal, M.; Bhadra, S.K.; Paul, M.C. Luminescent properties and optical amplification of erbium-doped nano-engineered scandium-phospho-yttria-alumina-silica glass based optical fiber. Phys. Status Solidi A 2018, 215, 1700615. [Google Scholar] [CrossRef]
- Wan, C.; Jiao, Y.; Bao, W.; Gao, H.; Wu, Y.; Li, J. Self-stacked multilayer FeOCl supported on a cellulose-derived carbon aerogel: A new and high-performance anode material for supercapacitors. J. Mater. Chem. A 2019, 7, 9556–9564. [Google Scholar] [CrossRef]
- Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A 2017, 5, 3819–3831. [Google Scholar] [CrossRef]
- Wan, C.; Jiao, Y.; Liang, D.; Wu, Y.; Li, J. A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core–sheath structured MnO2 nanoribbons and cotton-derived carbon cloth. Electrochim. Acta 2018, 285, 262–271. [Google Scholar] [CrossRef]
Sample | Specific Capacitance [F/g] |
---|---|
G | 48.83 |
G-BB6 | 1.56 |
G-BB7 | 1.95 |
G-BN6 | 48.76 |
G-BN7 | 56.15 |
G-BN8 | 15.57 |
G-BF6 | 19.90 |
G-BF7 | 4.89 |
G-BP6 | 41.51 |
G-BP7 | 32.69 |
Sample | Specific Surface Area [m2/g] |
---|---|
G | 571 |
G-BB6 | 395 |
G-BB7 | 388 |
G-BN6 | 531 |
G-BN7 | 686 |
G-BN8 | 402 |
G-BF6 | 364 |
G-BF7 | 411 |
G-BP6 | 548 |
G-BP7 | 604 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowski, P.; Fedorczyk, A.; Grebowski, J.; Krogul-Sobczak, A. Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials. C 2022, 8, 17. https://doi.org/10.3390/c8010017
Piotrowski P, Fedorczyk A, Grebowski J, Krogul-Sobczak A. Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials. C. 2022; 8(1):17. https://doi.org/10.3390/c8010017
Chicago/Turabian StylePiotrowski, Piotr, Agata Fedorczyk, Jacek Grebowski, and Agnieszka Krogul-Sobczak. 2022. "Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials" C 8, no. 1: 17. https://doi.org/10.3390/c8010017
APA StylePiotrowski, P., Fedorczyk, A., Grebowski, J., & Krogul-Sobczak, A. (2022). Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials. C, 8(1), 17. https://doi.org/10.3390/c8010017