Fluorination to Enhance the Tribological Properties of Carbonaceous Materials
Abstract
1. Introduction
2. Fluorination and Materials
3. Tribological Properties
3.1. Method
3.2. Fluorine Content
3.3. Effect of the Size and Dimensionality
3.4. C-F Bonding
3.5. Stacking
4. Mechanism for the Reduction of the Friction
5. Nano-Tribology
6. Composites
7. Dispersion in Liquid Lubricating Solutions
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, F.-Z.; Liu, X.-B.; Yang, C.-M.; Chen, G.-D.; Meng, Y.; Zhou, H.-B.; Zhang, S.-H. Insights into Robust Carbon Nanotubes in Tribology: From Nano to Macro. Mater. Today 2024, 74, 203–234. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Fusaro, R.L.; Sliney, H.E. Preliminary Investigation of Graphite Fluoride (CFx)n as a Solid Lubricant; National Aeronautics and Space Administration: Washington, DC, USA, 1969.
- Fusaro, R.L.; Sliney, H.E. Graphite Fluoride (CFx)n—A New Solid Lubricant. ASLE Trans. 1970, 13, 56–65. [Google Scholar] [CrossRef]
- Fusaro, R.L. Comparison of the Tribological Properties of Fluorinated Cokes and Graphites. Tribol. Trans. 1989, 32, 121–132. [Google Scholar] [CrossRef]
- Chatenet, M.; Berthon-Fabry, S.; Ahmad, Y.; Guérin, K.; Colin, M.; Farhat, H.; Frezet, L.; Zhang, G.; Dubois, M. Fluorination and Its Effects on Electrocatalysts for Low-Temperature Fuel Cells. Adv. Energy Mater. 2023, 13, 2204304. [Google Scholar] [CrossRef]
- Agopian, J.-C.; Téraube, O.; Charlet, K.; Dubois, M. A Review about the Fluorination and Oxyfluorination of Carbon Fibres. J. Fluor. Chem. 2021, 251, 109887. [Google Scholar] [CrossRef]
- Lagow, R.J.; Shimp, L.A.; Lam, D.K.; Baddour, R.F. Synthesis of Poly(Carbon Monofluoride) in a Fluorine Plasma. Inorg. Chem. 1972, 11, 2568–2570. [Google Scholar] [CrossRef]
- Watanabe, N.; Izumi, A.; Nakajima, T. Preparation of Poly-(Dicarbon Monofluoride), (C2F)n from Exfoliated Graphite. J. Fluor. Chem. 1981, 18, 475–482. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.; Stopic, S.; Friedrich, B. Fluorination of Two-Dimensional Graphene: A Review. J. Fluor. Chem. 2022, 255–256, 109964. [Google Scholar] [CrossRef]
- Kang, W.; Li, S. Preparation of Fluorinated Graphene to Study Its Gas Sensitivity. RSC Adv. 2018, 8, 23459–23467. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liu, D.; Zhang, K.; Dong, C. Urea Modified Fluorinated Carbon Nanotubes: Unique Self-Dispersed Characteristic in Water and High Tribological Performance as Water-Based Lubricant Additives. New J. Chem. 2019, 43, 14684–14693. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakajima, T.; Touhara, H. Graphite Fluorides; Studies in Inorganic Chemistry; Elsevier Science: Burlington, VT, USA, 1988. [Google Scholar]
- Touhara, H.; Okino, F. Property Control of Carbon Materials by Fluorination. Carbon 2000, 38, 241–267. [Google Scholar] [CrossRef]
- Kita, Y.; Watanabe, N.; Fujii, Y. Chemical Composition and Crystal Structure of Graphite Fluoride. J. Am. Chem. Soc. 1979, 101, 3832–3841. [Google Scholar] [CrossRef]
- Hamwi, A.; Daoud, M.; Cousseins, J.C. Graphite Fluorides Prepared at Room Temperature 1. Synthesis and Characterization. Synth. Met. 1988, 26, 89–98. [Google Scholar] [CrossRef]
- Delbé, K.; Thomas, P.; Himmel, D.; Mansot, J.L.; Dubois, M.; Guérin, K.; Delabarre, C.; Hamwi, A. Tribological Properties of Room Temperature Fluorinated Graphite Heat-Treated Under Fluorine Atmosphere. Tribol. Lett. 2010, 37, 31–41. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, T.; Chen, Y.; Yang, F.; Huang, H.; Zhao, Y. Graphite Fluoride as a Novel Solider Lubricant Additive for Ultra-High-Molecular-Weight Polyethylene Composites with Excellent Tribological Properties. Lubricants 2023, 11, 403. [Google Scholar] [CrossRef]
- Herraiz, M.; Dubois, M.; Batisse, N.; Petit, E.; Thomas, P. Exfoliated Fluorinated Carbons with a Low and Stable Friction Coefficient. RSC Adv. 2019, 9, 13615–13622. [Google Scholar] [CrossRef]
- Chen, X.; Dubois, M.; Silvana Radescu, S.; Rawal, A.; Zhao, C. Liquid-phase exfoliation of F-diamane-like nanosheets. Carbon 2021, 175, 124–130. [Google Scholar] [CrossRef]
- Thomas, P.; Himmel, D.; Mansot, J.L.; Dubois, M.; Guérin, K.; Zhang, W.; Hamwi, A. Tribological Properties of Fluorinated Carbon Nanofibres. Tribol. Lett. 2009, 34, 49–59. [Google Scholar] [CrossRef]
- Thomas, P.; Mansot, J.L.; Molza, A.; Begarin, F.; Dubois, M.; Guérin, K. Friction Properties of Fluorinated Graphitized Carbon Blacks. Tribol. Lett. 2014, 56, 259–271. [Google Scholar] [CrossRef]
- Thomas, P.; Himmel, D.; Mansot, J.L.; Zhang, W.; Dubois, M.; Guérin, K.; Hamwi, A. Friction Properties of Fluorinated Carbon Nanodiscs and Nanocones. Tribol. Lett. 2011, 41, 353–362. [Google Scholar] [CrossRef]
- Fan, K.; Liu, X.; Liu, Y.; Li, Y.; Chen, Y.; Meng, Y.; Liu, X.; Feng, W.; Luo, L. Covalent Functionalization of Fluorinated Graphene through Activation of Dormant Radicals for Water-Based Lubricants. Carbon 2020, 167, 826–834. [Google Scholar] [CrossRef]
- Ma, L.; Li, Z.; Jia, W.; Hou, K.; Wang, J.; Yang, S. Microwave-Assisted Synthesis of Hydroxyl Modified Fluorinated Graphene with High Fluorine Content and Its High Load-Bearing Capacity as Water Lubricant Additive for Ceramic/Steel Contact. Colloids Surf. Physicochem. Eng. Asp. 2021, 610, 125931. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Song, H.; Liang, H.; Liu, D.; Dong, C.; Jia, W. Fluorinated Graphene Oxide Nanosheet: A Highly Efficient Water-Based Lubricated Additive. Tribol. Int. 2019, 140, 105867. [Google Scholar] [CrossRef]
- Wang, D.; Jia, X.; Tian, R.; Yang, J.; Su, Y.; Song, H. Tuning Fluorine Content of Fluorinated Graphene by an Ionothermal Synthesis Method for Achieving Excellent Tribological Behaviors. Carbon 2024, 218, 118649. [Google Scholar] [CrossRef]
- Chen, L.; Lei, J.; Wang, F.; Wang, G.; Feng, H. Facile Synthesis of Graphene Sheets from Fluorinated Graphite. RSC Adv. 2015, 5, 40148–40153. [Google Scholar] [CrossRef]
- He, J.; Ma, L.; Yang, Y.; Jia, W.; Zhou, Q.; Yang, S.; Wang, J. Tribological Properties of Physically Modified Fluorinated Graphene and Soluble Starch Hybrid as Water-Based Lubricating Additive System. Tribol. Int. 2023, 183, 108412. [Google Scholar] [CrossRef]
- Wan, C.; Ma, M. One-Step Exfoliation and Functionalization of Fluorinated Graphene Sheets from Fluoride Graphite by Ammonia Carbonate-Assisted Solid Ball Milling. J. Porous Mater. 2020, 27, 1319–1328. [Google Scholar] [CrossRef]
- Singh, S.; Tyagi, M.; Tyagi, A.K.; Kaicker, P.K.; Varshney, L. Development and Characterization of Graphite Fluoride Dry Lubrication System by Using Gamma Radiation. J. Polym. Mater. 2020, 36, 305–321. [Google Scholar] [CrossRef]
- Gupta, V.; Nakajima, T.; Ohzawa, Y.; Žemva, B. A Study on the Formation Mechanism of Graphite Fluorides by Raman Spectroscopy. J. Fluor. Chem. 2003, 120, 143–150. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Kharitonov, A.P.; Shul’ga, Y.M.; Zhigalina, O.M.; Knerel’man, E.I.; Dubois, M.; Brzhezinskaya, M.M.; Vinogradov, A.S.; Preobrazhenskii, A.B.; Zvereva, G.I.; et al. Fabrication and characterization of fluorinated single-walled carbon nanotubes. Nanotechnol. Russ. 2009, 4, 60–78. [Google Scholar] [CrossRef]
- Nomede-Martyr, N.; Bercion, Y.; Philippe, B.; Dubois, M.; Joseph, H.; Philippe, T. Moringa Oil With Pristine and Fluorinated Carbon Nanofibers as Additives for Lubrication. J. Tribol. 2021, 144, 051901. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Chekhova, G.N.; Pinakov, D.V.; Yushina, I.V.; Bulusheva, L.G. Optical Absorption and Photoluminescence of Partially Fluorinated Graphite Crystallites. Carbon 2022, 193, 98–106. [Google Scholar] [CrossRef]
- Kuriakose, A.K.; Margrave, J.L. Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite. J. Phys. Chem. 1965, 69, 2772–2775. [Google Scholar] [CrossRef]
- Osuna, S.; Torrent-Sucarrat, M.; Solà, M.; Geerlings, P.; Ewels, C.P.; Lier, G.V. Reaction Mechanisms for Graphene and Carbon Nanotube Fluorination. J. Phys. Chem. C 2010, 114, 3340–3345. [Google Scholar] [CrossRef]
- Miyake, S.; Kaneko, R.; Kikuya, Y.; Sugimoto, I. Micro-Tribological Studies on Fluorinated Carbon Films. J. Tribol. 1991, 113, 384–389. [Google Scholar] [CrossRef]
- Miyake, S.; Shindo, T.; Miyake, M. Friction Properties of Surface-Modified Polished Chemical-Vapor-Deposited Diamond Films under Boundary Lubrication with Water and Poly-Alpha Olefin. Tribol. Int. 2016, 102, 287–296. [Google Scholar] [CrossRef]
- Rubio-Roy, M.; Corbella, C.; Bertran, E.; Portal, S.; Polo, M.C.; Pascual, E.; Andújar, J.L. Effects of Environmental Conditions on Fluorinated Diamond-like Carbon Tribology. Diam. Relat. Mater. 2009, 18, 923–926. [Google Scholar] [CrossRef]
- Sen, F.G.; Qi, Y.; Alpas, A.T. Tribology of Fluorinated Diamond-like Carbon Coatings: First Principles Calculations and Sliding Experiments. Lubr. Sci. 2013, 25, 111–121. [Google Scholar] [CrossRef]
- Chen, X.; Li, J. Superlubricity of Carbon Nanostructures. Carbon 2020, 158, 1–23. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D Nanomaterials: A Review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Nomède-Martyr, N.; Disa, E.; Thomas, P.; Romana, L.; Mansot, J.-L.; Dubois, M.; Guérin, K.; Zhang, W.; Hamwi, A. Tribological Properties of Fluorinated Nanocarbons with Different Shape Factors. J. Fluor. Chem. 2012, 144, 10–16. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Miyoshi, K.; Street, K.W.; Tomasek, A.J.; Peng, H.; Liu, Y.; Margrave, J.L.; Khabashesku, V.N. Friction Properties of Surface-Fluorinated Carbon Nanotubes. Wear 2005, 259, 738–743. [Google Scholar] [CrossRef]
- Şahin, H.; Topsakal, M.; Ciraci, S. Structures of Fluorinated Graphene and Their Signatures. Phys. Rev. B 2011, 83, 115432. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Chen, X.; Luo, J. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments. ACS Appl. Mater. Interfaces 2019, 11, 40470–40480. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Vacher, B.; Ohmae, N.; Martin, J.M.; Epicier, T. Anti-Wear and Friction Reducing Mechanisms of Carbon Nano-Onions as Lubricant Additives. Tribol. Lett. 2008, 30, 69–80. [Google Scholar] [CrossRef]
- Liu, X.-X.; Li, T.-S.; Liu, X.-J.; Lv, R.-G.; Cong, P.-H. An Investigation on the Friction of Oriented Polytetrafluoroethylene (PTFE). Wear 2007, 262, 1414–1418. [Google Scholar] [CrossRef]
- Biswas, S.K.; Vijayan, K. Friction and Wear of PTFE—A Review. Wear 1992, 158, 193–211. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, L.; Yao, Q.; Li, Q.; Zhang, M.; Xie, X.; Qiao, S.; Wang, G.; Ma, T.; Di, Z.; et al. Robust Ultra-Low-Friction State of Graphene via Moiré Superlattice Confinement. Nat. Commun. 2016, 7, 13204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Z.; Klausen, L.H.; Li, Q.; Dong, M. Friction Behaviors of Two-Dimensional Materials at the Nanoscale. Mater. Today Phys. 2022, 27, 100771. [Google Scholar] [CrossRef]
- Kwon, S.; Ko, J.-H.; Jeon, K.-J.; Kim, Y.-H.; Park, J.Y. Enhanced Nanoscale Friction on Fluorinated Graphene. Nano Lett. 2012, 12, 6043–6048. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.-Z.; Kim, S.-P.; Shenoy, V.B.; Sheehan, P.E.; Robinson, J.T.; Carpick, R.W. Fluorination of Graphene Enhances Friction Due to Increased Corrugation. Nano Lett. 2014, 14, 5212–5217. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, Y.; Yu, M.; Lang, H.; Cao, X.; Zou, K. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene. ACS Appl. Mater. Interfaces 2018, 10, 8214–8224. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Y.; Sun, J.; Wang, Y.; Qian, L.; Kim, S.H.; Chen, L. Inverse Relationship between Thickness and Wear of Fluorinated Graphene: “Thinner Is Better”. Nano Lett. 2022, 22, 6018–6025. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, T.; Lei, F.; Yang, M.; Li, D.; Huang, X.; Sun, D. Graphite Fluoride and Fluorographene as a New Class of Solid Lubricant Additives for High-performance Polyamide 66 Composites with Excellent Mechanical and Tribological Properties. Polym. Int. 2020, 69, 457–466. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liang, H.; Liu, D.; Dong, C.; Song, H.; Huang, Y. High Mechanical and Tribological Performance of Polyimide Nanocomposite Reinforced by Fluorinated Graphene Oxide. Polym. Compos. 2020, 41, 1624–1635. [Google Scholar] [CrossRef]
- Liang, L.; Song, L.; Yang, Y.; Li, F.; Ma, Y. Tribological Properties of Polytetrafluoroethylene Improved by Incorporation of Fluorinated Graphene with Various Fluorine/Carbon Ratios Under Dry Sliding Condition. Tribol. Lett. 2021, 69, 21. [Google Scholar] [CrossRef]
- Li, P.; Li, T.; Yan, H. Mechanical, Tribological and Heat Resistant Properties of Fluorinated Multi-Walled Carbon Nanotube/Bismaleimide/Cyanate Resin Nanocomposites. J. Mater. Sci. Technol. 2017, 33, 1182–1186. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, E.; Zhong, H.; Wang, J.; Subedi, A.; Hu, K.; Hu, X. Characterization and Tribological Performances of Graphene and Fluorinated Graphene Particles in PAO. Nanomaterials 2021, 11, 2126. [Google Scholar] [CrossRef] [PubMed]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ci, X.; Zhao, W.; Luo, J.; Wu, Y.; Ge, T.; Xue, Q.; Gao, X.; Fang, Z. How the Fluorographene Replaced Graphene as Nanoadditive for Improving Tribological Performances of GTL-8 Based Lubricant Oil. Friction 2021, 9, 488–501. [Google Scholar] [CrossRef]
- Ye, X.; Ma, L.; Yang, Z.; Wang, J.; Wang, H.; Yang, S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Xue, Q. Fluorine and Sulfur Co-Doped Amorphous Carbon Films to Achieve Ultra-Low Friction under High Vacuum. Carbon 2016, 96, 411–420. [Google Scholar] [CrossRef]
- Qiang, L.; Zhang, B.; Gao, K.; Gong, Z.; Zhang, J. Hydrophobic, Mechanical, and Tribological Properties of Fluorine Incorporated Hydrogenated Fullerene-like Carbon Films. Friction 2013, 1, 350–358. [Google Scholar] [CrossRef]
- Salpekar, D.; Serles, P.; Colas, G.; Ma, L.; Yadav, S.; Hamidinejad, M.; Khabashesku, V.N.; Gao, G.; Swaminathan, V.; Vajtai, R.; et al. Multifunctional Applications Enabled by Fluorination of Hexagonal Boron Nitride. Small 2024, 2311836. [Google Scholar] [CrossRef]
- Sun, J.; Du, S. Application of Graphene Derivatives and Their Nanocomposites in Tribology and Lubrication: A Review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Yi, S.; Ge, X.; Chen, X.; Luo, J. Enhancement of Friction Performance of Fluorinated Graphene and Molybdenum Disulfide Coating by Microdimple Arrays. Carbon 2020, 167, 122–131. [Google Scholar] [CrossRef]
- Savjani, N.; Mercadillo, V.O.; Hodgeman, D.; Paterakis, G.; Deng, Y.; Vallés, C.; Anagnostopoulos, G.; Galiotis, C.; Bissett, M.A.; Kinloch, I.A. Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switches. ACS Appl. Nano Mater. 2023, 6, 8202–8213. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, R.L.; Sliney, H.E. Lubricating Characteristics of Polyimide Bonded Graphite Fluoride and Polyimide Thin Films. E Trans. 1973, 16, 189–196. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wang, J.; Yang, W.; Guo, P.; Li, M.; Liu, D.; Zeng, H.; Zhao, B. First-Principles Study on the Nanofriction Properties of Diamane: The Thinnest Diamond Film. Nanomaterials 2022, 12, 2939. [Google Scholar] [CrossRef] [PubMed]
- Bakharev, P.V.; Huang, M.; Saxena, M.; Lee, S.W.; Joo, S.H.; Park, S.O.; Dong, J.; Camacho-Mojica, D.C.; Jin, S.; Kwon, Y.; et al. Chemically Induced Transformation of Chemical Vapour Deposition Grown Bilayer Graphene into Fluorinated Single-Layer Diamond. Nat. Nanotechnol. 2020, 15, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Mattern, D.; Brunn, H. Toxicology of perfluorinated compounds. Environ. Sci. Eur. 2011, 23, 38. [Google Scholar] [CrossRef]
- Teo, W.Z.; Chua, C.K.; Sofer, Z.; Pumera, M. Fluorinated Nanocarbons Cytotoxicity. Chem.—Eur. J. 2015, 21, 13020–13026. [Google Scholar] [CrossRef] [PubMed]
Notation | Temperature (°C) or Method | F/C Range | Reference |
---|---|---|---|
(CF)n | 600–650 | 1 | [13,14,15,16] |
(C2F)n | 390–450 | 0.5 | [15] |
RTGF | RT followed by post-fluorination | 0.4–0.9 | [16,17] |
Graphite fluoride | Mechanochemistry with polyethylene | 0.5–0.6 | [18] |
Fluorinated Graphene | RT or exfoliation of (CF)n | 0.05–1.0 | [10,19] |
F-Diamane | Exfoliation | 0.5 | [20] |
Carbon nanofibers | 380–490 | 0.08–1.0 | [21] |
Graphitized carbon blacks | 340–480 | 0.08–0.89 | [22] |
Carbon Nanodiscs | 280–450 | 0.17–0.90 | [23] |
F-Graphene | Activation of dormant radicals | Very low | [24] |
F-Graphene | Microwave-assisted liquid-phase | 0.51 | [25] |
F-Graphene | Ionothermal synthesis | Supposed to be 1 | [26] |
F-Graphene | Hydrothermal reaction with hydrofluoric and nitric acids | 0.04–0.22 | [27] |
F-Graphene | Ultrasonicating fluorinated graphite in hydrazine hydrate | [28] | |
F-Graphene | Exfoliation | 0.62 | [29] |
F-Graphene | Mechanochemistry with ammonia carbonate | [30] | |
Graphite fluoride-PTFE | Defluorination through gamma radiation | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, G.; Nomède-Martyr, N.; Bilas, P.; Guérin, K.; Thomas, P.; Delbé, K.; Dubois, M. Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C 2025, 11, 6. https://doi.org/10.3390/c11010006
Haddad G, Nomède-Martyr N, Bilas P, Guérin K, Thomas P, Delbé K, Dubois M. Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C. 2025; 11(1):6. https://doi.org/10.3390/c11010006
Chicago/Turabian StyleHaddad, Guillaume, Nadiège Nomède-Martyr, Philippe Bilas, Katia Guérin, Philippe Thomas, Karl Delbé, and Marc Dubois. 2025. "Fluorination to Enhance the Tribological Properties of Carbonaceous Materials" C 11, no. 1: 6. https://doi.org/10.3390/c11010006
APA StyleHaddad, G., Nomède-Martyr, N., Bilas, P., Guérin, K., Thomas, P., Delbé, K., & Dubois, M. (2025). Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C, 11(1), 6. https://doi.org/10.3390/c11010006