Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors
Abstract
1. Introduction
2. Chemical Modifications of CDs for Electrochemical Devices
3. Immobilization Strategies on Electrode Surfaces
3.1. Inclusion of CDs onto Gold Electrode
3.1.1. Covalent Bond with SH-β-CDs
3.1.2. Electrostatic Bonding
3.1.3. Self-Assembly
3.2. Deposition Method for Both Gold and Carbon Electrode: Electropolymerization
3.2.1. Direct Electropolymerization of CDs
3.2.2. Inclusion of CDs into a Polymer Film
3.3. Inclusion of CDs onto Carbon Electrode
3.3.1. Load of Metal Nanoparticles on Carbon-Based/β-CDs Composites
3.3.2. Anchoring Methods Using Chemically Modified CDs
4. CDs for Biomedical Devices
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boero, C.; Casulli, M.A.; Olivo, J.; Foglia, L.; Orso, E.; Mazza, M.; Carrara, S.; De Micheli, G. Design, development, and validation of an in-situ biosensor array for metabolite monitoring of cell cultures. Biosens. Bioelectron. 2014, 61, 251–259. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; De Micheli, G.; Carrara, S. Electrochemical detection of anti-breast-cancer agents in human serum by cytochrome P450-coated carbon nanotubes. Sensors 2012, 12, 6520–6537. [Google Scholar] [CrossRef]
- Park, S.; Boo, H.; Dong, T. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Baj-Rossi, C.; Rezzonico Jost, T.; Cavallini, A.; Grassi, F.; De Micheli, G.; Carrara, S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens. Bioelectron. 2014, 53, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Mo, Z.; Yang, X.; Sun, M.; Zhao, P.; Li, Z.; Ouyang, M.; Liu, Z.; Gao, H.; Guo, R.; et al. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim. Acta 2018, 185, 328. [Google Scholar] [CrossRef] [PubMed]
- Badruddoza, A.Z.M.; Si, G.; Hazel, S.; Hidajat, K.; Uddin, M.S. Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 367, 85–95. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Tay, A.S.H.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J. Hazard. Mater. 2011, 185, 1177–1186. [Google Scholar] [CrossRef]
- Wu, S.; Fan, S.; Tan, S.; Wang, J.; Li, C. A new strategy for the sensitive electrochemical determination of nitrophenol isomers using β-cyclodextrin derivative-functionalized silicon carbide. RSC Adv. 2018, 8, 775–784. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, J.; Tao, Y.; Wu, J.; Xie, C.; Kong, L. Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim. Acta 2015, 153, 12–18. [Google Scholar] [CrossRef]
- Rojas, M.T.; Konigety, R.; Stoddart, J.F.; Kaifer, A.E. Supported monolayers containing preformed binding sites. synthesis and interfacial binding properties of a thiolated/3-cyclodextrin derivative. J. Am. Chem. Soc. 1995, 117, 336–343. [Google Scholar] [CrossRef]
- Wang, J.; Kong, L.; Guo, Z.; Liu, J. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J. Mater. Chem. 2010, 20, 5271–5279. [Google Scholar] [CrossRef]
- Weisser, M.; Nelles, G.; Wohlfart, P.; Wenz, G.; Mittler-Neher, S. Immobilization kinetics of cyclodextrins at gold surfaces. J. Phys. Chem. 1996, 3654, 17893–17900. [Google Scholar] [CrossRef]
- Maeda, Y.; Fukuda, T.; Yamamoto, H.; Kitano, H. Regio-and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 1997, 13, 4187–4189. [Google Scholar] [CrossRef]
- Kitano, H.; Taira, Y.; Yamamoto, H. Inclusion of phthalate esters by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Anal. Chem. 2000, 72, 2976–2980. [Google Scholar] [CrossRef]
- Maeda, Y.; Kitano, H. Inclusional complexation by cyclodextrins at the surface of silver as evidenced by surface-enhanced resonance Raman spectroscopy. J. Phys. Chem. 1995, 99, 487–488. [Google Scholar] [CrossRef]
- Li, X.; Zheng, L.; Wang, Y.; Zhang, N.; Lou, Y.; Xiao, T.; Liu, J. A novel electrocatalyst with high sensitivity in detecting glutathione reduced by 2-hydroxypropyl-β-cyclodextrin enveloped 10-methylphenothiazine. RSC Adv. 2015, 5, 71749–71755. [Google Scholar] [CrossRef]
- Ye, L.; Huang, N.; Du, Y.; Schneider, M.; Du, W. Succinyl-β-cyclodextrin modified gold biochip improved seroimmunological detection sensitivity for Lyme disease. Anal. Chim. Acta 2017, 953, 48–56. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, J.; Li, S.; Guo, M.; Fan, Z. An electrochemical sensor for the detection of: P -nitrophenol based on a cyclodextrin-decorated gold nanoparticle-mesoporous carbon hybrid. Analyst 2019, 144, 4400–4406. [Google Scholar] [CrossRef]
- Hea, P.; Fanga, Y.; Suzukib, I.; Osab, T. Voltammetric responsive sensors for organic compounds based on organized self-assembled lipoyl-P-cyclodextrin derivative monolayer on a gold electrode. Anal. Chim. Acta 1997, 337, 217–223. [Google Scholar] [CrossRef]
- Tang, B.; Liang, H.; Xu, K.; Mao, Z.; Shi, X.; Chen, Z. An improved synthesis of disulfides linked β-cyclodextrin dimer and its analytical application for dequalinium chloride determination by spectrofluorimetry. Anal. Chim. Acta 2005, 554, 31–36. [Google Scholar] [CrossRef]
- Liu, J.; Ong, W.; Román, E.; Lynn, M.J.; Kaifer, A.E. Cyclodextrin-modified gold nanospheres. Langmuir 2000, 16, 3000–3002. [Google Scholar] [CrossRef]
- Kong, L.; Wang, J.; Meng, F.; Chen, X.; Jin, Z.; Li, M.; Liu, J.; Huang, X.J. Novel hybridized SWCNT-PCD: Synthesis and host-guest inclusion for electrical sensing recognition of persistent organic pollutants. J. Mater. Chem. 2011, 21, 11109–11115. [Google Scholar] [CrossRef]
- Tan, L.; Wang, G.; Chen, N.; Zhang, J.; Feng, H. Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine. Chin. J. Chem. 2015, 33, 185–191. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, Z.; Shi, M.; Yang, L.; Qiao, J.; Jiang, K. High-efficiency palladium nanoparticles supported on hydroxypropyl-β-cyclodextrin modified fullerene [60] for ethanol oxidation. Electrochim. Acta 2015, 177, 113–117. [Google Scholar] [CrossRef]
- Shang, F.; Zhou, L.; Mahmoud, K.A.; Hrapovic, S.; Liu, Y.; Moynihan, H.A.; Glennon, J.D.; Luong, J.H. Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-β-cyclodextrin-doped poly (N-acetyltyramine) and polypyrrole composite film. Anal. Chem. 2009, 81, 4089–4098. [Google Scholar] [CrossRef]
- García, M.; Bollo, S.; Rivas, G.A.; Ferreyra, N.F.; Yáñez, C. Bottom up approaches for amino β-CD adsorption on gold surfaces. A comparative study. Electrochim. Acta 2016, 203, 292–300. [Google Scholar] [CrossRef]
- Di Palma, G.; Kotowska, A.M.; Hart, L.R.; Scurr, D.J.; Rawson, F.J.; Tommasone, S.; Mendes, P.M. Reversible, high-affinity surface capturing of proteins directed by supramolecular assembly. ACS Appl. Mater. Interfaces 2019, 11, 8937–8944. [Google Scholar] [CrossRef]
- Labuda, A.F.J. Cyclodextrins as electrode modifiers. Fresenius’ J. Anal. Chem. 2001, 370, 1–10. [Google Scholar]
- Godínez, L.A.; Lin, J.; Muñoz, M.; Coleman, A.W.; Rubin, S.; Parikh, A.; Zawodzinski, T.A.; Loveday, D.; Ferraris, J.P.; Kaifer, A.E. Multilayer self-assembly of amphiphilic cyclodextrin hosts on bare and modified gold substrates: Controlling aggregation via surface modification. Langmuir 1998, 14, 137–144. [Google Scholar]
- Veerbeek, J.; Méndez-Ardoy, A.; Huskens, J. Self-assembled monolayers of heptapodant β-cyclodextrins on gold. Langmuir 1998, 14, 6424–6429. [Google Scholar]
- Steentjes, T.; Kudernac, T.; Huskens, J. Self-assembled monolayers on gold of β-cyclodextrin adsorbates with different anchoring groups. Langmuir 2014, 30, 3467–3476. [Google Scholar]
- Méndez-Torres, A.M.; Sandoval-Altamirano, C.; Sánchez-Arenillas, M.; Marco, J.F.; Yáñez, C. Amino β-cyclodextrins immobilized on gold surfaces: Effect of substituents on host-guest interactions. Electrochim. Acta 2018, 282, 860–869. [Google Scholar]
- Yang, J.; Kim, H.T.; Kim, H. A cyclodextrin-based approach for selective detection of catecholamine hormone mixtures. Micro Nano Syst. Lett. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Liu, Y.; Zhang, X.; Chen, J. A sensitive electrochemical immunosensor for prion detection based on poly-β-cyclodextrin/gold nanoparticles/glassy carbon electrode. Sens. Actuators B Chem. 2017, 250, 1–7. [Google Scholar] [CrossRef]
- Abdorahim, M.; Rabiee, M.; Alhosseini, S.N.; Tahriri, M.; Yazdanpanah, S.; Alavi, S.H.; Tayebi, L. Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review. Trends Anal. Chem. 2016, 82, 337–347. [Google Scholar] [CrossRef]
- Hui, Y.; Ma, X.; Qu, F.; Chen, F.; Yu, J. Electropolymerization of carboxymethyl-β-cyclodextrin based on co-electrodeposition gold nanoparticles electrode: Electrocatalysis and nonenzymatic glucose sensing. J. Solid State Electrochem. 2016, 20, 1377–1389. [Google Scholar] [CrossRef]
- Souza, F.D.; Hsieh, Y.; Wickman, H.; Kutner, W. β-cyclodextrin and carboxymethylated β-cyclodextrin polymer film modified electrodes, hosting cobalt porphyrins, as sensors for electrocatalytic determination of oxygen dissolved in solution. Electroanalysis 1997, 9, 1093–1101. [Google Scholar] [CrossRef]
- Guo, Z.; Florea, A.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Zhang, A.; Săndulescu, R.; Lagarde, F.; Jaffrezic-Renault, N. 1, 3, 5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework. Sens. Actuators B Chem. 2015, 207, 960–966. [Google Scholar] [CrossRef]
- Florea, A.; Guo, Z.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Dzyadevych, S.; Săndulescu, R.; Jaffrezic-Renault, N. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 2015, 138, 71–76. [Google Scholar] [CrossRef]
- Wu, T.; Wei, X.; Ma, X.; Li, J. Amperometric sensing of L-phenylalanine using a gold electrode modified with a metal organic framework, a molecularly imprinted polymer, and β-cyclodextrin-functionalized gold nanoparticles. Microchim. Acta 2017, 184, 2901–2907. [Google Scholar] [CrossRef]
- Arjomandi, J.; Holze, R. Electrochemical preparation and in situ characterization of poly(3-methylpyrrole) and poly(3-methylpyrrole-cyclodextrin) films on gold electrodes. Open Chem. 2008, 6, 199–207. [Google Scholar] [CrossRef]
- Arjomandi, J.; Holze, R. In situ characterization of N-methylpyrrole and (N-methylpyrrole-cyclodextrin) polymers on gold electrodes in aqueous and nonaqueous solution. Synth. Met. 2007, 157, 1021–1028. [Google Scholar] [CrossRef]
- Bidan, G.; Lopez, C.; Vieil, E. Incorporation of suiphonated cyclodextrins into polypyrrole: An approach for the electro-controlled delivering of neutral drugs. Biosens. Bioelectron. 1994, 9, 219–229. [Google Scholar]
- Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.; Crooks, R.M. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly (acrylic acid) films incorporating -cyclodextrin receptors and amine-functionalized filter layers. Langmuir 1999, 15, 885–890. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, S.; Lin, X.; Nie, L.; Rui, L. Preparation and characterization of a novel -cyclodextrin modified poly (N -acetylaniline) film. Macromolecules 2002, 6174–6177. [Google Scholar] [CrossRef]
- Abbaspour, A.; Noori, A. A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 2011, 26, 4674–4680. [Google Scholar] [CrossRef]
- Tao, Y.; Dai, J.; Kong, Y.; Sha, Y. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(l-glutamic acid). Anal. Chem. 2014, 86, 2633–2639. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, G.; Zhang, M. Electrochemical sensor based on electro-polymerization of β-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sens. Actuators B Chem. 2016, 228, 59–65. [Google Scholar] [CrossRef]
- Zhang, F.; Gu, S.; Ding, Y.; Zhang, Z.; Li, L. A novel sensor based on electropolymerization of β-cyclodextrin and l-arginine on carbon paste electrode for determination of fluoroquinolones. Anal. Chim. Acta 2013, 770, 53–61. [Google Scholar] [CrossRef]
- Bouchta, D.; Izaoumen, N.; Zejli, H.; El Kaoutit, M.; Temsamani, K.R. A novel electrochemical synthesis of poly-3-methylthiophene-gamma-cyclodextrin film. Application for the analysis of chlorpromazine and some neurotransmitters. Biosens. Bioelectron. 2005, 20, 2228–2235. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, T.; Jiang, M.; Xu, L.; Xu, Z. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@polydopamine and β-cyclodextrin. Sens. Actuators B Chem. 2018, 255, 2155–2162. [Google Scholar] [CrossRef]
- Zhu, G.; Yi, Y.; Chen, J. Recent advances for cyclodextrin-based materials in electrochemical sensing. Trends Anal. Chem. 2016, 80, 232–241. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thirumalraj, B.; Chen, S. A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J. Electroanal. Chem. 2016, 760, 97–104. [Google Scholar] [CrossRef]
- Zaidi, S.A. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-cyclodextrin immobilized on reduced graphene oxide. Biosens. Bioelectron. 2017, 94, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Kushikawa, R.T.; Silva, M.R.; Angelo, A.C.D.; Teixeira, M.F.S. Construction of an electrochemical sensing platform based on platinum nanoparticles supported on carbon for tetracycline determination. Sens. Actuators B Chem. 2016, 228, 207–213. [Google Scholar] [CrossRef]
- Palanisamy, S.; Kokulnathan, T.; Chen, S.; Velusamy, V.; Kannan, S. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J. Electroanal. Chem. 2017, 794, 64–70. [Google Scholar] [CrossRef]
- Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M. Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 2012, 93, 79–85. [Google Scholar] [CrossRef]
- Zhu, G.; Gai, P.; Yang, Y.; Zhang, X.; Chen, J. Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with. Anal. Chim. Acta 2012, 723, 33–38. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Gan, N.; Hu, F. An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim. Acta 2015, 182, 815–822. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, X.; Gai, P.; Zhang, X.; Chen, J. β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3, 4, 9, 10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. Nanoscale 2012, 4, 5703–5709. [Google Scholar] [CrossRef]
- Chem, J.M.; Xu, C.; Wang, J.; Wan, L.; Lin, J.; Wang, X. Microwave-assisted covalent modification of graphenenanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J. Mater. Chem. 2011, 21, 10463–10471. [Google Scholar]
- Zhu, G.; Yi, Y.; Liu, Z.; Jin, H.; Chen, J. Electrochemistry communications highly sensitive electrochemical sensing based on 2-hydroxypropyl-β-cyclodextrin-functionalized graphene nanoribbons. Electrochem. Commun. 2016, 66, 10–15. [Google Scholar] [CrossRef]
- Yang, L.; Fan, S.; Deng, G.; Li, Y.; Ran, X.; Zhao, H. Bridged β-cyclodextrin-functionalized MWCNT with higher supramo- lecular recognition capability: The simultaneous electrochemical determination of three phenols. Biosens. Bioelectron. 2015, 68, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.Y.; Hu, L.; Stoddart, J.F.; Gru, G. Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Adv. Mater. 2008, 20, 1910–1915. [Google Scholar] [CrossRef]
- Wei, Y.; Kong, L.; Yang, R.; Wang, L.; Liu, J.; Huang, X. Single-walled carbon nanotube/pyrenecyclodextrin nanohybrids for ultrahighly sensitive and selective detection of p -nitrophenol. Langmuir 2011, 27, 10295–10301. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, H.; Li, C.; Fan, S.; Li, B. Dual β-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens. Bioelectron. 2015, 64, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Cova, T.F.; Murtinho, D.; Pais, A.A.C.C.; Valente, A.J.M. Combining cellulose and cyclodextrins: Fascinating designs for materials and pharmaceutics. Front. Chem. 2018, 6, 1–19. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Z.; Su, F.; Gao, L.; Pang, X.; Cao, W.; Du, B.; Wei, Q. Ultrasensitive electrochemical immunoassay for CEA through host–guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core–shell nanoparticles with adamantine-modified antibody. Biosens. Bioelectron. 2015, 63, 465–471. [Google Scholar] [CrossRef]
- Koradecki, D.; Kutner, W. Inclusion of the regioisomeric nitrobenzene derivatives and ferrocene guests by β-cyclodextrin polymer and their transport through the polymer matrix. J. Incl. Phenom. Mol. Recognit. Chem. 1991, 79–96. [Google Scholar] [CrossRef]
- Ju, H. Host-guest interaction at a self-assembled monolayer/solution interface: An electrochemical analysis of the inclusion of 11-(Ferrocenylcarbonyloxy)undecanethiol by cyclodextrins. Langmuir 1998, 14, 300–306. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, L.; Zhang, X.; Liu, W.; Zhang, X.; Chen, J. A New dual-signalling electrochemical sensing strategy based on competitive host-guest interaction of a b -cyclodextrin/poly (N-acetylaniline)/graphene-modified electrode: Sensitive electrochemical determination of organic pollutants. Chem. Eur. J. 2013, 19, 6368–6373. [Google Scholar] [CrossRef] [PubMed]
- Hishiya, T.; Shibata, M.; Kakazu, M.; Asanuma, H.; Komiyama, M. Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999, 32, 2265–2269. [Google Scholar] [CrossRef]
CD Derivative | Kind of Interaction | CDs Integration Substrate |
---|---|---|
CM-CDs | electrostatic interaction amide linkage | gold |
NH-CDs | electrostatic interaction amide linkage | gold/carbon |
SH-CDs | Au-SH linkage | gold |
HP-CDs | electrostatic interaction | carbon |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casulli, M.A.; Taurino, I.; Carrara, S.; Hayashita, T. Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors. C 2019, 5, 78. https://doi.org/10.3390/c5040078
Casulli MA, Taurino I, Carrara S, Hayashita T. Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors. C. 2019; 5(4):78. https://doi.org/10.3390/c5040078
Chicago/Turabian StyleCasulli, Maria Antonietta, Irene Taurino, Sandro Carrara, and Takashi Hayashita. 2019. "Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors" C 5, no. 4: 78. https://doi.org/10.3390/c5040078
APA StyleCasulli, M. A., Taurino, I., Carrara, S., & Hayashita, T. (2019). Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors. C, 5(4), 78. https://doi.org/10.3390/c5040078