A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water
Abstract
:1. Introduction
- pressure-driven membrane operations: reverse osmosis (RO); nano-filtration (NF); ultra-filtration (UF) and microfiltration (MF);
- electric potential gradient: electro dialysis (ED);
- temperature gradient: membrane distillation (MD); and
- concentration gradient: forward osmosis (FO); dialysis, and pervaporation.
2. Pressure Driven Modified Membranes
2.1. Polymer Membranes
2.2. Cellulose Membranes
2.3. Graphene Membranes
2.4. Other Modified Membranes
3. Conclusions
- Most of the membranes applied for fluoride removal reveal higher efficiency at the pH range relevant to drinking water treatment (i.e., 6–8).
- The polyacrylonitrile hollow fiber membrane AlFu MOF exhibited the highest fluoride capacity (205 mg g−1).
- Maximum treatment capacity was obtained with the use of a cellulose-modified membrane Fe-Al-Mn@chitosan with a permeate flux of 2000 L m−2 h−1. The carbon-based amyloid fibril nano-ZrO2 composites (CAF-Zr) and Al-HAP membrane produced by modification of hydroxyapatite with Al(OH)3 follows, with values for treatment capacity of 1750 and 1568 L m−2, respectively.
- Main focus of the reviewed studies has been on the use of polymer-based membranes.
- A technical-economic comparison study of NF and RO in the reduction of fluoride from groundwater showed that NF membrane is slightly less expensive.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ABN/TPU-NFM | Al2O3/bio-TiO2 nanocomposite impregnated electrospunTPU nanofiber membrane |
Al Fu MOF | Aluminium fumarate metal organic frameworks |
CAF-Zr | Carbon based amyloid fibril nano-ZrO2 composites |
CBM | Carbonized bone meal |
CA | Cellulose acetate |
CAP | Cellulose acetate phthalate |
GO | Graphene Oxide |
MOF | Metal organic frameworks |
MF | Microfiltration |
MFS-AA-PVDF | Polyvinylidene fluoride-activated alumina-maifanite membranes |
MMM | Mixed matrix membrane |
MWCO | Molecular weight cut off |
NF | Nanofiltration |
PES | Polyethersulfone |
PV-membrane | Photovoltaic membrane |
RO | Reverse osmosis |
TPU | Thermoplastic polyurethane |
TMP | Trans membrane pressure |
UF | Ultrafiltration |
Zr-CTS/GO | Zirconium-chitosan/graphene oxide membrane |
Zr-MOF | Zirconium metal organic framework |
References
- Tolkou, A.K.; Mitrakas, M.; Katsoyiannis, I.A.; Ernst, M.; Zouboulis, A.I. Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application. Chemosphere 2019, 231, 528–537. [Google Scholar] [CrossRef]
- Damtie, M.M.; Woo, Y.C.; Kim, B.; Hailemariam, R.H.; Park, K.D.; Shon, H.K.; Park, C.; Choi, J.S. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Environ. Manag. 2019, 251, 109524. [Google Scholar] [CrossRef]
- World Health Organization European Standards for Drinking-Water. Am. J. Med. Sci. 1970, 242, 56.
- Herschy, R.W. Water quality for drinking: WHO guidelines. Encycl. Earth Sci. Ser. 2012, 876–883. [Google Scholar] [CrossRef]
- Arya, S.; Subramani, T.; Vennila, G.; Karunanidhi, D. Health risks associated with fluoride intake from rural drinking water supply and inverse mass balance modeling to decipher hydrogeochemical processes in Vattamalaikarai River basin, South India. Environ. Geochem. Health 2021, 43, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Premathilaka, R.W.; Liyanagedera, N.D. Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride. J. Nanotechnol. 2019, 2019, 2192383. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament and the Council of the European Union Directive (EU) 2020/2184, EU (revised) Drinking Water Directive. Off. J. Eur. Communities 2020, 2019, 1–62.
- Kabay, N.; Arar, Ö.; Samatya, S.; Yüksel, Ü.; Yüksel, M. Separation of fluoride from aqueous solution by electrodialysis: Effect of process parameters and other ionic species. J. Hazard. Mater. 2008, 153, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.S.; Hosamani, K.M.; Reddy, H.R.S.; Nataraj, S.K.; Aminabhavi, T.M. Application of the electrodialytic pilot plant for fluoride removal. J. Water Chem. Technol. 2011, 33, 293–300. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef] [PubMed]
- Nwankwo, C.B.; Hoque, M.A.; Islam, M.A.; Dewan, A. Groundwater Constituents and Trace Elements in the Basement Aquifers of Africa and Sedimentary Aquifers of Asia: Medical Hydrogeology of Drinking Water Minerals and Toxicants. Earth Syst. Environ. 2020, 4, 369–384. [Google Scholar] [CrossRef]
- Rasool, A.; Farooqi, A.; Xiao, T.; Ali, W.; Noor, S.; Abiola, O.; Ali, S.; Nasim, W. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ. Geochem. Health 2017, 40, 1265–1281. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Khan, S.A.; Kumar, A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environ. Int. 2018, 111, 80–108. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, X.; Zhang, L.; Wu, B.; Zhang, G.; Zhang, S. Coagulation removal of fluoride by zirconium tetrachloride: Performance evaluation and mechanism analysis. Chemosphere 2019, 218, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Roy, A.; Sarkar, S.; Ghosh, S.; Majumdar, S.; Chakraborty, S.; Mandal, S.; Mukhopadhyay, A.; Bandyopadhyay, S. Combination technology of ceramic microfiltration and reverse osmosis for tannery wastewater recovery. Water Resour. Ind. 2013, 3, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Valadez Sanchez, E.P.; Bogdanova, E.; Bergfeldt, B.; Mahmood, A.; Ostvald, R.V.; Hashem, T. Efficient Fluoride Removal from Aqueous Solution Using Zirconium-Based Composite Nanofiber Membranes. Membranes 2021, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Suganya, S.; Srinivas, S.; Priyadharshini, S.; Karthika, M.; Karishma Sri, R.; Swetha, V.; Naushad, M.; Lichtfouse, E. Treatment of fluoride-contaminated water. A review. Environ. Chem. Lett. 2019, 17, 1707–1726. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, S.; Yenkie, M.K.; Labhsetwar, N.; Rayalu, S. Fluoride in drinking water and defluoridation of water. Chem. Rev. 2012, 112, 2454–2466. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Manousi, N.; Zachariadis, G.A.; Katsoyiannis, I.A. Recently Developed Adsorbing Materials for Fluoride Removal from Water and Fluoride Analytical Determination Techniques: A Review. Sustainability 2021, 13, 7061. [Google Scholar] [CrossRef]
- Alhassan, S.I.; Huang, L.; He, Y.; Yan, L.; Wu, B.; Wang, H. Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Crit. Rev. Environ. Sci. Technol. 2020, 1–35. [Google Scholar] [CrossRef]
- Gallios, G.P.; Tolkou, A.K.; Katsoyiannis, I.A.; Stefusova, K.; Vaclavikova, M.; Deliyanni, E.A. Adsorption of arsenate by nano scaled activated carbon modified by iron and manganese oxides. Sustainability 2017, 9, 1684. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.X.; Qu, J.H.; Liu, R.P.; Lan, H.C. Effect of aluminum fluoride complexation on fluoride removal by coagulation. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 395, 88–93. [Google Scholar] [CrossRef]
- He, Z.; Liu, R.; Xu, J.; Liu, H.; Qu, J. Defluoridation by Al-based coagulation and adsorption: Species transformation of aluminum and fluoride. Sep. Purif. Technol. 2015, 148, 68–75. [Google Scholar] [CrossRef]
- Hug, S.J.; Winkel, L.H.E.; Voegelin, A.; Berg, M.; Johnson, A.C. Arsenic and Other Geogenic Contaminants in Groundwater-A Global Challenge. Chimia 2020, 74, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef]
- Sorlini, S.; Palazzini, D.; Collivignarelli, C. Fluoride removal from drinking water in Senegal: Laboratory and pilot experimentation on bone char-based treatment. J. Water Sanit. Hyg. Dev. 2011, 1, 213–223. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; Torretta, V.; Rada, E.C.; Caccamo, F.M.; Sorlini, S. Adsorption of fluorides in drinking water by palm residues. Sustainability 2020, 12, 3786. [Google Scholar] [CrossRef]
- Du, Y.; Wang, D.; Wang, W.; Fu, J.; Chen, X.; Wang, L.; Yang, W.; Zhang, X. Electrospun Nanofibrous Polyphenylene Oxide Membranes for High-Salinity Water Desalination by Direct Contact Membrane Distillation. ACS Sustain. Chem. Eng. 2019, 7, 20060–20069. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Chatterjee, S.; De, S. Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Sep. Purif. Technol. 2014, 125, 223–238. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, N.; Su, P.; Li, M.; Feng, C. Fluoride removal from aqueous solution by Zirconium-Chitosan/Graphene Oxide Membrane. React. Funct. Polym. 2017, 114, 127–135. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Cerneaux, S.; Wang, X.; Zhu, Z.; Dong, Y. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J. Memb. Sci. 2014, 456, 128–133. [Google Scholar] [CrossRef]
- Ochando Pulido, J.M.; Stoller, M.; Victor-Ortega, M.D.; Martinez-Ferez, A. Analysis of the Fouling Build-up of a Spiral Wound Reverse Osmosis Membrane in the Treatment of Two-phase Olive Mill Wastewater. Chem. Eng. Trans. 2016, 47, 403–408, SE-Research Articles. [Google Scholar] [CrossRef]
- Zuo, K.; Chen, M.; Liu, F.; Xiao, K.; Zuo, J.; Cao, X.; Zhang, X.; Liang, P.; Huang, X. Coupling microfiltration membrane with biocathode microbial desalination cell enhances advanced purification and long-term stability for treatment of domestic wastewater. J. Memb. Sci. 2018, 547, 34–42. [Google Scholar] [CrossRef]
- Praveen, P.; Heng, J.Y.P.; Loh, K.C. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration. Bioresour. Technol. 2016, 222, 448–457. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Li, J.P.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms. Chem. Eng. J. 2017, 316, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Indika, S.; Wei, Y.; Hu, D.; Ketharani, J.; Ritigala, T.; Cooray, T.; Hansima, M.A.C.K.; Makehelwala, M.; Jinadasa, K.B.S.N.; Weragoda, S.K.; et al. Evaluation of performance of existing ro drinking water stations in the north central province, Sri Lanka. Membranes 2021, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Kasongo, G. The removal of selected inorganics from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application: A pilot-scale study. Membranes 2021, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Siddique, T.A.; Dutta, N.K.; Choudhury, N.R. Nanofiltration for arsenic removal: Challenges, recent developments, and perspectives. Nanomaterials 2020, 10, 1323. [Google Scholar] [CrossRef]
- Roy, S.; Majumdar, S.; Sahoo, G.C.; Bhowmick, S.; Kundu, A.K.; Mondal, P. Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. J. Hazard. Mater. 2020, 399, 122841. [Google Scholar] [CrossRef]
- Szczuka, A.; Chuang, Y.-H.; Chen, F.C.; Zhang, Z.; Desormeaux, E.; Flynn, M.; Parodi, J.; Mitch, W.A. Removal of Pathogens and Chemicals of Emerging Concern by Pilot-Scale FO-RO Hybrid Units Treating RO Concentrate, Graywater, and Sewage for Centralized and Decentralized Potable Reuse. ACS ES&T Water 2021, 1, 89–100. [Google Scholar] [CrossRef]
- Bolto, B.; Zhang, J.; Wu, X.; Xie, Z. A review on current development of membranes for oil removal from wastewaters. Membranes 2020, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Diogo Januário, E.F.; de Camargo Lima Beluci, N.; Vidovix, T.B.; Vieira, M.F.; Bergamasco, R.; Salcedo Vieira, A.M. Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Process Saf. Environ. Prot. 2020, 134, 140–148. [Google Scholar] [CrossRef]
- Arefi-Oskoui, S.; Khataee, A.; Safarpour, M.; Orooji, Y.; Vatanpour, V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason. Sonochem. 2019, 58, 104633. [Google Scholar] [CrossRef] [PubMed]
- Humbert, H.; Machinal, C.; Labaye, I.; Schrotter, J.C. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units. Water Sci. Technol. 2011, 63, 255–261. [Google Scholar] [CrossRef]
- Yuchi, A.; Matsunaga, K.; Niwa, T.; Terao, H.; Wada, H. Separation and preconcentration of fluoride at the ng ml-1 level with a polymer complex of zirconium(IV) followed by potentiometric determination in a flow system. Anal. Chim. Acta 1999, 388, 201–208. [Google Scholar] [CrossRef]
- Muro, C.; Riera, F.; del Carmen Diaz, M. Membrane Separation Process in Wastewater Treatment of Food Industry. In Food Industrial Processes–Methods and Equipment; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Singh, P.; Singh, A. Fluoride ions vs removal technologies: A study. Arab. J. Chem. 2016, 9, 815–824. [Google Scholar] [CrossRef]
- Aliyu, U.M.; Rathilal, S.; Isa, Y.M. Membrane desalination technologies in water treatment: A review. Water Pract. Technol. 2018, 13, 738–752. [Google Scholar] [CrossRef]
- Pillai, P.; Dharaskar, S.; Pandian, S.; Panchal, H. Overview of fluoride removal from water using separation techniques. Environ. Technol. Innov. 2021, 21, 101246. [Google Scholar] [CrossRef]
- Verma, S.P.; Sarkar, B. Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies. J. Environ. Manag. 2018, 213, 217–235. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Ingole, P.G.; Yun, S.; Choi, W.; Kim, J.; Lee, H. Water vapor removal using CA/PEG blending materials coated hollow fiber membrane. J. Chem. Technol. Biotechnol. 2015, 90, 1117–1123. [Google Scholar] [CrossRef]
- Karim, Z.; Mathew, A.P.; Grahn, M.; Mouzon, J.; Oksman, K. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydr. Polym. 2014, 112, 668–676. [Google Scholar] [CrossRef]
- Hegab, H.M.; Wimalasiri, Y.; Ginic-Markovic, M.; Zou, L. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan. Desalination 2015, 365, 99–107. [Google Scholar] [CrossRef]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 1–4. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Zouboulis, A.I. Graphene Oxide/Fe-Based Composite Pre-Polymerized Coagulants: Synthesis, Characterization, and Potential Application in Water Treatment. C—J. Carbon Res. 2020, 6, 44. [Google Scholar] [CrossRef]
- Harker, A.H. Electrical conduction in graphene and nanotubes, by Shigeji Fujita and Akira Suzuki. Contemp. Phys. 2016, 57, 276–277. [Google Scholar] [CrossRef]
- Rashidi Nodeh, H.; Wan Ibrahim, W.A.; Ali, I.; Sanagi, M.M. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 2016, 23, 9759–9773. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of arsenic, chromium and uranium from water sources by novel nanostructured materials including graphene-based modified adsorbents: A mini review of recent developments. Appl. Sci. 2020, 10, 3241. [Google Scholar] [CrossRef]
- Yu, F.; Ma, J.; Bi, D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ. Sci. Pollut. Res. 2015, 22, 4715–4724. [Google Scholar] [CrossRef]
- Chowdhury, S.; Balasubramanian, R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Mukherjee, M.; De, S. Groundwater defluoridation and disinfection using carbonized bone meal impregnated polysulfone mixed matrix hollow-fiber membranes. J. Water Process Eng. 2020, 33, 101002. [Google Scholar] [CrossRef]
- Karmakar, S.; Bhattacharjee, S.; De, S. Aluminium fumarate metal organic framework incorporated polyacrylonitrile hollow fiber membranes: Spinning, characterization and application in fluoride removal from groundwater. Chem. Eng. J. 2018, 334, 41–53. [Google Scholar] [CrossRef]
- Suriyaraj, S.P.; Bhattacharyya, A.; Selvakumar, R. Hybrid Al2O3/bio-TiO2 nanocomposite impregnated thermoplastic polyurethane (TPU) nanofibrous membrane for fluoride removal from aqueous solutions. RSC Adv. 2015, 5, 26905–26912. [Google Scholar] [CrossRef]
- Jia, Z.; Hao, S.; Lu, X. Exfoliated Mg–Al–Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions. J. Environ. Sci. (China) 2018, 70, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Zheng, X.; Hou, J.; Wang, C. Preparation and Defluoridation Effectiveness of Composite Membrane Sorbent MFS-AA-PVDF. Water. Air. Soil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Ben Dassi, R.; Chamam, B.; Méricq, J.P.; Faur, C.; El Mir, L.; Trabelsi, I.; Heran, M. Novel polyvinylidene fluoride/lead-doped zinc oxide adsorptive membranes for enhancement of the removal of reactive textile dye. Int. J. Environ. Sci. Technol. 2021, 18, 2793–2804. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, X.; Gao, S.; Wang, X.; Zhang, R. Progress in research and application of nanofiltration (Nf) technology for brackish water treatment. Membranes 2021, 11, 662. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Balomajumder, C. Simultaneous rejection of fluoride and Cr(VI) from synthetic fluoride-Cr(VI) binary water system by polyamide flat sheet reverse osmosis membrane and prediction of membrane performance by CFSK and CFSD models. J. Mol. Liq. 2017, 234, 194–200. [Google Scholar] [CrossRef]
- Chen, X.; Wan, C.; Yu, R.; Meng, L.; Wang, D.; Chen, W.; Duan, T.; Li, L. A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water. J. Hazard. Mater. 2021, 411, 125113. [Google Scholar] [CrossRef]
- Chaudhary, M.; Maiti, A. Fe–Al–Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: Removal mechanisms and antibacterial behavior. J. Memb. Sci. 2020, 611, 118372. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Jiang, M.; Liu, X.; Chen, Z.; Wang, S.; James, T.D.; Wang, L.; Xiao, H. Engineering a ratiometric fluorescent sensor membrane containing carbon dots for efficient fluoride detection and removal. Chem. Eng. J. 2020, 399, 125741. [Google Scholar] [CrossRef]
- Evangeline, C.; Pragasam, V.; Rambabu, K.; Velu, S.; Monash, P.; Arthanareeswaran, G.; Banat, F. Iron oxide modified polyethersulfone/cellulose acetate blend membrane for enhanced defluoridation application. Desalin. Water Treat. 2019, 156, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Chatterjee, S.; De, S. Theoretical investigation of cross flow ultrafiltration by mixed matrix membrane: A case study on fluoride removal. Desalination 2015, 365, 347–354. [Google Scholar] [CrossRef]
- Karmakar, S.; Bhattacharjee, S.; De, S. Experimental and modeling of fluoride removal using aluminum fumarate (AlFu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J. Environ. Chem. Eng. 2017, 5, 6087–6097. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, N.; Li, M.; Feng, C. Synthesis and environmental application of zirconium–chitosan/graphene oxide membrane. J. Taiwan Inst. Chem. Eng. 2017, 77, 106–112. [Google Scholar] [CrossRef]
- Pal, M.; Mondal, M.K.; Paine, T.K.; Pal, P. Purifying arsenic and fluoride-contaminated water by a novel graphene-based nanocomposite membrane of enhanced selectivity and sustained flux. Environ. Sci. Pollut. Res. 2018, 25, 16579–16589. [Google Scholar] [CrossRef]
- Zhang, Q.; Bolisetty, S.; Cao, Y.; Handschin, S.; Adamcik, J.; Peng, Q.; Mezzenga, R. Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO2 Hybrid Membranes. Angew. Chemie—Int. Ed. 2019, 58, 6012–6016. [Google Scholar] [CrossRef]
- He, J.; Chen, K.; Cai, X.; Li, Y.; Wang, C.; Zhang, K.; Jin, Z.; Meng, F.; Wang, X.; Kong, L.; et al. A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water. J. Colloid Interface Sci. 2017, 490, 97–107. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Cai, X.; Chen, K.; Li, Y.; Zhang, K.; Jin, Z.; Meng, F.; Liu, N.; Wang, X.; Kong, L.; et al. Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal. J. Colloid Interface Sci. 2016, 484, 162–172. [Google Scholar] [CrossRef]
- Alhendal, M.; Nasir, M.J.; Hashim, K.S.; Amoako-Attah, J.; Al-Faluji, D.; Muradov, M.; Kot, P.; Abdulhadi, B. Cost-effective hybrid filter for remediation of water from fluoride. IOP Conf. Ser. Mater. Sci. Eng. 2020, 888, 012038. [Google Scholar] [CrossRef]
- Boussouga, Y.A.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: System resilience under solar irradiance fluctuations during the treatment of fluoride-rich natural waters by different nanofiltration/reverse osmosis membranes. J. Memb. Sci. 2021, 617, 118452. [Google Scholar] [CrossRef]
- Ramdani, A.; Gassara, S.; Deratani, A.; Taleb, S. Proceedings of the Third International Symposium on Materials and Sustainable Development; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319897073. [Google Scholar]
- Tahaikt, M.; El-Ghzizel, S.; Essafi, N.; Hafsi, M.; Taky, M.; Elmidaoui, A. Technical-economic comparison of nanofiltration and reverse osmosis in the reduction of fluoride ions from groundwater: Experimental, modeling, and cost estimate. Desalin. Water Treat. 2021, 216, 83–95. [Google Scholar] [CrossRef]
- Fatehizadeh, A.; Amin, M.M.; Sillanpää, M.; Hatami, N.; Taheri, E.; Baghaei, N.; Mahajan, S. Modeling of fluoride rejection from aqueous solution by nanofiltration process: Single and binary solution. Desalin. Water Treat. 2020, 193, 224–234. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
Ion-Exchange | Efficient | Expensive due to the price of resin; regeneration requirements; not selective enough; affects other ions | [17] |
Membranes | Effective; wide pH range | Cost of membrane; disposal of concentrates | [17,28,29] |
Precipitation | Efficient and easy | Excess amount of sludge; low solubility of the resulting calciumhydroxide related to lime-based processes | [17,18] |
Adsorption | Low cost; removes many other pollutants; increased selectivity | Effective at specific conditions; pH and contact time; regeneration | [25] |
Coagulation | Efficient and easy | High doses; residual concentrations; significant amounts of sludge | [18] |
Application | Membrane Type | Achievements | Ref. |
---|---|---|---|
Oily water | MF | 90.2% removal of organics | [32] |
Olive mill wastewater | RO | COD rejection 97.5–99.1% | [33] |
Domestic wastewater | MF | >97% removal of total nitrogen and total phosphorus | [34] |
Nitrogen and phosphorus in microalgae | FO and MF | 86–99% removal of nitrogen and 100% for phosphorus | [35] |
Chlorophenol | RO | Improved unit performance | [36] |
Water samples of Sri Lanka | RO | Removal of hardness 95.8% and alkalinity 86.6% | [37] |
Municipal wastewater | RO and NF | COD removal 90% | [38] |
Arsenic (As) | NF | 98% removal | [39] |
As(V), Cr(VI) and Cu(II) | NF | Removal rates 99.82% for Cu(II), 96.75% for As(V) and 97.22% for Cr(VI) | [40] |
Pathogens and Chemicals of Emerging Concern | FO-RO Hybrid Units | Rejection of 18 organic contaminants was >98%. Detection of total coliform and E. coli in the FO/RO effluents indicates that disinfectants must be applied | [41] |
Fuel oil wastewater | NF | 100% removal at a flux of 65 L m−2h−1. | [42] |
Dyes removal | MF | Removal rate was twilight yellow (69.98%), red bordeaux (93.35%) and safranin orange (100%) | [43] |
Method | Advantages | Disadvantages |
---|---|---|
RO | Quick recovery of the membrane. More than 90% fluoride removal from water Removal of other dissolved solids. Wide pH range High water quality | Costly technique Demineralization after treatment with valuable minerals. Saline solution for water treatment. |
NF | High productivity No chemicals No Ions interference | Highly expensive Fouling of membrane Removal of necessarily ions |
Type | MWCO (kDa) | Feed Fluoride (mg L−1) | TMP (bar) | Treatment Capacity (L m−2 h−1) | pH | Ref. |
---|---|---|---|---|---|---|
Polymer Membranes | ||||||
CBM/UF/MMM | 23 | 3.2 | 0.34 | - | 7.4 | [63] |
AlFu MOF | 150 | 4.1 | 0.35 | 20 | 6.5–7 | [64] |
ABN/TPU-NFM | - | 6.0 | - | - | - | [65] |
MFS-AA-PVDF | - | 12.37 | - | - | 5.02 | [67] |
NF90 | - | 42.0 | 11 | 64.8 | 7.2 | [84] |
PA-RO | - | 5.0 | 16 | - | 8 | [70] |
Cellulose Membranes | ||||||
Fe-Al-Mn@chitosan | 8 | 3.8 | 6–8 | 2000 | 6–9 | [72] |
PES/CA/Fe2O3 | - | 20 | - | 156 | - | [74] |
CAP/activated alumina | 24 | 12.0 | 0.5–1 | - | 7.0 | [30] |
AL-Fu MOF | - | 10.0 | 1.38 | 17 | - | [76] |
Graphene Membranes | ||||||
Zr-CTS/GO | - | 13.4 | - | - | 3–11 | [31] |
Graphene-based/PES | - | 20.2 | 15 | 150 | 10 | [78] |
Other Modified Membranes | ||||||
CAF-Zr | - | 10.0 | - | 1750 | 6.2–6.5 | [79] |
UiO-66-NH2 CNM | - | 20.0 | - | - | 8 | [16] |
Al-HAP | - | 5.0 | - | 1568 | - | [80] |
Zr-MOF | - | 5.0 | - | - | - | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolkou, A.K.; Meez, E.; Kyzas, G.Z.; Torretta, V.; Collivignarelli, M.C.; Caccamo, F.M.; Deliyanni, E.A.; Katsoyiannis, I.A. A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. C 2021, 7, 74. https://doi.org/10.3390/c7040074
Tolkou AK, Meez E, Kyzas GZ, Torretta V, Collivignarelli MC, Caccamo FM, Deliyanni EA, Katsoyiannis IA. A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. C. 2021; 7(4):74. https://doi.org/10.3390/c7040074
Chicago/Turabian StyleTolkou, Athanasia K., Elie Meez, George Z. Kyzas, Vincenzo Torretta, Maria Cristina Collivignarelli, Francesca Maria Caccamo, Eleni A. Deliyanni, and Ioannis A. Katsoyiannis. 2021. "A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water" C 7, no. 4: 74. https://doi.org/10.3390/c7040074
APA StyleTolkou, A. K., Meez, E., Kyzas, G. Z., Torretta, V., Collivignarelli, M. C., Caccamo, F. M., Deliyanni, E. A., & Katsoyiannis, I. A. (2021). A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. C, 7(4), 74. https://doi.org/10.3390/c7040074