Next Article in Journal
Manganese Oxide Coated Carbon Materials as Hybrid Catalysts for the Application in Primary Aqueous Metal-Air Batteries
Next Article in Special Issue
Calculating the Emissions Impacts of Waste Electronics Recycling in Ontario, Canada
Previous Article in Journal
Time-Dependent Effects on the Coupled Mechanical-Electrical Response of Carbon Nanotube Yarns under Tensile Loading
Previous Article in Special Issue
Using Vegetation near CO2 Mediated Enhanced Oil Recovery (CO2-EOR) Activities for Monitoring Potential Emissions and Ecological Effects
Open AccessCommunication

Is the Formation of Poly-CO2 Stabilized by Lewis Base Moieties in N- and S-Doped Porous Carbon?

by Saunab Ghosh 1 and Andrew R. Barron 1,2,3,*
1
Department of Chemistry, Rice University, Houston, TX 77005, USA
2
Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
3
Energy Safety Research Institute, Swansea University Bay Campus, Swansea SA2 8QQ, UK
*
Author to whom correspondence should be addressed.
Academic Editor: Enrico Andreoli
Received: 8 January 2016 / Revised: 19 January 2016 / Accepted: 5 February 2016 / Published: 15 February 2016
(This article belongs to the Special Issue Materials and Processes for Carbon Dioxide Capture and Utilisation)
The polymerization of CO2 by Lewis basic moieties has been recently proposed to account for the high adsorption ability of N and S-doped porous carbon materials formed from the pyrolysis of sulfur or nitrogen containing polymers in the presence of KOH. Ab initio calculations performed on the ideal CO2 tetramer complex LB-(CO2)4 (LB = NH3, H2O, H2S) showed no propensity for stabilization. A weak association is observed using Lewis acid species bound to oxygen (LA = H+, AlF3, AlH3, B4O6); however, the combination of a Lewis acid and base does allow for the formation of polymerized CO2 (i.e., LB-C(O)O-[C(O)O]n-C(O)O-LA). While the presence of acid moieties in porous carbon is well known, and borate species are experimentally observed in KOH activated porous carbon materials, the low stability of the oligomers calculated herein, is insufficient to explain the reported poly-CO2. View Full-Text
Keywords: porous carbon; nitrogen; sulfur; poly-CO2; ab initio; Lewis acid; Lewis base porous carbon; nitrogen; sulfur; poly-CO2; ab initio; Lewis acid; Lewis base
Show Figures

Graphical abstract

MDPI and ACS Style

Ghosh, S.; Barron, A.R. Is the Formation of Poly-CO2 Stabilized by Lewis Base Moieties in N- and S-Doped Porous Carbon? C 2016, 2, 5.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop