Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reaction of Group 6 Complexes with Raw SWCNTs
2.2. Reaction of Cr(CO)6 with Iron Oxide
2.3. XPS Analysis of SWCNT Purification
2.4. Reaction of Cr(CO)6 with Purified SWCNTs
2.5. Reaction of Cr(CO)6 with Graphene
2.6. Reaction of W(CO)6 with Raw and Highly Purified SWCNTs
3. Experimental Section
3.1. Materials and Characterization
3.2. Microwave/HCl Treatment of SWCNTs
3.3. Reaction of SWCNTs with M(CO)6, (C7H8)M(CO)3, or (C6H6)Cr(CO)3
3.4. Reaction of Graphene with Cr(CO)6
3.5. Reaction of Annealed SWCNT-Coated Si Wafer with W(CO)6
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pandey, R.; Rao, B.K.; Jena, P.; Blanco, M.A. Electronic structure and properties of transition metal−benzene complexes. J. Am. Chem. Soc. 2001, 123, 3799–3808. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, R.S.; Tse, D.S.; Malhotra, R.; Lorents, D.C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383. [Google Scholar] [CrossRef]
- Niyogi, S.; Bekyarova, E.; Hong, J.; Khizroev, S.; Berger, C.; de Heer, W.; Haddon, R.C. Covalent chemistry for graphene electronics. J. Phys. Chem. Lett. 2011, 2, 2487–2498. [Google Scholar] [CrossRef]
- Dag, S.; Gulseren, O.; Ciraci, S. Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 2003, 83, 3180. [Google Scholar] [CrossRef]
- Wang, F.; Itkis, M.E.; Bekyarova, E.; Sarkar, S.; Tian, X.; Haddon, R.C. Solid-state bis-hexahapto-metal complexation of single-walled carbon nanotubes. J. Phys. Org. Chem. 2012, 25, 607–610. [Google Scholar] [CrossRef]
- Basolo, F. Early kinetic studies on CO substitution reactions of metal carbonyls. J. Organomet. Chem. 1990, 383, 579–586. [Google Scholar] [CrossRef]
- Kalinina, I.; Bekyarova, E.; Sarkar, S.; Wang, F.; Itkis, M.E.; Tian, X.; Niyogi, S.; Jha, N.; Haddon, R.C. Hexahapto-metal complexes of single-walled carbon nanotubes. Macromol. Chem. Phys. 2012, 213, 1001–1019. [Google Scholar] [CrossRef]
- Hjortstam, O.; Isberg, P.; Soderholm, S.; Dai, H. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? Appl. Phys. A 2004, 78, 1175–1179. [Google Scholar] [CrossRef]
- Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D.N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nat. Commun. 2013, 4, 2202. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, S.; Foffani, A.; Distefano, G. Esca study of some chromium complexes: Ionization energies and multi-peak structure of the spectra. Chem. Phys. Lett. 1973, 20, 350–355. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Davidson, G.; Riley, E.M. Vibrational spectra of arenechromiumtricarbonyl complexes in solution. Spectrochim. Acta A 1971, 27, 1649–1658. [Google Scholar] [CrossRef]
- Myllyoja, S.; Pakkanen, T.A. Deposition of chromium hexacarbonyl on alumina in a fluidized bed reactor. J. Mol. Catal. A Chem. 1998, 136, 153–160. [Google Scholar] [CrossRef]
- Cook, J.C.; McCash, E.M. Physisorption of metal carbonyls on Cu(100). Surf. Sci. 1996, 364, L605–L611. [Google Scholar] [CrossRef]
- Ziegler, K.J.; Gu, Z.; Peng, H.; Flor, E.L.; Hauge, R.H.; Smalley, R.E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Ogrin, D.; Chattopadhyay, J.; Sadana, A.K.; Billups, W.E.; Barron, A.R. Epoxidation and deoxygenation of single-walled carbon nanotubes: Quantification of epoxide defects. J. Am. Chem. Soc. 2006, 128, 11322–11323. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Niu, J.; Zhang, J.; Li, H.; Liu, Z. Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J. Phys. Chem. B 2003, 107, 2453–2458. [Google Scholar] [CrossRef]
- Kim, K.T.; Cha, S.I.; Gemming, T.; Eckert, J.; Hong, S.H. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 2008, 4, 1936–1940. [Google Scholar] [CrossRef] [PubMed]
- Chiang, I.W.; Brinson, B.E.; Huang, A.Y.; Willis, P.A.; Bronikowski, M.J.; Margrave, J.L.; Smalley, R.E.; Hauge, R.H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297–8301. [Google Scholar] [CrossRef]
- Kayat, J.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Pulmonary toxicity of carbon nanotubes: A systematic report. Nanomed. Nanotech. Biol. Med. 2011, 7, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Kagan, V.E.; Tyurina, Y.Y.; Tyurin, V.A.; Konduru, N.V.; Potapovich, A.I.; Osipo, A.N.; Kisin, E.R.; Schwegler-Berry, D.; Mercer, R.; Castranova, V.; et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 2006, 165, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.; Tucker, P. Multiplet splitting of X-ray photoelectron lines of chromium complexes. The effect of covalency on the 2p core level spin-orbit separation. Inorg. Chim. Acta 1976, 16, 41–45. [Google Scholar] [CrossRef]
- Gupta, R.P.; Sen, S.K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975, 12, 15. [Google Scholar] [CrossRef]
- Unveren, E.; Kemnitz, E.; Hutton, S.; Lippitz, A.; Unger, W.E.S. Analysis of highly resolved X-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape. Surf. Interface Anal. 2004, 36, 92–95. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic shielding constants. Phys. Rev. 1930, 36, 57. [Google Scholar] [CrossRef]
- Giannozzi, P.; Car, R.; Scoles, G. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003, 118, 1003. [Google Scholar] [CrossRef]
- Gomez, V.; Irusta, S.; Lawal, O.B.; Adams, W.; Hauge, R.H.; Dunnill, C.W.; Barron, A.R. Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures. RSC Adv. 2016, 6, 11895–11902. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Jung, A.; Graupner, R.; Ley, L.; Hirsch, A. Quantitative determination of oxidative defects on single walled carbon nanotubes. Phys. Stat. Sol. B 2006, 243, 3217–3220. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Zetaruk, D.G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529. [Google Scholar] [CrossRef]
- Edwards, E.R.; Antunes, E.F.; Botelho, E.C.; Baldan, M.R.; Corat, E.J. Evaluation of residual iron in carbon nanotubes purified by acid treatments. Appl. Surf. Sci. 2011, 258, 641–648. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Mukherjee, A.; Hamilton, C.E.; Kang, J.H.; Chakraborty, S.; Guo, W.; Kelly, K.F.; Barron, A.R.; Billups, W.E. Graphite epoxide. J. Am. Chem. Soc. 2008, 130, 5414–5415. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Niyogi, S.; Bekyarova, E.; Haddon, R.C. Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chem. Sci. 2011, 2, 1326–1333. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Stan, G.; Bojan, M.J.; Curtarolo, S.; Gatica, S.M.; Cole, M.W. Uptake of gases in bundles of carbon nanotubes. Phys. Rev. B 2000, 62, 2173. [Google Scholar] [CrossRef]
- Sarma, D.D.; Rao, C.N.R. XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron. Spectrosc. Relat. Phenom. 1980, 20, 25–45. [Google Scholar] [CrossRef]
- McGuire, G.E.; Schweitzer, G.K.; Carlson, T.A. Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorg. Chem. 1973, 12, 2450–2453. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kamal, S.S.K.; Premkumar, M.; Kumar, T.J.; Sreedhar, B.; Singh, A.K.; Srivastava, S.K.; Sekhar, K.C. Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. H 2009, 27, 784–791. [Google Scholar] [CrossRef]
- Kubas, G.J. Preparation and use of W(CO)3(NCR)3 (R = Et, Pr) as improved starting materials for syntheses of tricarbonyl(η6-cycloheptatriene)tungsten and other substituted carbonyl complexes. Inorg. Chem. 1983, 22, 692–694. [Google Scholar] [CrossRef]
- Sarkar, S.; Zhang, H.; Huang, J.-W.; Wang, F.; Bekyarova, E.; Lau, C.N.; Haddon, R.C. Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 2013, 25, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Ketolainen, T.; Havu, V.; Puska, M.J. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption. J. Chem. Phys. 2015, 142, 054705. [Google Scholar] [CrossRef] [PubMed]
- Pekker, A.; Chen, M.; Bekyarova, E.; Haddon, R.C. Photochemical generation of bis-hexahapto chromium interconnects between the graphene surfaces of single-walled carbon nanotubes. Mater. Horiz. 2015, 2, 81–85. [Google Scholar] [CrossRef]
Reagent | Cr Content (%) | Cr 2p3/2 Binding Energy (eV) | FWHM (eV) |
---|---|---|---|
(C6H6)Cr(CO)3 | 1.70 | 576.2 | 1.45 |
577.4 | 1.75 | ||
578.9 | 1.75 | ||
Cr(CO)6 | 3.5 | 576.0 | 1.45 |
577.3 | 1.75 | ||
578.9 | 1.75 | ||
(C7H8)Cr(CO)3 | 5.01 | 576.1 | 1.45 |
577.3 | 1.75 | ||
578.9 | 1.75 |
Species | Binding Energy (eV) | Reference |
---|---|---|
Cr metal | 574.2 | 11 |
Cr(C6H6)2 | 575.2 | 10 |
(C6H6)Cr(CO)3 | 576.1 | 10 |
Cr(CO)6 | 576.8 | 10 |
Cr2O3 a | 575.7–578.9 | 22 |
CrO3 | 579.6 | 22 |
Peak (eV) | Assignment | Raw-HiPco (%) | Ar Annealed (%) | Vacuum Annealed (%) | Microwave/HCl/Ar Annealed (%) |
---|---|---|---|---|---|
533.3 | C–O | 37.47 | 22.68 | 21.74 | 45.40 |
531.5 | C=O | 24.16 | 32.42 | 26.64 | 8.42 |
530.0 | Fe oxides | 38.37 | 44.90 | 51.62 | 46.18 |
706.6 | Fe(0) | 64.86 | 64.08 | 9.17 | 51.59 |
709.5 | Fe(II) | 11.76 | 13.63 | 43.11 | 28.92 |
711.0 | Fe(III) | 23.38 | 22.29 | 47.73 | 19.49 |
Reagent | W Content (%) | W 2p3/2 Binding Energy (eV) | FWHM (eV) |
---|---|---|---|
W(CO)6 a | 1.01 | 247.8 | 4.07 |
W(CO)6 b | 2.51 | 247.5 | 4.96 |
(C7H8)W(CO)3 | 4.54 | 247.7 | 4.09 |
Species | Binding Energy (eV) | Reference |
---|---|---|
W(0) (metal) | 244.2 | 36 |
W(CO)6 | 247.8 | 38 |
WO3 | 248 | 37 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, K.D.; Barron, A.R. Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes. C 2017, 3, 17. https://doi.org/10.3390/c3020017
Wright KD, Barron AR. Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes. C. 2017; 3(2):17. https://doi.org/10.3390/c3020017
Chicago/Turabian StyleWright, Kourtney D., and Andrew R. Barron. 2017. "Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes" C 3, no. 2: 17. https://doi.org/10.3390/c3020017
APA StyleWright, K. D., & Barron, A. R. (2017). Catalyst Residue and Oxygen Species Inhibition of the Formation of Hexahapto-Metal Complexes of Group 6 Metals on Single-Walled Carbon Nanotubes. C, 3(2), 17. https://doi.org/10.3390/c3020017