Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Iodination Procedures
2.3. Characterization Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, M.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X.; Zhang, L.; Zhang, S.; Pang, H.; Xu, Q. Carbon nanotube-based materials for lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 17204–17241. [Google Scholar] [CrossRef]
- Peng, X.W.; Wu, K.Z.; Hu, Y.J.; Zhuo, H.; Chen, Z.H.; Jing, S.S.; Liu, Q.Z.; Liu, C.F.; Zhong, L.X. A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. J. Mater. Chem. A 2018, 6, 23550–23559. [Google Scholar] [CrossRef]
- Soria-Sánchez, M.; Maroto-Valiente, A.; Álvarez-Rodríguez, J.; Muñoz-Andrés, V.; Rodríguez-Ramos, I.; Guerrero-Ruíz, A. Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 2011, 104, 101–109. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Zhivulin, V.E. Controlled modification of polyvinylidene fluoride as a way for carbyne synthesis. Polym. Degrad. Stab. 2022, 203, 110054. [Google Scholar] [CrossRef]
- Belenkov, E.; Brzhezinskaya, M.; Mavrinskii, V. Chapter 4 Graphynes: Advanced carbon materials with layered structure. In Handbook on the Graphene; Wiley-Scrivener: Beverly, MA, USA, 2019; ISBN 9781119468455. [Google Scholar]
- Carvalho, A.F.; Kulyk, B.; Fernandes, A.J.S.; Fortunato, E.; Costa, F.M. A Review on the Applications of Graphene in Mechanical Transduction. Adv. Mater. 2022, 34, 2101326. [Google Scholar] [CrossRef] [PubMed]
- Gerber, I.C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349. [Google Scholar] [CrossRef]
- Xing, Z.; Ju, Z.; Zhao, Y.; Wan, J.; Zhu, Y.; Qiang, Y. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 2016, 6, 26146. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon Nanotube-Based Thermoelectric Materials and Devices. Adv Mater 2018, 30, 1704386. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Wu, H. Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Adv. Funct. Mater. 2013, 23, 1984–1997. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, J.; Song, W.; Zhao, D.; Kang, M.; Shen, H.; Li, Z. Insights into the Surface Oxygen Functional Group-Driven Fast and Stable Sodium Adsorption on Carbon. ACS Appl. Mater. Interfaces 2020, 12, 6991–7000. [Google Scholar] [CrossRef]
- Soria-Sánchez, M.; Maroto-Valiente, A.; Álvarez-Rodríguez, J.; Rodríguez-Ramos, I.; Guerrero-Ruíz, A. Efficient catalytic wet oxidation of phenol using iron acetylacetonate complexes anchored on carbon nanofibers. Carbon 2009, 47, 2095–2102. [Google Scholar]
- Cuervo, M.R.; Asedegbega-Nieto, E.; Diaz, E.; Ordoñez, S.; Vega, A.; Dongil, A.B. Modification of the adsorption properties of high surface area graphites by oxygen functional groups. Carbon 2008, 46, 2096–2106. [Google Scholar] [CrossRef]
- Landwehr, J.; Steldinger, H.; Etzold, B.J.M. Introducing sulphur surface groups in microporous carbons. Catal. Today 2018, 301, 191–195. [Google Scholar] [CrossRef]
- Roldán, L.; Truong-Phuoc, L.; Ansón-Casaos, A.; Pham-Huu, C.; García-Bordejé, E. Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catal. Today 2018, 301, 2–10. [Google Scholar]
- Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D.S.; Ma, D. Nitrogen-Doped sp2-Hybridized Carbon as a Superior Catalyst for Selective Oxidation. Angew. Chem. Int. Ed. 2013, 52, 2109–2113. [Google Scholar]
- García-García, F.R.; Álvarez-Rodríguez, J.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction. Carbon 2010, 48, 267–276. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, S.; Li, M.; Chen, Y.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Salzano, F.J. The behavior of iodine in graphite. Carbon 1964, 2, 73–81. [Google Scholar] [CrossRef]
- Iwamoto, K.; Oishi, J. The behavior of iodine in adsorption and desorption by graphite. J. Nucl. Sci. Technol. 1968, 5, 437–446. [Google Scholar] [CrossRef]
- Hung, C.C.; Kucera, D. Graphite intercalation compound with iodine as the major intercalate. Carbon 1994, 32, 1441–1448. [Google Scholar] [CrossRef]
- Walton, K.L.; Ghosh, T.; Viswanath, D.; Loyalka, S.; Tompson, R. Adsorption of iodine on graphite in High Temperature Gas-Cooled Reactor systems: A review. Prog. Nucl. Energy 2014, 73, 21–50. [Google Scholar] [CrossRef]
- Zhou, J.; Hao, S.; Gao, L.; Zhang, Y. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Ann. Nucl. Energy 2014, 72, 237–241. [Google Scholar] [CrossRef]
- Barpanda, P.; Djellab, K.; Sadangi, R.K.; Sahu, A.K.; Roy, D.; Sun, K. Structural and electrochemical modification of graphitic carbons by vapor-phase iodine-incorporation. Carbon 2010, 48, 4178–4189. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lin, C.; Qi, C.; Zhang, H.; Ma, J. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 2017, 181, 609–618. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Leng, X.; Ouyang, F. Halogen-doped CQDs as a modulation of fractional function sensing in ZIF composites. Chem. Eng. J. 2024, 493, 152874. [Google Scholar] [CrossRef]
- Khammat, M.A.; Khudhair, A.M.; Shwayyea, N.B. Tailoring electronic; optical, and reactive properties of Br- and F-doped graphene nanoflakes: A DFT-based study. Mater. Today Quantum 2025, 7, 100048. [Google Scholar] [CrossRef]
- Sethulekshmi, A.S.; Aparna, A.; Parvathi, P.; Pathak, R.; Punetha, V.D.; Selvaraj, M.; Saritha, A. Advances in doped carbon quantum dots: Synthesis, mechanisms, and applications in sensing technologies. Chem. Eng. J. 2025, 514, 163262. [Google Scholar] [CrossRef]
- Sujitha, S.D.A.; Rex, K.G.R.; Priya, C.; Mageswari, A.; Santhamoorthy, M.; Ramesh, P. Hybrid Material of Salen Moieties Functionalized 2D-Iodinated GO: A Fluorescent Chemosensor for Cr3+ Ion Detection. Luminiscence 2025, 40, e70228. [Google Scholar] [CrossRef]
- Šimek, P.; Klímová, K.; Sedmidubský, D.; Jankovský, O. Martin Pumera and Zdeněk Sofer. Towards graphene iodide: Iodination of graphite oxide. Nanoscale 2015, 7, 261. [Google Scholar] [CrossRef]
- Kalicharan, A.; Pitchaimani, J.; Kanna, C.B.; Rajesh, V.; Tamtam, M.R.; Koutavarapu, R.; Shakila, P.B.; Ramesh, P. Green Chemistry Approach for One-Step Synthesis of Iodinated Graphene Material for Supercapacitor Applications. ChemistrySelect 2024, 9, e202400820. [Google Scholar] [CrossRef]
- Jemina, I.; Mani, N.; Ramesh, P.; Sudha, N. Brominated graphene oxide: A novel synthesis approach for enhanced performance in energy storage applications. Diam. Relat. Mater. 2025, 154, 112135. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Sysoev, V.V.; Ryzhkov, S.A.; Eliseyev, I.A.; Stolyarova, D.Y.; Antonov, G.A.; Struchkov, N.S.; Brzhezinskaya, M.; Kirilenko, D.A.; Pavlov, S.I.; et al. A Blueprint for the Synthesis and Characterization of Thiolated Graphene. Nanomaterials 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.; Wang, F.; Zhao, X.-L.; Wei, X.-P.; Wang, X.-W.; Tian, Y. One-step and low-temperature synthesis of iodine-doped graphene and its multifunctional applications for hydrogen evolution reaction and electrochemical sensing. Electrochim. Acta 2017, 246, 1155–1162. [Google Scholar] [CrossRef]
- Chen, J.G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 1997, 30, 1–152. [Google Scholar] [CrossRef]
- Niehus, H.; Heiland, W.; Taglauer, E. Low-energy ion scattering at surfaces. Surf. Sci. Rep. 1993, 17, 213–303. [Google Scholar] [CrossRef]
- Lizzit, S.; Petaccia, L.; Goldoni, A. C 1s photoemission spectrum in graphite(0001). Phys. Rev. B 2007, 76, 153408. [Google Scholar] [CrossRef]
- Kalita, G.; Wakita, K.; Takahashi, M.; Umeno, M. Iodine doping in solid precursor-based CVD growth graphene film. J. Mater. Chem. 2011, 21, 15209–15213. [Google Scholar] [CrossRef]
- Coleman, K.S.; Chakraborty, A.K.; Bailey, S.R.; Sloan, J.; Alexander, M. Iodination of Single-Walled Carbon Nanotubes. Chem. Mater. 2007, 19, 1076–1081. [Google Scholar] [CrossRef]
- Iglesias-García, A.; García, E.A.; Goldberg, E.C. Role of He excited configurations in the neutralization of He+ ions colliding with a HOPG surface. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 87, 075434. [Google Scholar]
- van den Oetelaar, L.C.A.; Mikhailov, S.N.; Brongersma, H.H. Mechanism of neutralization in low-energy He+ ion scattering from carbidic and graphitic carbon species on rhenium. Nucl. Inst. Methods Phys. Res. B 1994, 85, 420–423. [Google Scholar]
- Tamargo-Martínez, K.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Surface modification of high-surface area graphites by oxygen plasma treatments. Appl. Surf. Sci. 2022, 575, 151675. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Órfão, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Krishnan, C.; Selvarajan, P.; Freeda, T.H.; Mahadevan, C.K. Growth and characterization of pure and potassium iodide-doped zinc tris-thiourea sulphate (ZTS) single crystals. Phys. B Condens. Matter 2009, 404, 289–294. [Google Scholar] [CrossRef]
ID | SBET (m2 g−1) | dBJH (nm) | C1s (%at) | O1s (%at) | I3d (%at) | Fe2p (%at) | K2s (%at) |
---|---|---|---|---|---|---|---|
HSAG | 88 | 3.3 | 97.60 | 2.40 | n.d. | n.d. | n.d. |
IKD | 48 | 3.3 | 96.26 | 2.79 | 0.63 | n.d. | 0.32 |
IKFeD | 49 | 3.2 | 96.32 | 2.59 | 0.60 | 0.06 | 0.43 |
IKW | 61 | 3.4 | 95.55 | 4.42 | 0.03 | n.d. | n.d. |
IKFeW | 45 | 3.4 | 91.55 | 7.48 | 0.03 | 0.94 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroto-Valiente, A.; Blanco-Camus, C.A.; Mártir Bueno, A.I.; Mesa-Bribián, E.M.; Alvarez-Rodríguez, J. Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions. C 2025, 11, 73. https://doi.org/10.3390/c11040073
Maroto-Valiente A, Blanco-Camus CA, Mártir Bueno AI, Mesa-Bribián EM, Alvarez-Rodríguez J. Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions. C. 2025; 11(4):73. https://doi.org/10.3390/c11040073
Chicago/Turabian StyleMaroto-Valiente, Angel, Carla A. Blanco-Camus, Ana I. Mártir Bueno, Elena M. Mesa-Bribián, and Jesús Alvarez-Rodríguez. 2025. "Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions" C 11, no. 4: 73. https://doi.org/10.3390/c11040073
APA StyleMaroto-Valiente, A., Blanco-Camus, C. A., Mártir Bueno, A. I., Mesa-Bribián, E. M., & Alvarez-Rodríguez, J. (2025). Study of the Iodine Fixation over High Surface Area Graphite (HSAG-100) Under Mild Conditions. C, 11(4), 73. https://doi.org/10.3390/c11040073