Enhanced Antibacterial Properties of Citric Acid-Crosslinked PVA/Starch Films Functionalized with Silver-Loaded Sorghum Straw Biochar
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Pre-Processing of Peucedanum praeruptorum Dunn
2.3. Preparation of Sorghum Straw Biochar Loaded with Nanosilver
2.4. Preparation of PVA/St-Based Nanocomposite Films
2.5. Bacteriostatic Properties
2.6. Structure of C-Ag and Composite Films
2.7. Statistical Analysis
3. Results and Discussion
3.1. FT-IR
3.2. SEM
3.3. XRD
3.4. Effect of Calcination Temperature and Silver Ion Concentration of the Composite Material on the Antibacterial Ability
3.5. Effect of the Composite Materials on Antibacterial Ability Under Different Composite Doses and Action Duration
3.6. Effect of the Composite Materials with Different C-Ag Contents on Antibacterial Ability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kokkinos, P.; Mantzavinos, D.; Venieri, D. Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules 2020, 25, 2016. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Jiang, X.; Liu, X.; He, C.; Di, Y.; Lu, S.; Huang, H.; Lin, B.; Wang, D.; Fan, B. Antibacterial anthraquinone dimers from marine derived fungus Aspergillus sp. Fitoterapia 2019, 133, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.; Soundararajan, N.; Goud, V.V.; Katiyar, V. Cellulose nanocrystals modulate curcumin migration in PLA-based active films and its application as secondary packaging. ACS Sustain. Chem. Eng. 2024, 12, 9642–9657. [Google Scholar] [CrossRef]
- Tavakoli, M.; Ghasemian, A.; Dehghani-Firouzabadi, M.R.; Mazela, B. Cellulose and its nano-derivatives as a water-repellent and fire-resistant surface: A review. Materials 2022, 15, 82. [Google Scholar] [CrossRef]
- Chen, T.; Li, J.; Xu, J.; Gao, Y.; Zhu, S.; Wang, B.; Ying, G. Effect of acetylation of two cellulose nanocrystal polymorphs on processibility and physical properties of polylactide/cellulose nanocrystal composite film. Molecules 2023, 28, 4667. [Google Scholar] [CrossRef]
- Bhosale, S.R.; Bhosale, R.R.; Moyo, A.A.; Shinde, S.B.; Yadav, T.B.; Dhavale, R.P.; Chalapathi, U.; Patil, D.R.; Anbhule, P.V. Effect of Zn doping on antibacterial efficacy of CuO nanostructures. ChemistrySelect 2023, 8, e202301997. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Saleh, I.A.; Al-Masri, H.A.; Hamoud, Y.A.; Okla, M.K.; Shaghaleh, H. Green synthesis of copper nanoparticles from Kiwi peel: Antibacterial properties and the role of mexy gene expression in Pseudomonas aeruginosa efflux pumps. Appl. Biochem. Biotechnol. 2025, 197, 6741–6764. [Google Scholar] [CrossRef]
- Mráz, P.; Kopecký, M.; Hasoňová, L.; Hoštičková, I.; Vaníčková, A.; Perná, K.; Žabka, M.; Hýbl, M. Antibacterial activity and chemical composition of Popular plant essential oils and their positive interactions in combination. Molecules 2025, 30, 1864. [Google Scholar] [CrossRef]
- Xiong, Y.; Shen, S.; Yi, Z. Synthesis of uniform zinc peroxide nanoparticles for antibacterial application. Indian J. Pharm. Sci. 2024, 86, 219–225. [Google Scholar] [CrossRef]
- Chekol, T.A.; Beyene, B.B.; Teshale, A.T.; Mamo, S.G. Phytochemical investigation, antibacterial and antioxidant activity determination of leaf extracts of Cynoglossum coeruleum (Shimgigit). Appl. Biochem. Biotechnol. 2025, 197, 3946–3963. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Tang, F.; Zhang, J.; Kang, Y.; Zhang, H.; Li, L. Preparation of silver nanoparticles through the reduction of straw-extracted lignin and its antibacterial hydrogel. Int. J. Miner. Metall. Mater. 2025, 32, 504–514. [Google Scholar] [CrossRef]
- Zhan, C.; Lian, L.; Pang, C.; Hong, L. Polymers with a thymol end group for durable antibacterial cotton fabrics. ACS Sustain. Resour. Manag. 2024, 1, 395–403. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Guo, H. Research progress of polyvinyl alcohol water-resistant film materials. Membranes 2022, 12, 347. [Google Scholar] [CrossRef]
- Luchese, C.L.; Spada, J.C.; Tessaro, I.C. Starch content affects physicochemical properties of corn and cassava starch-based films. Ind. Crops Prod. 2017, 109, 619–626. [Google Scholar] [CrossRef]
- Musa, B.H.; Hameed, N.J. Study of the mechanical properties of polyvinyl alcohol/starch blends. Mater. Today Proc. 2020, 20, 439–442. [Google Scholar] [CrossRef]
- Vianna, T.C.; Goncalves, S.A.; Marangoni Júnior, L.; Alves, R.M.V.; Andrade, V.T.; Sato, H.H.; Vieira, R.P. Incorporation of limonene oligomers into poly (itaconic acid)/starch blend films for antimicrobial and antioxidant packaging applications. ACS Sustain. Chem. Eng. 2024, 12, 8752–8764. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, N.; Hou, Z.; Men, L.; Yang, P.; Wang, Z. Sponge-like porous polyvinyl alcohol/chitosan-based hydrogel with integrated cushioning, pH-indicating and antibacterial functions. Int. J. Biol. Macromol. 2024, 272, 132904. [Google Scholar] [CrossRef]
- Patil, S.; Bharimalla, A.K.; Mahapatra, A.; Dhakane-Lad, J.; Arputharaj, A.; Kumar, M.; Raja, A.; Kambli, N. Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Biosci. 2021, 44, 101352. [Google Scholar] [CrossRef]
- Upadhyay, P.; Zubair, M.; Roopesh, M.; Ullah, A. An overview of advanced antimicrobial food packaging: Emphasizing antimicrobial agents and polymer-based films. Polymers 2024, 16, 2007. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Wan, Z.; Guo, Y.; Chen, C.; Li, D.; Zhu, M.; Chen, Y. Strong, water-resistant, and ionic conductive all-chitosan film with a self-locking structure. ACS Appl. Mater. Interfaces 2022, 14, 23797–23807. [Google Scholar] [CrossRef]
- Xie, Y.; Cai, P.; Cao, X.; Chen, B.; Pan, Y. Water-resistant poly (vinyl alcohol)/ZnO nanopillar composite films for antibacterial packaging. ACS Omega 2024, 9, 50403–50413. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Uppaluri, R.; Das, C. Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int. J. Biol. Macromol. 2019, 131, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wu, J.; Peng, T.; Li, Y.; Lin, D.; Xing, B.; Li, C.; Yang, Y.; Yang, L.; Zhang, L. Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.F.; Romainor, A.N.B.; Pang, S.C.; Lihan, S. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. J. Drug Deliv. Sci. Technol. 2019, 54, 101239. [Google Scholar] [CrossRef]
- Ghasemi, M.; Govahi, M.; Litkohi, H.R. Green synthesis of silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) using Ferula gummosa Boiss. gum extract: A green nano drug for potential applications in medicine. Int. J. Biol. Macromol. 2025, 291, 138619. [Google Scholar] [CrossRef]
- Wang, X.; Qian, D.; Xu, L.; Zhao, C.; Ma, X.; Han, C.; Mu, Y. Green synthesis of AgNPs and their application in chitosan/polyvinyl alcohol/AgNPs composite sponges with efficient antibacterial activity for wound healing. Int. J. Biol. Macromol. 2025, 309, 142935. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Q.; Gao, Y.; Wan, S.; Meng, F.; Weng, W.; Zhang, Y. Characterization of silver nanoparticles loaded chitosan/polyvinyl alcohol antibacterial films for food packaging. Food Hydrocoll. 2023, 136, 108305. [Google Scholar] [CrossRef]
- Sati, A.; Ranade, T.N.; Mali, S.N.; Ahmad Yasin, H.K.; Pratap, A. Silver nanoparticles (AgNPs): Comprehensive insights into bio/synthesis, key influencing factors, multifaceted applications, and toxicity—A 2024 update. ACS Omega 2025, 10, 7549–7582. [Google Scholar] [CrossRef]
- Tomczyk, A.; Szewczuk-Karpisz, K.; Sokołowska, Z.; Kercheva, M.; Dimitrov, E. Purification of aqueous media by biochars: Feedstock type effect on silver nanoparticles removal. Molecules 2020, 25, 2930. [Google Scholar] [CrossRef]
- Kumavat, S.R.; Mishra, S. Green synthesis of silver nanoparticles, their characterization, and applications. Inorg. Nano-Met. Chem. 2024, 1–17. [Google Scholar] [CrossRef]
- Mim, J.; Sultana, M.S.; Dhar, P.K.; Hasan, M.K.; Dutta, S.K. Green mediated synthesis of cerium oxide nanoparticles by using Oroxylum indicum for evaluation of catalytic and biomedical activity. RSC Adv. 2024, 14, 25409–25424. [Google Scholar] [CrossRef]
- Michailidu, J.; Miškovská, A.; Jarošová, I.; Čejková, A.; Maťátková, O. Antibacterial properties of silver and gold nanoparticles synthesized using Cannabis sativa waste extract against Pseudomonas aeruginosa. J. Cannabis Res. 2025, 7, 20. [Google Scholar] [CrossRef]
- Rauf, A.; Ahmad, Z.; Ajaj, R.; Zhang, H.; Ibrahim, M.; Muhammad, N.; Al-Awthan, Y.S.; Bahattab, O.S.; Ullah, I. Green synthesis an eco-friendly route for the synthesis of iron oxide nanoparticles using aqueous extract of Thevetia peruviana and their biological activities. Sci. Rep. 2025, 15, 18316. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Fan, B.; He, Y.-C. Antibacterial, antioxidant, Cr (VI) adsorption and dye adsorption effects of biochar-based silver nanoparticles–sodium alginate-tannic acid composite gel beads. Int. J. Biol. Macromol. 2024, 271, 132453. [Google Scholar] [CrossRef] [PubMed]
- Chausali, N.; Saxena, J.; Prasad, R. Nanobiochar and biochar based nanocomposites: Advances and applications. J. Agric. Food Res. 2021, 5, 100191. [Google Scholar] [CrossRef]
- Fučík, J.; Jarošová, R.; Baumeister, A.; Rexroth, S.; Navrkalová, J.; Sedlář, M.; Gargošová, H.Z.; Mravcová, L. Assessing earthworm exposure to a multi-pharmaceutical mixture in soil: Unveiling insights through LC–MS and MALDI-MS analyses, and impact of biochar on pharmaceutical bioavailability. Environ. Sci. Pollut. Res. 2024, 31, 48351–48368. [Google Scholar] [CrossRef]
- Basuny, B.N.; Kospa, D.A.; Ibrahim, A.A.; Gebreil, A. Stable polyethylene glycol/biochar composite as a cost-effective photothermal absorber for 24 hours of steam and electricity cogeneration. RSC Adv. 2023, 13, 31077–31091. [Google Scholar] [CrossRef]
- Xiao, X.; Cheng, Y.; Liang, X.; Yang, Z. Synthesis of activated carbon loaded nanosilver and study of water corrosion resistance and antimicrobial properties. Surf. Interfaces 2024, 52, 104890. [Google Scholar] [CrossRef]
- Iskuzhina, L.; Batasheva, S.; Kryuchkova, M.; Rozhin, A.; Zolotykh, M.; Mingaleeva, R.; Akhatova, F.; Stavitskaya, A.; Cherednichenko, K.; Rozhina, E. Advances in the toxicity assessment of silver nanoparticles derived from a Sphagnum fallax extract for monolayers and Spheroids. Biomolecules 2024, 14, 611. [Google Scholar] [CrossRef]
- Sahoo, C.R.; Maharana, S.; Mandhata, C.P.; Bishoyi, A.K.; Paidesetty, S.K.; Padhy, R.N. Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi J. Biol. Sci. 2020, 27, 1580–1586. [Google Scholar] [CrossRef]
- Xu, H.; Wang, B.; Zhao, R.; Wang, X.; Pan, C.; Jiang, Y.; Zhang, X.; Ge, B. Adsorption behavior and performance of ammonium onto sorghum straw biochar from water. Sci. Rep. 2022, 12, 5358. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ding, J.; Yan, X.; Yan, W.; He, M.; Yin, G. Plasticization of cottonseed protein/polyvinyl alcohol blend films. Polymers 2019, 11, 2096. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.; Rodrigues, M.; Capanema, N.; Carvalho, S.; Gomes, D.; Mansur, H. Functionalized bioadhesion-enhanced carboxymethyl cellulose/polyvinyl alcohol hybrid hydrogels for chronic wound dressing applications. RSC Adv. 2023, 13, 13156–13168. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, G.; Mazaleuskaya, L.; Hsu, J.C.; Rosario-Berrios, D.N.; Grosser, T.; Cho-Park, P.F.; Cormode, D.P. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl. Mater. Interfaces 2021, 13, 60852–60864. [Google Scholar] [CrossRef]
- Goswami, Y.; Bisauriya, R.; Goswami, R.; Hlaing, A.; Moe, T. Hydrothermal synthesis of SnO2/cellulose nanocomposites: Optical, Structural, and morphological characterization. Sci. Rep. 2025, 15, 9752. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Zhao, H.; Song, X.; Ji, Z.; Xie, C.; Chen, F.; Meng, Y. Biomimetic robust starch composite films with super-hydrophobicity and vivid structural colors. Int. J. Mol. Sci. 2022, 23, 5607. [Google Scholar] [CrossRef]
- Pooja, N.; Ahmed, N.Y.; Mal, S.S.; Bharath, P.A.S.; Zhuo, G.-Y.; Noothalapati, H.; Managuli, V.; Mazumder, N. Assessment of biocompatibility for citric acid crosslinked starch elastomeric films in cell culture applications. Sci. Rep. 2025, 15, 6427. [Google Scholar] [CrossRef]
- Emek, M.; Şahin, E.İ.; Ibrahim, J.E.F.; Kartal, M. Electromagnetic Shielding Performance of Ta-Doped NiFe2O4 Composites Reinforced with Chopped Strands for 7–18 GHz Applications. Nanomaterials 2025, 15, 1580. [Google Scholar] [CrossRef]
- Al-Kadi, F.K.; Adbulkareem, J.F.; Azhdar, B.A. Evaluation of the mechanical and physical properties of maxillofacial silicone type A-2186 impregnated with a hybrid chitosan–TiO2 nanocomposite subjected to different accelerated aging conditions. Biomimetics 2023, 8, 539. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Q.; Yu, R.; Zhang, H.; Nie, F.; Zhang, W. Enhancing K2S2O8 electrochemiluminescence based on silver nanoparticles and zinc metal–organic framework composite (AgNPs@ZnMOF) for the determination of l-cysteine. RSC Adv. 2022, 12, 23437–23446. [Google Scholar] [CrossRef]
- Gürler, N.; Paşa, S.; Erdoğan, Ö.; Cevik, O. Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible starch/citric acid/polyvinyl alcohol biocomposite films. Starch-Stärke 2023, 75, 2100074. [Google Scholar] [CrossRef]
- Cai, J.; Chen, X.; Wang, X.; Tan, Y.; Ye, D.; Jia, Y.; Liu, P.; Yu, H. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. RSC Adv. 2018, 8, 39463–39469. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.-C.; Yang, T.-Y.; Hung, C.-C.; Shih, C.-J. Silica-based silver nanocomposite 80S/Ag as Aggregatibacter actinomycetemcomitans inhibitor and its in vitro bioactivity. J. Dent. Sci. 2024, 19, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tang, L.; Hu, J.; Jiang, M.; Shi, X.; Zhang, T.; Li, Y.; Pan, X. Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes. R. Soc. Open Sci. 2018, 5, 180966. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, W.; Choi, J.W.; Bumbudsanpharoke, N.; Ko, S. A facile green fabrication and characterization of cellulose-silver nanoparticle composite sheets for an antimicrobial food packaging. Front. Nutr. 2021, 8, 778310. [Google Scholar] [CrossRef]
- Srikhao, N.; Ounkaew, A.; Srichiangsa, N.; Phanthanawiboon, S.; Boonmars, T.; Artchayasawat, A.; Theerakulpisut, S.; Okhawilai, M.; Kasemsiri, P. Green-synthesized silver nanoparticle coating on paper for antibacterial and antiviral applications. Polym. Bull. 2023, 80, 9651–9668. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996. [Google Scholar] [CrossRef]
- Liu, T.; Xie, F.; Geng, L.; He, R.; Sun, M.; Ni, T.; Xu, P.; Xing, C.; Peng, Y.; Chen, K. Micro-electro nanofibrous dressings based on PVDF-AgNPs as wound healing materials to promote healing in active areas. Int. J. Nanomed. 2025, 20, 771–789. [Google Scholar] [CrossRef]
- Iqbal, M.; Zafar, H.; Mahmood, A.; Niazi, M.B.K.; Aslam, M.W. Starch-capped silver nanoparticles impregnated into propylamine-substituted PVA films with improved antibacterial and mechanical properties for wound-bandage applications. Polymers 2020, 12, 2112. [Google Scholar] [CrossRef]
- Tăbăran, A.-F.; Matea, C.T.; Mocan, T.; Tăbăran, A.; Mihaiu, M.; Iancu, C.; Mocan, L. Silver nanoparticles for the therapy of tuberculosis. Int. J. Nanomed. 2020, 15, 2231–2258. [Google Scholar] [CrossRef]
- Wu, J.; Li, F.; Hu, X.; Lu, J.; Sun, X.; Gao, J.; Ling, D. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent. Sci. 2019, 5, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Sethy, C.; Kundu, C.N.; Tripathy, J. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. Int. J. Biol. Macromol. 2023, 239, 124185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yao, G.; Li, K.; Ye, J.; Chen, J.; Zhang, J. Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films. Food Chem. X 2025, 25, 102057. [Google Scholar] [CrossRef] [PubMed]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Gwada, C.A.; Ndivhuwo, P.S.; Matshetshe, K.; Aradi, E.; Mdluli, P.; Moloto, N.; Otieno, F.; Airo, M. Phytochemical-assisted synthesis, optimization, and characterization of silver nanoparticles for antimicrobial activity. RSC Adv. 2025, 15, 14170–14181. [Google Scholar] [CrossRef]
- Tao, Y.; Nishio Ayre, W.; Jiang, L.; Chen, S.; Dong, Y.; Wu, L.; Jiao, Y.; Liu, X. Enhanced functionalities of biomaterials through metal ion surface modification. Front. Bioeng. Biotechnol. 2025, 13, 1522442. [Google Scholar] [CrossRef]
- Lin, S.; Wang, R.-Z.; Yi, Y.; Wang, Z.; Hao, L.-M.; Wu, J.-H.; Hu, G.-H.; He, H. Facile and green fabrication of electrospun poly (vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles. Int. J. Nanomed. 2014, 9, 3937–3947. [Google Scholar] [CrossRef]
- Yang, D.; Fan, B.; He, Y.-C. UV-blocking, antibacterial, corrosion resistance, antioxidant, and fruit packaging ability of lignin-rich alkaline black liquor composite film. Int. J. Biol. Macromol. 2024, 275, 133344. [Google Scholar] [CrossRef]








| Materials | Wave Number | Assignment |
|---|---|---|
| PVA/St | 3296 cm−1 | O-H stretching vibration |
| 2941 cm−1 | C-H asymmetric vibration | |
| 1093 cm−1 | C-O stretching vibration | |
| PVA/St/CA@C-Ag | 3296 cm−1 | O-H stretching vibration |
| 2941 cm−1 | C-H asymmetric vibration | |
| 1712 cm−1 | C=O stretching of ester bonds | |
| 1412 cm−1 | COO− symmetric stretching | |
| 1093 cm−1 | C-O stretching | |
| 545 cm−1 | Ag-O vibration | |
| C-Ag | 3415 cm−1 | O-H stretching vibration |
| 2926 cm−1 | C-H stretching | |
| 1591 cm−1 | C=C stretching vibration | |
| 1384 cm−1 | COO− symmetric stretching | |
| 545 cm−1 | Ag-O vibration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, J.; Ma, C.; He, Y. Enhanced Antibacterial Properties of Citric Acid-Crosslinked PVA/Starch Films Functionalized with Silver-Loaded Sorghum Straw Biochar. C 2025, 11, 94. https://doi.org/10.3390/c11040094
Wang Y, Gao J, Ma C, He Y. Enhanced Antibacterial Properties of Citric Acid-Crosslinked PVA/Starch Films Functionalized with Silver-Loaded Sorghum Straw Biochar. C. 2025; 11(4):94. https://doi.org/10.3390/c11040094
Chicago/Turabian StyleWang, Yue, Jiayao Gao, Cuiluan Ma, and Yucai He. 2025. "Enhanced Antibacterial Properties of Citric Acid-Crosslinked PVA/Starch Films Functionalized with Silver-Loaded Sorghum Straw Biochar" C 11, no. 4: 94. https://doi.org/10.3390/c11040094
APA StyleWang, Y., Gao, J., Ma, C., & He, Y. (2025). Enhanced Antibacterial Properties of Citric Acid-Crosslinked PVA/Starch Films Functionalized with Silver-Loaded Sorghum Straw Biochar. C, 11(4), 94. https://doi.org/10.3390/c11040094

