MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations
Abstract
:1. Introduction
2. Epidemiology
Classification, Prognosis and Features of NEN Disease
3. The role of MiRNA in Neuroendocrine Neoplasms
3.1. Gastric NENs
3.2. Small Intestine NENs
3.3. Pancreas NENs
3.4. Lung NENs
4. MiRNA Expression in NENs of Different Localizations: Specificity and Commonality
5. MiRNA as Biomarkers of Neuroendocrine Tumors
5.1. Small Intestine NENs
5.2. Gastric NENs
5.3. Pancreas NENs
5.4. Lung NENs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tamagno, G.; Bennett, A.; Ivanovski, I. Lights and darks of neuroendocrine tumors of the appendix. Minerva Endocrinol. 2021, 45, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Hendifar, A.E.; Marchevsky, A.M.; Tuli, R. Neuroendocrine Tumors of the Lung: Current Challenges and Advances in the Diagnosis and Management of Well-Differentiated Disease. J. Thorac. Oncol. 2017, 12, 425–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. WHO Classification of Tumours of Endocrine Organs; IARC: Lyon, France, 2017. [Google Scholar]
- Bocchini, M.; Nicolini, F.; Severi, S.; Bongiovanni, A.; Ibrahim, T.; Simonetti, G.; Grassi, I.; Mazza, M. Biomarkers for Pancreatic Neuroendocrine Neoplasms (PanNENs) Management—An Updated Review. Front. Oncol. 2020, 10, 831. [Google Scholar] [CrossRef]
- Krell, J.; Stebbing, J.; Carissimi, C.; Dabrowska, A.F.; de Giorgio, A.; Frampton, A.E.; Harding, V.; Fulci, V.; Macino, G.; Colombo, T.; et al. TP53 regulates miRNA association with AGO2 to remodel the miRNA–mRNA interaction network. Genome Res. 2015, 26, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, H.C.; Frampton, A.E.; Malczewska, A.; Ottaviani, S.; Stronach, E.A.; Flora, R.; Kaemmerer, D.; Schwach, G.; Pfragner, R.; Faiz, O.; et al. MicroRNAs associated with small bowel neuroendocrine tumours and their metastases. Endocr. Relat. Cancer 2016, 23, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Moris, D.; Ntanasis-Stathopoulos, I.; Tsilimigras, D.I.; Adam, M.A.; Yang, C.J.; Harpole, D.; Theocharis, S. Insights into Novel Prognostic and Possible Predictive Biomarkers of Lung Neuroendocrine Tumors. Cancer Genom. Proteom. 2018, 15, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Zatelli, M.C.; Grossrubatscher, E.M.; Guadagno, E.; Sciammarella, C.; Faggiano, A.; Colao, A. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocrine-Related Cancer 2017, 24, R223–R237. [Google Scholar] [CrossRef]
- Malczewska, A.; Kidd, M.; Matar, S.; Kos-Kudla, B.; Modlin, I.M. A Comprehensive Assessment of the Role of miRNAs as Biomarkers in Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 2018, 107, 73–90. [Google Scholar] [CrossRef]
- Butz, H.; Patócs, A. MicroRNAs in endocrine tumors. EJIFCC 2019, 30, 146–164. [Google Scholar]
- Approved by the Cancer.Net Editorial Board. Available online: https://www.cancer.net/cancer-types/neuroendocrine-tumors/statistics (accessed on 1 February 2021).
- Gorbunova, V.A. Neuroendocrine tumors: Current changes in classification, diagnosis and therapy presented in the draft clinical guidelines of the Ministry of Health of the Russian Federation in 2019. Farmateka 2019, 12, 66–73. (In Russian) [Google Scholar] [CrossRef]
- Yao, J.C.; Hassan, M.M.; Phan, A.T.; Dagohoy, C.G.; Leary, C.C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One Hundred Years After “Carcinoid”: Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [Green Version]
- Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; De Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; et al. A common classification framework for neuroendocrine neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 2018, 31, 1770–1786. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Zhang, C.; Shi, Y.; Liu, J.; Liu, Q.; Yu, L.; Wang, M.; Zou, G.; Lou, J.; et al. [Subtype classification and clinicopathological characteristics of gastric neuroendocrine neoplasms: An analysis of 241 cases]. Zhonghua Wei Chang. Wai Ke Za Zhi 2016, 19, 1241–1246. (In Chinese) [Google Scholar] [PubMed]
- Peregorodiev, I.N.; Vinokurova, S.V.; Bohyan, V.Y.; Delektorskaya, V.V.; Malikhova, O.A.; Gorbunova, V.A.; Sakibov, B.I.; Elkin, D.S.; Stilidi, I.S. Role of microRNAs in neuroendocrine neoplasms of the stomach. Adv. Mol. Oncol. 2020, 7, 19–26. [Google Scholar] [CrossRef]
- Dou, D.; Shi, Y.-F.; Liu, Q.; Luo, J.; Liu, J.-X.; Liu, M.; Liu, Y.-Y.; Li, Y.-L.; Qiu, X.-D.; Tan, H.-Y. Hsa-miR-202-3p, up-regulated in type 1 gastric neuroendocrine neoplasms, may targetDUSP1. World J. Gastroenterol. 2018, 24, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, E.; Galleggiante, V.; Coletta, S.; Stasi, E.; Chieppa, M.; Armentano, R.; Serino, G. Altered miRNAs Expression Correlates With Gastroenteropancreatic Neuroendocrine Tumors Grades. Front. Oncol. 2020, 10, 1187. [Google Scholar] [CrossRef]
- Frilling, A.; Modlin, I.M.; Kidd, M.; Russell, C.; Breitenstein, S.; Salem, R.; Kwekkeboom, D.; Lau, W.-Y.; Klersy, C.; Vilgrain, V.; et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014, 15, e8–e21. [Google Scholar] [CrossRef]
- Wong, J.J.M.; Ginter, P.S.; Tyryshkin, K.; Yang, X.; Nanayakkara, J.; Zhou, Z.; Tuschl, T.; Chen, Y.-T.; Renwick, N. Classifying Lung Neuroendocrine Neoplasms through MicroRNA Sequence Data Mining. Cancers 2020, 12, 2653. [Google Scholar] [CrossRef]
- Nanayakkara, J.; Tyryshkin, K.; Yang, X.; Wong, J.J.M.; Vanderbeck, K.; Ginter, P.S.; Scognamiglio, T.; Chen, Y.-T.; Panarelli, N.; Cheung, N.-K.; et al. Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and data mining. NAR Cancer 2020, 2, zcaa009. [Google Scholar] [CrossRef]
- Akoto, T.; Bhagirath, D.; Saini, S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. Cancer Drug Resist. 2020, 3, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, Y.; Rehammar, A.; Bergström, A.; Andersson, E.; Altiparmak, G.; Swärd, C.; Wängberg, B.; Kristiansson, E.; Nilsson, O. miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival. Mod. Pathol. 2018, 31, 1302–1317. [Google Scholar] [CrossRef]
- Panarelli, N.; Tyryshkin, K.; Wong, J.; Majewski, A.; Yang, X.; Scognamiglio, T.; Kim, M.K.; Bogardus, K.; Tuschl, T.; Chen, Y.-T.; et al. Evaluating gastroenteropancreatic neuroendocrine tumors through microRNA sequencing. Endocr. Relat. Cancer 2019, 26, 47–57. [Google Scholar] [CrossRef]
- Kidd, M.; Modlin, I.M.; Pfragner, R.; Eick, G.N.; Champaneria, M.C.; Chan, A.K.; Camp, R.L.; Mane, S.M. Small bowel carcinoid (enterochromaffin cell) neoplasia exhibits transforming growth factor–β1-mediated regulatory abnormalities including up-regulation of C-Myc and MTA1. Cancer 2007, 109, 2420–2431. [Google Scholar] [CrossRef] [PubMed]
- Ruebel, K.; Leontovich, A.A.; Stilling, G.A.; Zhang, S.; Righi, A.; Jin, L.; Lloyd, R.V. MicroRNA expression in ileal carcinoid tumors: Downregulation of microRNA-133a with tumor progression. Mod. Pathol. 2009, 23, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, H.; Kim, H.W.; Lee, J.-C.; Paik, K.-H.; Kang, J.; Kim, J.; Yoon, Y.-S.; Han, H.-S.; Sohn, I.; et al. High Expression of MicroRNA-196a Indicates Poor Prognosis in Resected Pancreatic Neuroendocrine Tumor. Medicine 2015, 94, e2224. [Google Scholar] [CrossRef]
- Knudsen, L.; Petersen, N.; Schwartz, T.W.; Egerod, K.L. The MicroRNA Repertoire in Enteroendocrine Cells: Identification of miR-375 as a Potential Regulator of the Enteroendocrine Lineage. Endocrinology 2015, 156, 3971–3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, M.; Zhou, C.W.; Zhang, S.; Brais, L.; Rossi, A.; Naudin, L.; Thiagalingam, A.; Sicinska, E.; Kulke, M.H. Profiling of metastatic small intestine neuroendocrine tumors reveals characteristic miRNAs detectable in plasma. Oncotarget 2017, 8, 54331–54344. [Google Scholar] [CrossRef]
- Mandal, R.; Hardin, H.; Baus, R.; Rehrauer, W.; Lloyd, R.V. Analysis of miR-96 and miR-133a Expression in Gastrointestinal Neuroendocrine Neoplasms. Endocr. Pathol. 2017, 28, 345–350. [Google Scholar] [CrossRef]
- Lloyd, K.; Moore, A.R.; Parsons, B.; O’Hara, A.; Boyce, M.; Dockray, G.J.; Varro, A.; Pritchard, D.M. Gastrin-induced miR-222 promotes gastric tumor development by suppressing p27kip1. Oncotarget 2016, 7, 45462–45478. [Google Scholar] [CrossRef] [Green Version]
- Thorns, C.; Schurmann, C.; Gebauer, N.; Wallaschofski, H.; Kümpers, C.; Bernard, V.; Feller, A.C.; Keck, T.; Habermann, J.K.; Begum, N.; et al. Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 2014, 34, 2249–2254. [Google Scholar] [PubMed]
- Li, S.-C.; Essaghir, A.; Martijn, C.; Lloyd, R.V.; Demoulin, J.-B.; Öberg, K.; Giandomenico, V. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol. 2013, 26, 685–696. [Google Scholar] [CrossRef]
- Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.-G.; Scarpa, A.; et al. MicroRNA Expression Abnormalities in Pancreatic Endocrine and Acinar Tumors Are Associated with Distinctive Pathologic Features and Clinical Behavior. J. Clin. Oncol. 2006, 24, 4677–4684. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Kim, E.; Chua, T.C.; Clifton-Bligh, R.J.; Nahm, C.B.; Mittal, A.; Gill, A.J.; Samra, J.S. MiRNA-3653 Is a Potential Tissue Biomarker for Increased Metastatic Risk in Pancreatic Neuroendocrine Tumours. Endocr. Pathol. 2019, 30, 128–133. [Google Scholar] [CrossRef]
- Michael, I.P.; Saghafinia, S.; Hanahan, D. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis. Proc. Natl. Acad. Sci. USA 2019, 116, 24184–24195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Na, H.; Hua, X.; Wei, Y.; Ye, T.; Zhang, Y.; Jian, G.; Zeng, W.; Yan, L.; Tang, Q. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition. Oncotarget 2017, 8, 6929–6939. [Google Scholar] [CrossRef] [Green Version]
- Detassis, S.; Del Vescovo, V.; Grasso, M.; Masella, S.; Cantaloni, C.; Cima, L.; Cavazza, A.; Graziano, P.; Rossi, G.; Barbareschi, M.; et al. miR375-3p Distinguishes Low-Grade Neuroendocrine From Non-neuroendocrine Lung Tumors in FFPE Samples. Front. Mol. Biosci. 2020, 7. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, E.H.; Ha, S.Y.; Lee, C.H.; Chang, H.K.; Chang, S.; Kwon, K.Y.; Hwang, I.; Roh, M.S.; Seo, J.W. Altered expression of microRNA miR-21, miR-155, and let-7a and their roles in pulmonary neuroendocrine tumors. Pathol. Int. 2012, 62, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demes, M.; Aszyk, C.; Bartsch, H.; Schirren, J.; Fisseler-Eckhoff, A. Differential miRNA-Expression as an Adjunctive Diagnostic Tool in Neuroendocrine Tumors of the Lung. Cancers 2016, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, A.R.; Cherba, D.; Sridhar, S.; Richardson, P.; Webb, C.; Paripati, A.; Bowles, B.; Weiss, G.J. MicroRNA 92a-2*: A Biomarker Predictive for Chemoresistance and Prognostic for Survival in Patients with Small Cell Lung Cancer. J. Thorac. Oncol. 2010, 5, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Song, Y.; Bi, N.; Shen, J.; Liu, W.; Fan, J.; Sun, G.; Tong, T.; He, J.; Shi, Y.; et al. DNA Methylation-Mediated Repression of miR-886-3p Predicts Poor Outcome of Human Small Cell Lung Cancer. Cancer Res. 2013, 73, 3326–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wu, X.; Huang, J.; Peng, J.; Guo, L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int. J. Exp. Pathol. 2015, 96, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Bovio, E.; Rena, O.; Rrapaj, E.; Mercalli, F.; Veggiani, C.; Paganotti, A.; Andorno, S.; Boldorini, R. Prognostic impact of a 3-MicroRNA signature in cytological samples of small cell lung cancer. Cancer Cytopathol. 2016, 124, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairinger, F.; Ting, S.; Werner, R.; Walter, R.; Hager, T.; Vollbrecht, C.; Christoph, D.C.; Worm, K.; Mairinger, T.; Sheu-Grabellus, S.-Y.; et al. Different micro-RNA expression profiles distinguish subtypes of neuroendocrine tumors of the lung: Results of a profiling study. Mod. Pathol. 2014, 27, 1632–1640. [Google Scholar] [CrossRef]
- Deng, B.; Molina, J.; Aubry, M.C.; Sun, Z.; Wang, L.; Eckloff, B.W.; Vasmatzis, G.; You, M.; Wieben, E.D.; Jen, J.; et al. Clinical biomarkers of pulmonary carcinoid tumors in never smokers via profiling miRNA and target mRNA. Cell Biosci. 2014, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Yu, J.; Han, T.S.; Park, S.-Y.; Namkoong, B.; Kim, D.H.; Hur, K.; Yoo, M.-W.; Lee, H.-J.; Yang, H.-K.; et al. Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009, 37, 1672–1681. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Chu, W.; Xia, L.; Meng, T.; Liu, L.; Liu, Y. Roles of miR-186 and PTTG1 in colorectal neuroendocrine tumors. Int. J. Clin. Exp. Med. 2015, 8, 22149–22157. [Google Scholar]
- Rapa, I.; Votta, A.; Felice, B.; Righi, L.; Giorcelli, J.; Scarpa, A.; Speel, E.-J.M.; Scagliotti, G.V.; Papotti, M.; Volante, M. Identification of MicroRNAs Differentially Expressed in Lung Carcinoid Subtypes and Progression. Neuroendocrinology 2015, 101, 246–255. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Santarpia, L.; Calin, G.; Adam, L.; Ye, L.; Fusco, A.; Giunti, S.; Thaller, C.; Paladini, L.; Zhang, X.; Jimenez, C.; et al. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr. Relat. Cancer 2013, 20, 809–823. [Google Scholar] [CrossRef] [Green Version]
- Latreille, M.; Herrmanns, K.; Renwick, N.; Tuschl, T.; Malecki, M.T.; McCarthy, M.I.; Owen, K.R.; Rulicke, T.; Stoffel, M. MiR-375 gene dosage in pancreatic beta-cells: Implications for regulation of beta-cell mass and biomarker development. J. Mol. Med. 2015, 93, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Le Sage, C.; Nagel, R.; Egan, D.A.; Schrier, M.; Mesman, E.; Mangiola, A.; Anile, C.; Maira, G.; Mercatelli, N.; Ciafre’, S.A.; et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007, 26, 3699–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, M.; Quintavalle, C.; Romano, G.; Croce, C.M.; Condorelli, G. miR221/222 in cancer: Their role in tumor progression and response to therapy. Curr. Mol. Med. 2012, 12, 27–33. [Google Scholar] [CrossRef]
- Chun-Zhi, Z.; Lei, H.; An-Ling, Z.; Yan-Chao, F.; Xiao, Y.; Guang-Xiu, W.; Zhi-Fan, J.; Pei-Yu, P.; Qing-Yu, Z.; Chun-Sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010, 10, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gan, B.; Liu, D.; Paik, J.-H. FoxO family members in cancer. Cancer Biol. Ther. 2011, 12, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yekta, S.; Shih, I.H.; Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304, 594–596. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Tang, J.; Zhuang, X.; Zhuang, Y.; Cheng, W.; Chen, W.; Yao, H.; Zhang, S. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS ONE 2014, 9, e87897. [Google Scholar] [CrossRef] [PubMed]
- Bi, N.; Cao, J.; Song, Y.; Shen, J.; Liu, W.; Fan, J.; He, J.; Shi, Y.; Zhang, X.; Lu, N.; et al. A MicroRNA Signature Predicts Survival in Early Stage Small-Cell Lung Cancer Treated with Surgery and Adjuvant Chemotherapy. PLoS ONE 2014, 9, e91388. [Google Scholar] [CrossRef]
- Starzyńska, T.; Karczmarski, J.; Paziewska, A.; Kulecka, M.; Kuśnierz, K.; Żeber-Lubecka, N.; Ambrożkiewicz, F.; Mikula, M.; Kos-Kudła, B.; Ostrowski, J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int. J. Mol. Sci. 2020, 21, 4470. [Google Scholar] [CrossRef]
- Capdevila, J.; Meeker, A.; García-Carbonero, R.; Pietras, K.; Astudillo, A.; Casanovas, O.; Scarpa, A. Molecular biology of neuroendocrine tumors: From pathways to biomarkers and targets. Cancer Metastasis Rev. 2013, 33, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, A.; Kidd, M.; Matar, S.; Kos-Kudła, B.; Bodei, L.; Oberg, K.; Modlin, I.M. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology 2020, 110, 198–216. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Majid, S.; Rehman, M.U. Scenario and future prospects of microRNAs in gastric cancer: A review. Iran. J. Basic Med. Sci. 2019, 22, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Özdirik, B.; Stueven, A.K.; Mohr, R.; Geisler, L.; Wree, A.; Knorr, J.; Demir, M.; Vucur, M.; Loosen, S.H.; Benz, F.; et al. Analysis of miR-29 Serum Levels in Patients with Neuroendocrine Tumors—Results from an Exploratory Study. J. Clin. Med. 2020, 9, 2881. [Google Scholar] [CrossRef] [PubMed]
- Klieser, E.; Mayr, C.; Kiesslich, T.; Wissniowski, T.; Di Fazio, P.; Neureiter, D.; Ocker, M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int. J. Mol. Sci. 2019, 20, 5266. [Google Scholar] [CrossRef] [Green Version]
- Heverhagen, A.E.; Legrand, N.; Wagner, V.; Fendrich, V.; Bartsch, D.K.; Slater, E.P. Overexpression of MicroRNA miR-7-5p Is a Potential Biomarker in Neuroendocrine Neoplasms of the Small Intestine. Neuroendocrinology 2018, 106, 312–317. [Google Scholar] [CrossRef]
- Jiang, X.; Shan, A.; Su, Y.; Cheng, Y.; Gu, W.; Wang, W.; Ning, G.; Cao, Y. miR-144/451 Promote Cell Proliferation via Targeting PTEN/AKT Pathway in Insulinomas. Endocrinology 2015, 156, 2429–2439. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Voortman, J.; Dingemans, A.-M.C.; Voeller, D.M.; Pham, T.; Wang, Y.; Giaccone, G. MicroRNA Expression and Clinical Outcome of Small Cell Lung Cancer. PLoS ONE 2011, 6, e21300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Localization of NEN | Increased Expression | Decreased Expression | Citation |
---|---|---|---|
Small intestine | miRNA-375 | [24] | |
miRNA-375 miRNA-21 miRNA-143 | [25] | ||
miRNA-204-5p miRNA-7-5p | miRNA-1 miRNA-143 | [6] | |
miRNA-186 | [26] | ||
miRNA-133a | [27] | ||
miRNA-182 miRNA-196a miRNA-200a | miRNA-31 miRNA-129-5p miRNA-133a | [28] | |
miRNA-21 miRNA-1290 | miRNA-137 miRNA-204-5p miRNA-486-5p miRNA-30c | [24] | |
miRNA-95 miRNA-210 | miRNA-378a-3p | [29] | |
miRNA-150-5p | [30] | ||
miRNA-885-5p | [28] | ||
miRNA-7-5p miRNA-182 miRNA-183 miRNA-96-5p | miRNA-129-5p miRNA-133a | [10] | |
Gastric | miRNA-10b-5p miRNA-130b-3p miRNA-192-5p miRNA-194-5p miRNA-210-3p miRNA-214-3p miRNA-7-5p miRNA-96-5p | [19] | |
miRNA-96 miRNA-133 | [31] | ||
miRNA-222 miRNA-202 | [32] | ||
Pancreas | miRNA-19b miRNA-146b | miRNA-720 | [33] |
miRNA-103 miRNA-107 miRNA-1290 miRNA-144/451 miRNA-21 | miRNA-155 | [9,10,34] | |
miRNA-21 miRNA-375 miRNA-204 miRNA-103 | miRNA-155 | [35] | |
miRNA-196a | [8,28] | ||
miRNA-3653 | miRNA-4417 miRNA-574-3p miRNA-664b-3p | [36] | |
miRNA-23b miRNA-137 | [37] | ||
miRNA-224 * | [38] | ||
Lungs | miRNA-18a miRNA-155 miRNA-375 miRNA-21 miRNA-143 miRNA 141 let-7a let-7f miRNA-30d miRNA-148a | [21,39,40] | |
miRNA-150 miRNA-886-3p | [38] | ||
miRNA-92a2 miRNA-7 | miRNA-150 miRNA-886-3p | [8,10] | |
miRNA-34a miRNA-21 | [41] | ||
miRNA-92a-2 miRNA-147 miRNA-574-5p | [42] | ||
miRNA-150 miRNA-886-3p | [43] | ||
miRNA-7 | [44] | ||
miRNA-192 miRNA-200c miRNA-205 | [45] | ||
miRNA-409-3p miRNA-409-5p miRNA-431-5p | [8,10] | ||
let-7d miRNA-19 miRNA-576-5p miRNA-340 miRNA-1286 | [46] | ||
miRNA-129 miRNA-323-3p miRNA-487b miRNA-410 miRNA-369-3p miRNA-376a miRNA-432 miRNA-129-3p miRNA-409-3p miRNA-494 miRNA-376a: 9-1 miRNA-136 miRNA-370 miRNA-127-3p miRNA-154 miRNA-376a | miRNA-203 miRNA-224 miRNA-155 miRNA-302d miRNA-34b miRNA-181b miRNA-193a-5p miRNA-34b miRNA-222 miRNA-30a-3p miRNA-938 miRNA-218 miRNA-511 miRNA-34c-3p miRNA-10a miRNA-146a miRNA-1 | [47] |
miRNA | Characteristic miRNA as Candidates for NEN Markers | Methods | Citation |
---|---|---|---|
NENs of different anatomical sites | |||
miRNA-375, miRNA-7 | Increased expression levels in tumor tissue compared to control | MiRNA sequencing and data mining | [22] |
Intestines | |||
miRNA-375 | Increased expression in tumor biopsies compared to normal mucosa (p = 1.0 × 10−19). Can be considered as a prognostic marker. Highly expressed patients with liver metastases had significantly better survival (p = 0.016) | qRT- PCR | [24] |
miRNA-1, miRNA-143 | Decreased expression associated with tumor progression (p < 0.05, p < 0.001) | qRT-PCR | [6] |
miRNA-31, miRNA-129-5p, miRNA-133a, miRNA-215 | Decreased expression is associated with tumor progression (p < 0.05) | qRT-PCR | [34] |
miRNA-96, miRNA-182, miRNA-183, miRNA-196a miRNA-200a | Increased expression associated with tumor progression (p < 0.05) | qRT-PCR | [34] |
miRNA-21-5p miRNA-22-3p | Increased expression is associated with metastases (p < 0.0001) and decreased survival (OR = 0.47, 95% CI 0.27–0.82) | miRNA sequencing | [30] |
miRNA-150-5p | Decreased expression is associated with the appearance of metastases (p = 0.027) | miRNA sequencing | [30] |
miRNA-7-5p | Increased expression in tumor biopsies compared to normal mucosa (p = 4.2 × 10−19) | Chip hybridization | [24] |
miRNA-615, miRNA-92b | Increased midgut expression compared to non-midgut samples (p < 0.01) | miRNA sequencing and qRT-PCR | [25] |
miRNA125b, miRNA-192, miRNA-149 | Expression is significantly lower in iliac than in appendicular NENs (p < 0.01) | miRNA sequencing and qRT-PCR | [25] |
miRNA-186 | Expression decreased in tumor (p < 0.05) | RT-PCR | [26] |
Gastrointestinal tract | |||
miRNA-96 | Increased expression in liver metastases compared with primary NENs (p < 0.05) | qRT-PCR | [31] |
miRNA-133a | Decreased expression in liver metastases compared with primary NENs (p < 0.05) | qRT-PCR | [31] |
miRNA-375 | Increased expression in all samples | miRNA sequencing and qRT-PCR | [25] |
miRNA-202-3p | Expression increased in tumor tissue compared to normal tissue (p = 0.014) | RT-PCR | [18] |
miRNA-429 | Expression is significantly higher in rectal NENs compared to pancreatic ones (p < 0.01) | miRNA sequencing and qRT-PCR | [25] |
miRNA-96-5p | Increased expression from G1 to G3 (p < 0.05) | RT-PCR | [19] |
Pancreas | |||
miRNA449a | Important role in proliferation and may be a potential predictor of poor survival | Microarrays | [66] |
miRNA-196a | Increased expression is associated with decreased overall survival (p = 0.046). High expression indicates poor prognosis after pancreatic NEN resection. Recurrence HR = 16.26 | Nanostring nCounter Analysis and qRT-PCR | [28] |
miRNA-137 | Reduces survival, leading to increased tumor growth | RNA sequencing | [37] |
miRNA-224 | Increased expression increases apoptosis and decreases proliferation (p < 0.05) | RT-PCR | [38] |
miRNA-23b | Increased expression during metastasing | RNA sequencing | [37] |
miRNA-3653 | Increased expression associated with risk of metastasis (p < 0.05) | MiRNA microarray | [36] |
miRNA-193b | An increase in expression with NENs was found not only in tissue but also in serum (p < 0.05) | RT-PCR | [33] |
Lungs | |||
miRNA-92a-2 | Increased expression is associated with chemoresistance (p = 0.010) and decreased survival (p = 0.007) | RT-PCR | [42] |
miRNA-147 | Increased expression associated with chemoresistance (p = 0.018) | RT-PCR | [42] |
miRNA-574-5p | Increased expression associated with chemoresistance (p = 0.039) | RT-PCR | [42] |
let-7d, miRNA-19, miRNA576-5p, miRNA-340 * miRNA-1286 | High expression levels are associated with survival (p < 0.05) | Q-PCR | [46] |
miRNA-21 | An increase in the level of expression correlated with an increase in the grade of malignancy (p = 0.00033). | Q-PCR | [41] |
miRNA-34a | High expression levels associated with atypical carcinoids (p = 0.010) | Q-PCR | [41] |
miRNA-18a miRNA -155 | Increased expression allows low-grade carcinoids to be distinguished from high-grade carcinoids with a high degree of accuracy (>90%). Diagnostic marker | Sequencing | [21] |
miRNA-17, miRNA-103, miRNA-127 | Candidate markers for distinguishing between typical and atypical carcinoids. Accuracy 93% | Sequencing | [21] |
miRNA-301a, miRNA-106b miRNA-25 | Candidate markers for distinguishing small cell lung carcinoma and large cell neuroendocrine carcinoma. Accuracy 100% | Sequencing | [21] |
miRNA-375-3p | Distinguishes low-grade neuroendocrine lung tumors from non-neuroendocrine lung tumors with 92.6% of sensitivity and 90.4% of specificity | qRT-PCR | [39] |
miRNA-21, miRNA-155 | Increased expression in high-grade tumors compared to carcinoid tumors (each p < 0.001). The expression level of miR-21 in carcinoid tumors with metastases to lymph nodes is higher than in carcinoid tumors without metastases to lymph nodes (p = 0.010) | qRT-PCR | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaeva, A.; Mansorunov, D.; Apanovich, N.; Kuzevanova, A.; Karpukhin, A. MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations. Non-Coding RNA 2021, 7, 38. https://doi.org/10.3390/ncrna7030038
Korotaeva A, Mansorunov D, Apanovich N, Kuzevanova A, Karpukhin A. MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations. Non-Coding RNA. 2021; 7(3):38. https://doi.org/10.3390/ncrna7030038
Chicago/Turabian StyleKorotaeva, Alexandra, Danzan Mansorunov, Natalya Apanovich, Anna Kuzevanova, and Alexander Karpukhin. 2021. "MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations" Non-Coding RNA 7, no. 3: 38. https://doi.org/10.3390/ncrna7030038
APA StyleKorotaeva, A., Mansorunov, D., Apanovich, N., Kuzevanova, A., & Karpukhin, A. (2021). MiRNA Expression in Neuroendocrine Neoplasms of Frequent Localizations. Non-Coding RNA, 7(3), 38. https://doi.org/10.3390/ncrna7030038