Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation
Abstract
:1. Introduction
2. Material
3. Experimental
4. Results and Discussion
4.1. Basic Characterisation of Mechanical and Thermal Properties
4.2. Ablation Experiments
4.3. Material Characterisation after Thermal Impact
4.4. Residual Strength after Thermal Impact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wolfrum, J.; Eibl, S.; Lietch, L. Rapid evaluation of long-term thermal degradation of carbon fibre epoxy composites. Compos. Sci. Technol. 2009, 69, 523–530. [Google Scholar] [CrossRef]
- Toldy, A.; Szolnoki, B.; Marosi, G. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym. Degrad. Stab. 2011, 96, 371–376. [Google Scholar] [CrossRef]
- Scudamore, M.J. Fire performance studies on glass-reinforced plastic laminates. Fire Mater. 1994, 18, 313–325. [Google Scholar] [CrossRef]
- Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011, 47, 1081–1089. [Google Scholar] [CrossRef]
- Perez, R.M.; Sandler, J.K.W.; Altstädt, V.; Hoffmann, T.; Pospiech, D.; Ciesielski, M.; Döring, M.; Braun, M.; Knoll, U.; Schartel, B. Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites. J. Mater. Sci. 2006, 41, 4981–4984. [Google Scholar] [CrossRef]
- Braun, U.; Schartel, B.; Fichera, M.A.; Jäger, C. Flame retardancy mechanisms of aluminum phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym. Degrad. Stab. 2007, 92, 1528–1545. [Google Scholar] [CrossRef]
- Greiner, L.; Döring, M.; Eibl, S. Prevention of the formation of respirable fibers in carbon fiber reinforced epoxy resins during combustion by phosphorus or silicon containing flame retardants. Polym. Degrad. Stab. 2021, 185, 109497. [Google Scholar] [CrossRef]
- Schuster, T.J.; Weller, L.; Wolfrum, J.; Eibl, S. Silver nanoparticle modified carbon fiber-reinforced polymer material for resistance against thermal damage induced by irradiation. J. Compos. Mater. 2020, 55, 1267–1278. [Google Scholar] [CrossRef]
- Lee, Y.; Joo, H.J. Investigation on ablation behavior of CFRP composites prepared at different pressure. Compos. Part A 2004, 35, 1285–1290. [Google Scholar] [CrossRef]
- Cho, D.; Il Yoon, B. Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fibre-reinforced composites. Compos. Sci. Technol. 2001, 61, 271–280. [Google Scholar] [CrossRef]
- Chen, Y.; Milos, F.S. Ablation and Thermal Response Program for Spacecraft Heatshield Analysis. J. Spacecr. Rocket. 1999, 36, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, D.L.; Schwartz, H.S. Evaluation methods for ablative plastics. SPE Trans. 1963, 3, 238–250. [Google Scholar]
- Milos, F.S.; Chen, Y.; Congdon, W.M.; Thornton, J.M. Mars pathfinder entry temperature data, aerothermal heating, and heatshield material response. J. Spacecr. Rocket. 1999, 36, 380–391. [Google Scholar] [CrossRef]
- Milos, F.S.; Chen, Y.; Squire, T.H.; Brewer, R.A. Analysis of galileo probe heatshield ablation and temperature data. J. Spacecr. Rocket. 1999, 36, 298–306. [Google Scholar] [CrossRef]
- Bahramian, A.R.; Kokabi, M.; Famili Mohammad Hossein Navid Beheshty, M.H. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modeling and experimental. Polymer 2006, 47, 3661–3673. [Google Scholar] [CrossRef]
- Ogasawara, T.; Ishikawa, T.; Yamada, T.; Yokota, R.; Itoh, M.; Nogi, S. Thermal Response and Ablation Characteristics of Carbon Fibre Reinforced Composite with Novel Silicon Containing Polymer MSP. J. Compos. Mater. 2002, 36, 143–157. [Google Scholar] [CrossRef]
- ASTM E458—08 (2020). Standard Test Method for Heat of Ablation; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Torre, L.; Kenny, J.M.; Maffezzoli, A.M. Degradation behaviour of a composite material for thermal protection systems Part I–Experimental characterization. J. Mater. Sci. 1998, 33, 3137–3143. [Google Scholar] [CrossRef]
- Gojny, F.H.; Wichmann, M.H.; Fiedler, B.; Kinloch, I.A.; Bauhofer, A.; Windle, A.H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045. [Google Scholar] [CrossRef]
- Gojny, F.H.; Wichmann, M.H.; Fiedler, B.; Bauhofer, W.; Schulte, K. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1525–1535. [Google Scholar] [CrossRef]
- Schuster, T.; Eibl, S.; Gudladt, H.-J. Influence of carbon nanotubes on thermal response and reaction to fire properties of carbon fibre-reinforced plastic material. J. Compos. Mater. 2018, 52, 567–579. [Google Scholar] [CrossRef]
- Park, J.-M.; Kwon, D.-J.; Wang, Z.-J.; Roh, J.-U.; Lee, W.-I.; Park, J.-K.; DeVries, K.L. Effects of carbon nanotubes and carbon fibre reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites. Compos. Part B Eng. 2014, 67, 22–29. [Google Scholar] [CrossRef]
- Pötschke, P.; Fornes, T.D.; Paul, D.R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43, 3247–3255. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Eibl, S. Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites. Fire Mater. 2012, 36, 309–324. [Google Scholar] [CrossRef]
- Eibl, S.; Swanson, D. Influence of out-of-plane fibre orientation on reaction-to-fire properties of carbon fibre reinforced polymer matrix composites. Fire Mater. 2018, 42, 234–243. [Google Scholar] [CrossRef]
- ASTM E285—08. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Eibl, S. Method for Producing a Pipe Section of a Missile Outer Shell and Pipe Section of a Missile Outer. Shell. Patent DE102017007059, 1 April 2021. [Google Scholar]
- Eibl, S. Observing Inhomogeneity of plastic components in carbon fibre reinforced polymer materials by ATR-FTIR spectroscopy in the micrometer scale. J. Compos. Mater. 2008, 42, 1231–1246. [Google Scholar] [CrossRef]
- Hexcel Corporation. HexPly 8552 Epoxy Matrix Product Data Sheet; Hexcel Corporation: Stamford, CT, USA, 2013. [Google Scholar]
- ISO 5660. Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement); Beuth Verlag GmbH: Berlin, Germany, 2015. [Google Scholar]
- DIN EN ISO 527-5. Plastics—Determination of Tensile Properties—Part 5: Test Conditions for Unidirectional Fibre-Reinforced Plastic Composites; Beuth Verlag GmbH: Berlin, Germany, 2010. [Google Scholar]
- DIN EN ISO 14126. Fibre-Reinforced Plastic Composites—Determination of Compressive Properties in the In-Plane Direction; Beuth Verlag GmbH: Berlin, Germany, 2000. [Google Scholar]
- DIN EN 2563. Aerospace Series—Carbon Fibre Reinforced Plastics—Unidirectional Laminates; Determination of Apparent Interlaminar Shear Strength; Beuth Verlag GmbH: Berlin, Germany, 1997. [Google Scholar]
- DIN EN 22007-4. Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 4: Laser Flash Method; Beuth Verlag GmbH: Berlin, Germany, 2008. [Google Scholar]
- DIN 53765 F. Testing of Plastics and Elastomers; Thermal Analysis of Polymers; DSC-method; Beuth Verlag GmbH: Berlin, Germany, 1994. [Google Scholar]
- DIN EN ISO 845. Determination of Apparent Bulk Density, Cellular Plastics and Rubbers; Beuth Verlag GmbH: Berlin, Germany, 1995. [Google Scholar]
- Zoghi, M. The International Handbook of FRP Composites in Civil Engineering; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2014. [Google Scholar]
- Vetter, T.M.; Bibinger, J.; Zimmer, F.; Eibl, S.; Gudladt, H.J. Characterization of one-sided thermal damage of carbon fiber reinforced polymers by means of depth profiles. J. Compos. Mater. 2020, 54, 3699–3713. [Google Scholar] [CrossRef]
- Hexcel Corporation. HexTow IM7 Carbon Fibre Product Data Sheet; Hexcel Corporation: Stamford, CT, USA, 2016. [Google Scholar]
- Hasselman, D.P.H.; Bhatt, H.; Donaldson, K.Y.; Thomas, J.R. Effect of fibre orientation and sample geometry on the effective thermal conductivity of a uniaxial carbon fibre-reinforced glass matrix composite. J. Compos. Mater. 1992, 26, 2278–2288. [Google Scholar] [CrossRef]
- Schartel, B.; Hull, T.R. Development of Fire-Retarded Materials—Interpretation of Cone Calorimeter Data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Eibl, S. Potential for the formation of respirable fibres in carbon fibre reinforced plastic materials after combustion. Fire Mater. 2017, 41, 808–816. [Google Scholar] [CrossRef]
- Wolfrum, J.; Whitney, E.; Eibl, S. Approaches to understand and predict the influence of rapid heat-up on degradation and strength of carbon fibre polymer matrix composites. J. Compos. Mater. 2017, 51, 2435–2447. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eibl, S.; Schuster, T.J. Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation. C 2021, 7, 64. https://doi.org/10.3390/c7030064
Eibl S, Schuster TJ. Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation. C. 2021; 7(3):64. https://doi.org/10.3390/c7030064
Chicago/Turabian StyleEibl, Sebastian, and Thomas J. Schuster. 2021. "Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation" C 7, no. 3: 64. https://doi.org/10.3390/c7030064
APA StyleEibl, S., & Schuster, T. J. (2021). Thermal and Principal Ablation Properties of Carbon-Fibre-Reinforced Polymers with Out-of-Plane Fibre Orientation. C, 7(3), 64. https://doi.org/10.3390/c7030064