miRNA and Its Implications in the Treatment Resistance in Breast Cancer—Narrative Review of What Do We Know So Far
Abstract
1. Introduction
2. Breast Cancer and miRNA
2.1. miRNA Dysregulation in Breast Cancer, Functional Pathways and Mechanisms
2.1.1. Diagnostic and Prognostic Relevance of miRNA Dysregulation
2.1.2. Functional Pathways Influenced by Dysregulated miRNAs
2.1.3. Non-Coding RNAs in the Regulation of Epithelial–Mesenchymal Transition in Breast Cancer
Overview of EMT in Breast Cancer
EMT-Suppressive miRNAs
EMT-Promoting miRNAs
lncRNAs as Master Regulators of EMT
Emerging lncRNAs and ceRNA Networks
Therapeutic Implications
2.2. miRNAs and Chemoresistance
2.3. miRNA and PD-L1/PD-1 Immune Checkpoint Inhibition
2.4. Radiotherapy and miRNAs
2.5. miRNAs in Her2neu-Enriched Breast Cancer
2.6. miRNAs and Hormonal Regulation in Breast Cancer
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Aromatase inhibitor |
| AKT | Protein kinase B |
| AUC | Area under the curve |
| BC | Breast cancer |
| BRCA1 | Breast cancer gene 1 |
| BLACAT1 | Bladder cancer–associated transcript 1 (lncRNA) |
| ceRNA | Competing endogenous RNA |
| circRNA | Circular RNA |
| CSC | Cancer stem cell |
| ct-miRNA | Circulating (tumor-derived) microRNA |
| DDR | DNA damage repair |
| EGFR (HER1) | Epidermal growth factor receptor |
| EMT | Epithelial-to-mesenchymal transition |
| EMT-TFs | EMT-inducing transcription factors |
| ER | Estrogen receptor |
| ER+ | Estrogen receptor–positive |
| ERα (ESR1) | Estrogen receptor alpha |
| ERBB2 (HER2) | Erb-B2 receptor tyrosine kinase 2 |
| FAK | Focal adhesion kinase |
| FN1 | Fibronectin 1 |
| FOXO | Forkhead box O transcription factors |
| GATA3 | GATA binding protein 3 |
| GO | Gene Ontology |
| H19 | H19 long non-coding RNA |
| HER2 (ERBB2) | Human epidermal growth factor receptor 2 |
| HIF-1 | Hypoxia-inducible factor-1 |
| HIF-2α | Hypoxia-inducible factor-2 alpha |
| HOTAIR | HOX transcript antisense RNA (lncRNA) |
| HR+ | Hormone receptor–positive |
| HRD | Homologous recombination deficiency |
| HRR | Homologous recombination repair |
| IBC | Inflammatory breast cancer |
| IGF1R | Insulin-like growth factor-1 receptor |
| IR | Ionizing radiation |
| JAK-STAT | Janus kinase/signal transducer and activator of transcription |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| lncRNA | Long non-coding RNA |
| MALAT1 | Metastasis-associated lung adenocarcinoma transcript 1 (lncRNA) |
| MAPK | Mitogen-activated protein kinase |
| miR- | MicroRNA prefix (e.g., miR-21, miR-200c) |
| miRNA | MicroRNA |
| mTOR | Mechanistic target of rapamycin |
| NAC | Neoadjuvant chemotherapy |
| ncRNA | Non-coding RNA |
| NEAT1 | Nuclear enriched abundant transcript 1 (lncRNA) |
| Notch | Notch signaling pathway |
| PARP | Poly(ADP-ribose) polymerase |
| PARP-1 | Poly(ADP-ribose) polymerase-1 |
| pCR | Pathologic complete response |
| PD-1 | Programmed cell death protein 1 |
| PD-L1 | Programmed death-ligand 1 |
| PDCD4 | Programmed cell death protein 4 |
| PI3K | Phosphoinositide 3-kinase |
| PI3K/AKT/mTOR | PI3K/AKT/mTOR signaling pathway |
| PPI | Protein–protein interaction |
| PR | Progesterone receptor |
| qRT-PCR | Quantitative real-time reverse-transcription PCR |
| RT | Radiotherapy |
| SERM | Selective estrogen receptor modulator |
| SERD | Selective estrogen receptor degrader |
| SHIP1 | Src homology 2–containing inositol 5′-phosphatase 1 |
| SNHG16 | Small nucleolar RNA host gene 16 (lncRNA) |
| SNAI1 (Snail) | Snail family transcriptional repressor 1 |
| SNAI2 (Slug) | Snail family transcriptional repressor 2 |
| SV | Stability value |
| TAM | Tamoxifen |
| TCR | T-cell receptor |
| TET1 | Ten-eleven translocation methylcytosine dioxygenase 1 |
| TGF-β | Transforming growth factor beta |
| TF | Transcription factor |
| TNBC | Triple-negative breast cancer |
| TNF | Tumor necrosis factor |
| TWIST1 | Twist family bHLH transcription factor 1 |
| VIM | Vimentin |
| Wnt/β-catenin | Wnt/β-catenin signaling pathway |
| ZEB1/2 | Zinc finger E-box binding homeobox 1/2 |
| HOXD10 | Homeobox D10 |
Appendix A
| microRNA | Primary Role | Key Targets/Pathways (Examples) | Clinical/Context Notes |
|---|---|---|---|
| let-7g | Tumor suppressor | RAS family, HMGA2 | Inhibits invasion/ metastasis |
| miR-1 | Tumor suppressor | Slug (SNAI2), MET | EMT restraint |
| miR-7 | Radiosensitizer/ tumor suppressor | EGFR/AKT, RAF/MEK | Increases radiosensitivity in TNBC |
| miR-9 | OncomiR | CDH1 (E-cadherin) | Promotes EMT/metastasis |
| miR-10b | OncomiR | HOXD10 → RHOC | Marker of metastatic potential |
| miR-16 | Housekeeping/variable | Multiple | Often down in BC; unstable as control |
| miR-18a | OncomiR | ER co-activators, chromatin remodeling | Endocrine resistance links |
| miR-21 | OncomiR/biomarker | PTEN, PDCD4, TGF-β | Exosomal marker; chemo-resistance |
| miR-22 | Tumor suppressor | ESR1 (ERα), co-regulators | Fulvestrant/hormonal escape biomarker |
| miR-26a-5p | Predictive marker | — | ↑ after 2 wks trastuzumab associates with pCR (HER2+) |
| miR-27a | Radiosensitizer/response marker | MAPK-related | RT and chemo response associations |
| miR-29b | Tumor suppressor | TET1–ZEB2 axis | EMT and metastasis suppression |
| miR-30a | Tumor suppressor | SOX4; Slug/SNAI2 | Blocks EMT, tight-junctions; anti-metastatic |
| miR-33a | Prognostic (RT) | — | Outcome correlation after RT in TNBC |
| miR-34a | Tumor suppressor/radiosensitizer | SNAI1/Snail, SNAI2/Slug | EMT & stemness control; RT sensitivity |
| miR-105 | OncomiR/biomarker | Tight-junction genes | Early relapse; metastatic signal |
| miR-122 | Context-dependent | PKM2, glycolysis | Metastasis/metabolism links |
| miR-125b-2 | Predictive | — | Better endocrine response (letrozole) |
| miR-126-5p | Predictive | — | AI-resistance association |
| miR-135b | Biomarker | — | Letrozole resistance |
| miR-138-5p | Tumor suppressor | PD-L1 | Immune modulation in TNBC |
| miR-140-3p/5p | Tumor suppressor | SOX2/ALDH1 (stemness) | Predictive for pCR |
| miR-148a-3p | Tumor suppressor | Angiogenesis-related | pCR biomarker (HER2+) |
| miR-155 | OncomiR/biomarker | SOCS1, SHIP1; TNF/PI3K | Detection/progression; PARP responsiveness; exosomal |
| miR-195-5p | Tumor suppressor | PD-L1 (indirect), cell cycle | Outcome links post-therapy |
| miR-199a | Tumor suppressor | mTOR, HIF-1α | pCR predictor (HER2+) |
| miR-200 family (-200a/b/c, -141, -429) | Tumor suppressors | ZEB1/2 → E-cadherin | Canonical EMT blockade |
| miR-205 | Tumor suppressor | ZEB1/2; invasion programs | Suppresses EMT and invasion in BC |
| miR-206 | Tumor suppressor/ endocrine resistance | ESR1 (ERα) | High levels → poor TAM response |
| miR-210 | Hypoxia-related oncomiR | HIF downstream targets | Radiosensitivity/ outcomes in TNBC |
| miR-221/222 | OncomiRs | CDKN1B/p27, TIMP3, NOTCH3 | EMT & migration; TAM resistance |
| miR-222-3p | Biomarker | — | Predicts trastuzumab efficacy & cardiotoxicity (HER2+) |
| miR-301a-3p | OncomiR | PI3K/AKT/mTOR; ESR1 (context) | Endocrine escape signaling |
| miR-320/320a | Context-dependent | β-catenin targets | Mixed tumor suppressor/oncomiR roles |
| miR-342-3p | Tumor suppressor | — | AI-resistance association |
| miR-3609 | Tumor suppressor | PD-L1 | Immune re-activation in TNBC (preclinical) |
| miR-361-3p | Biomarker | — | Plasma exosomal levels ↔ progression/prognosis |
| miR-369-3p | Predictive | — | Lower baseline → ↑ pCR with trastuzumab |
| miR-374a-5p | Predictive | — | pCR association; endocrine context too |
| miR-375 | Tumor suppressor | JAK2/STAT3; apoptotic genes | Promotes apoptosis; anti-metastatic |
| miR-383-5p | Tumor suppressor | PD-L1 | Immune modulation |
| miR-424-5p | Tumor suppressor | PD-L1; TGF-β signaling | Part of 424(322)/503 cluster; immune + resistance |
| miR-424(322)/503 cluster | Tumor suppressor | BCL2, IGF1R | Loss → chemo resistance; miR-503 ↑ with NAC |
| miR-497-5p | Tumor suppressor | PD-L1, IGF1R | Immune and growth control |
| miR-503 | Tumor suppressor/biomarker | BLACAT1, IGF1R | Endothelial exosomal; chemo-sensitivity |
| miR-574-3p | Biomarker | — | ↑ with NAC; linked to progression |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 96–123. [Google Scholar] [CrossRef]
- Iorio, M.V.; Croce, C.M. MicroRNA Dysregulation in Cancer: Diagnostics, Monitoring and Therapeutics. A comprehensive review. EMBO Mol. Med. 2012, 4, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Reddy, K.B. MicroRNA (miRNA) in Cancer. Cancer Cell Int. 2015, 15, 38. [Google Scholar] [CrossRef]
- Nakamura, S.; Kojima, Y.; Takeuchi, S. Causative genes of homologous recombination deficiency (HRD)-related breast cancer and specific strategies at present. Curr. Oncol. 2025, 32, 90. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.M.; McIntosh, S.A.; Savage, K.I. Homologous recombination deficiency in breast cancer: Implications for risk, cancer development, and therapy. Genes Chromosomes Cancer 2021, 60, 358–372. [Google Scholar] [CrossRef]
- Takahashi, R.U.; Miyazaki, H.; Ochiya, T. The Role of microRNAs in the Regulation of Cancer Stem Cells. Front. Genet. 2014, 4, 295. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The Impact of microRNAs on Protein Output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bushati, N.; Cohen, S.M. microRNA Functions. Annu. Rev. Cell Dev. Biol. 2007, 23, 175–205. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—MicroRNAs with a Role in Cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Krol, J.; Loedige, I.; Filipowicz, W. The Widespread Regulation of MicroRNA Biogenesis, Function and Decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and Molecular Characterization of the Claudin-Low Intrinsic Subtype of Breast Cancer. Breast Cancer Res. 2010, 12, R68. [Google Scholar] [CrossRef]
- Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.; Hu, X.; Su, F.; Lieberman, J.; et al. Let-7 Regulates Self-Renewal and Tumorigenicity of Breast Cancer Cells. Cell 2007, 131, 1109–1123. [Google Scholar] [CrossRef]
- Lou, W.; Liu, J.; Gao, Y.; Zhong, G.; Ding, B.; Xu, L.; Fan, W. MicroRNA Regulation of Liver Cancer Stem Cells. Am. J. Cancer Res. 2018, 8, 1126–1141. [Google Scholar] [PubMed]
- Radojicic, J.; Zaravinos, A.; Vrekoussis, T.; Kafousi, M.; Spandidos, D.A.; Stathopoulos, E.N. MicroRNA Expression Analysis in Triple-Negative (ER, PR and HER2/neu) Breast Cancer. Cell Cycle 2011, 10, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Iorio, M.V.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef]
- Thu, H.N.N.; Vy, H.T.N.; Thanh, T.N.N.; Giang, D.T.N.; Nhan, T.N.; Hoang, N.P.; Hue, T.N. miRNA-16 as an Internal Control in Breast Cancer Studies: A Systematic Review and Meta-Analysis. Mol. Biol. 2021, 55, 1045–1056. [Google Scholar] [CrossRef]
- Liu, X.; Chang, Q.; Wang, H.; Qian, H.; Jiang, Y. Discovery and Function Exploration of microRNA-155 as a Molecular Biomarker for Early Detection of Breast Cancer. Breast Cancer 2021, 28, 806–821. [Google Scholar] [CrossRef]
- Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol. Rev. 2019, 99, 115–160. [Google Scholar] [CrossRef]
- Jiramongkol, Y.; Lam, E.W. FOXO Transcription Factor Family in Cancer and Metastasis. Cancer Metastasis Rev. 2020, 39, 681–709. [Google Scholar] [CrossRef]
- Chandran, S.S.; Klebanoff, C.A. T Cell Receptor-Based Cancer Immunotherapy: Emerging Efficacy and Pathways of Resistance. Immunol. Rev. 2019, 290, 127–147. [Google Scholar] [CrossRef]
- Kachamakova-Trojanowska, N.; Podkalicka, P.; Bogacz, T.; Barwacz, S.; Józkowicz, A.; Dulak, J.; Łoboda, A. HIF-1 Stabilization Exerts Anticancer Effects in Breast Cancer Cells In Vitro and In Vivo. Biochem. Pharmacol. 2020, 175, 113922. [Google Scholar] [CrossRef]
- Hoxhaj, G.; Manning, B.D. The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F.; Ferns, G.A.; Talebian, S.; Nourbakhsh, M.; Avan, A.; Shahidsales, S. Role of Regulatory miRNAs of the PI3K/AKT Signaling Pathway in the Pathogenesis of Breast Cancer. Gene 2020, 737, 144459. [Google Scholar] [CrossRef] [PubMed]
- Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers 2019, 11, 2002. [Google Scholar] [CrossRef]
- Tabassum, S.; Abbasi, R.; Ahmad, N.; Farooqi, A.A. Targeting of JAK-STAT Signaling in Breast Cancer: Therapeutic Strategies to Overcome Drug Resistance. Adv. Exp. Med. Biol. 2019, 1152, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.R.; Truong, T.H.; Ostrander, J.H.; Lange, C.A. Steroid Receptors as MAPK Signaling Sensors in Breast Cancer: Let the Fates Decide. J. Mol. Endocrinol. 2020, 65, T35–T48. [Google Scholar] [CrossRef]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int. J. Mol. Sci. 2020, 21, 1102. [Google Scholar] [CrossRef]
- Zhou, J.; Yi, Q.; Tang, L. The Roles of Nuclear Focal Adhesion Kinase (FAK) on Cancer: A Focused Review. J. Exp. Clin. Cancer Res. 2019, 38, 250. [Google Scholar] [CrossRef]
- Samaha, D.; Hamdo, H.H.; Wilde, M.; Prause, K.; Arenz, C. Sphingolipid-Transporting Proteins as Cancer Therapeutic Targets. Int. J. Mol. Sci. 2019, 20, 3554. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Wang, R.H.; Akagi, K.; Kim, K.-A.; Martin, B.K.; Cavallone, L.; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer; Haines, D.C.; Basik, M.; Mai, P.; et al. Tumor Suppressor BRCA1 Epigenetically Controls Oncogenic microRNA-155. Nat. Med. 2011, 17, 1275–1282. [Google Scholar] [CrossRef]
- Pasculli, B.; Barbano, R.; Fontana, A.; Biagini, T.; Di Viesti, M.P.; Rendina, M.; Valori, V.M.; Morritti, M.; Bravaccini, S.; Ravaioli, S.; et al. Hsa-miR-155-5p Up-Regulation in Breast Cancer and Its Relevance for Treatment with Poly[ADP-Ribose] Polymerase 1 (PARP-1) Inhibitors. Front. Oncol. 2020, 10, 1415. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular Mechanisms of Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Jolly, M.K.; Boareto, M.; Huang, B.; Jia, D.; Lu, M.; Ben-Jacob, E.; Onuchic, J.N.; Levine, H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front. Oncol. 2015, 5, 155. [Google Scholar] [CrossRef]
- Peinado, H.; Olmeda, D.; Cano, A. Snail, Zeb and bHLH Factors in Tumour Progression: An Alliance against the Epithelial Phenotype? Nat. Rev. Cancer 2007, 7, 415–428. [Google Scholar] [CrossRef]
- Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic Roles of EMT-Inducing Transcription Factors. Nat. Rev. Mol. Cell Biol. 2014, 15, 476–490. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin repressors ZEB1 and ZEB2. Nat. Cell Biol. 2008, 10, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Siemens, H.; Jackstadt, R.; Hünten, S.; Kaller, M.; Menssen, A.; Götz, U.; Hermeking, H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle 2011, 10, 4256–4271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, X.; Huo, Q.; Sun, M.; Cai, C.; Liu, Z.; Hu, G.; Yang, Q. MicroRNA-30a Suppresses Breast Tumor Growth and Metastasis by Targeting Metadherin. Oncogene 2014, 33, 3119–3128. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, S.; Mo, Y.-Y. Suppression of Cell Growth and Invasion by miR-205 in Breast Cancer. Cell Res. 2009, 19, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Papagiannakopoulos, T.; Pan, G.; Thomson, J.A.; Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Nature 2009, 461, 98–103. [Google Scholar] [CrossRef]
- Wang, H.; An, X.; Yu, H.; Zhang, S.; Tang, B.; Zhang, X.; Li, Z. MiR-29b/TET1/ZEB2 Signaling Axis Regulates Metastatic Properties and Epithelial–Mesenchymal Transition in Breast Cancer Cells. Oncotarget 2017, 8, 102119–102133. [Google Scholar] [CrossRef]
- Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.; et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 2010, 12, 247–256. [Google Scholar] [CrossRef]
- Liang, Y.-K.; Lin, H.-Y.; Dou, X.-W.; Chen, M.; Wei, X.-L.; Zhang, Y.-Q.; Wu, Y.; Chen, C.-F.; Bai, J.-W.; Xiao, Y.-S.; et al. MiR-221/222 Promote Epithelial–Mesenchymal Transition by Targeting Notch3 in Breast Cancer Cell Lines. NPJ Breast Cancer 2018, 4, 20. [Google Scholar] [CrossRef]
- Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007, 449, 682–686. [Google Scholar] [CrossRef]
- Taylor, M.A.; Sossey-Alaoui, K.; Thompson, C.L.; Danielpour, D.; Schiemann, W.P. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Investig. 2013, 123, 150–163. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Gutschner, T.; Hämmerle, M.; Eissmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Gross, M.; et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Ang, H.L.; Rahmani Moghadam, E.; Mohammadi, S.; Zarrin, V.; Hushmandi, K.; Samarghandian, S.; Zarrabi, A.; Najafi, M.; Mohammadinejad, R.; et al. MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020, 10, 1040. [Google Scholar] [CrossRef]
- Imani, S.; Wu, R.-C.; Fu, J. MicroRNA-34 family in breast cancer: From research to therapeutic potential. J. Cancer 2018, 9, 3765. [Google Scholar] [CrossRef]
- Choudhry, H.; Albukhari, A.; Morotti, M.; Haider, S.; Moralli, D.; Smythies, J.; Schödel, J.; Green, C.M.; Camps, C.; Buffa, F.; et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α-dependent transcriptional activation of NEAT1 leading to cancer cell survival. Cell Death Dis. 2015, 6, e1902. [Google Scholar] [CrossRef]
- Si, H.; Chen, P.; Li, H.; Wang, X. Long non-coding RNA H19 regulates cell growth and metastasis via miR-138 in breast cancer. Am. J. Transl. Res. 2019, 11, 3213. [Google Scholar]
- Li, X.; Deng, S.-J.; Zhu, S.; Jin, Y.; Cui, S.-P.; Chen, J.; Xiang, C.; Li, Q.-Y.; He, C.; Zhao, S.-F.; et al. Hypoxia-induced lncRNA NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer via miR-3923/KRAS pathway. J. Cell. Mol. Med. 2020, 24, 4734–4744. [Google Scholar] [CrossRef]
- Yang, M.; Wei, W. SNHG16: A novel long-non coding RNA in human cancers. Oncotargets Ther. 2019, 12, 11679–11690. [Google Scholar] [CrossRef] [PubMed]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Clin. Oncol. 2013, 10, 135–148. [Google Scholar] [CrossRef]
- Campos, A.; Sharma, S.; Obermair, A.; Salomon, C. Extracellular vesicle-associated miRNAs and chemoresistance: A systematic review. Cancers 2021, 13, 4608. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, A.; De Miguel-Pérez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Expósito, J.; Martorell-Marugán, J.; Carmona-Sáez, P.; Garrido-Navas, M.D.C.; Rolfo, C.; et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21, 21. [Google Scholar] [CrossRef]
- Zhong, S.; Chen, X.; Wang, D.; Zhang, X.; Shen, H.; Yang, S.; Lv, M.; Tang, J.; Zhao, J. MicroRNA expression profiles of drug-resistant breast cancer cells and their exosomes. Oncotarget 2016, 7, 19601–19609. [Google Scholar] [CrossRef]
- Bovy, N.; Blomme, B.; Frères, P.; Dederen, S.; Nivelles, O.; Lion, M.; Carnet, O.; Martial, J.A.; Noël, A.; Thiry, M.; et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 2015, 6, 10253–10266. [Google Scholar] [CrossRef] [PubMed]
- Stevic, I.; Müller, V.; Weber, K.; Fasching, P.A.; Karn, T.; Marmé, F.; Schem, C.; Stickeler, E.; Denkert, C.; Van Mackelenbergh, M.; et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med. 2018, 16, 179. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, D.; Bai, S.; Zhang, X.; Kang, Y. Research Progress of Exosomes in Drug Resistance of Breast Cancer. Front. Bioeng. Biotechnol. 2023, 11, 1214648. [Google Scholar] [CrossRef]
- Santos, J.C.; Ribeiro, M.L.; Sarian, L.O.; Ortega, M.M.; Derchain, S.F. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am. J. Cancer Res. 2016, 6, 2129–2139. [Google Scholar] [PubMed]
- Xue, X.; Yang, Y.; Zhang, A.; Fong, K.W.; Kim, J.; Song, B.; Li, S.; Zhao, Y.; Liu, S.; Chan, M.T.V.; et al. LncRNA HOTAIR Enhances ER Signaling and Confers Tamoxifen Resistance in Breast Cancer. Oncogene 2016, 35, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barrueco, R.; Nekritz, E.A.; Bertucci, F.; Yu, J.; Sanchez-Garcia, F.; Zeleke, T.Z.; Gorbatenko, A.; Birnbaum, D.; Ezhkova, E.; Cordon-Cardo, C.; et al. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev. 2017, 31, 553–566. [Google Scholar] [CrossRef]
- Shadbad, M.A.; Safaei, S.; Brunetti, O.; Derakhshani, A.; Lotfinejad, P.; Mokhtarzadeh, A.; Hemmat, N.; Racanelli, V.; Solimando, A.G.; Argentiero, A.; et al. A systematic review on the therapeutic potentiality of PD-L1-inhibiting microRNAs for triple-negative breast cancer. Genes 2021, 12, 1206. [Google Scholar] [CrossRef]
- To, N.H.; Nguyen, H.Q.; Thiolat, A.; Liu, B.; Cohen, J.; Radosevic-Robin, N.; Belkacemi, Y. Radiation therapy for triple-negative breast cancer: Emerging role of microRNAs as biomarkers and radiosensitivity modifiers. A systematic review. Breast Cancer Res. Treat. 2022, 193, 265–279. [Google Scholar] [CrossRef]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathological complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: A comprehensive meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Untch, M.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Biswas, T.; Jindal, C.; Fitzgerald, T.L.; Efird, J.T. Pathologic complete response (pCR) and survival of women with inflammatory breast cancer (IBC): An analysis based on biologic subtypes and demographic characteristics. Int. J. Environ. Res. Public Health 2019, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Kerin, E.; O’Flaherty, C.; Richard, V.; Wyns, W.; Soliman, O.; Miller, N.; Lowery, A.J.; Kerin, M.J. Clinicopathological Response to Neoadjuvant Therapies and Pathological Complete Response as a Biomarker of Survival in Human Epidermal Growth Factor Receptor-2 Enriched Breast Cancer—A Retrospective Cohort Study. Breast 2021, 59, 67–75. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Xu, J.; Brogi, E.; Ventura, K.; Patil, S.; Ross, D.S.; Dang, C.; Robson, M.; Norton, L.; Morrow, M.; et al. Pathologic Complete Response Rate According to HER2 Detection Methods in HER2-Positive Breast Cancer Treated with Neoadjuvant Systemic Therapy. Breast Cancer Res. Treat. 2019, 177, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.; Weckstein, D.J.; et al. Molecular Heterogeneity and Response to Neoadjuvant HER2 Targeting in CALGB 40601. J. Clin. Oncol. 2016, 34, 542–549. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Richard, V.; Wyns, W.; Soliman, O.; Miller, N.; Lowery, A.J.; Kerin, M.J. Overview of MicroRNA Expression in Predicting Response to Neoadjuvant Therapies in HER2-Enriched Breast Cancer—A Systematic Review. Breast Cancer 2022, 16, 11782234221086684. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Appierto, V.; Pizzamiglio, S.; Tiberio, P.; Iorio, M.V.; Hilbers, F.; de Azambuja, E.; de la Peña, L.; Izquierdo, M.; Huober, J.; et al. Plasma miRNA Levels for Predicting Therapeutic Response to Neoadjuvant Treatment in HER2-Positive Breast Cancer: NeoALTTO. Clin. Cancer Res. 2019, 25, 3887–3895. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.; Casey, M.-C.; Waldron, R.M.; Heneghan, H.; Kalinina, O.; Holian, E.; McDermott, A.; Lowery, A.J.; Newell, J.; Dwyer, R.M.; et al. Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2020, 12, 1820. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Appierto, V.; Pizzamiglio, S.; Silvestri, M.; Baselga, J.; Piccart, M.; Huober, J.; Izquierdo, M.; de la Pena, L.; Hilbers, F.S.; et al. Early Modulation of Circulating MicroRNAs in HER2-Positive Breast Cancer Patients Treated with Trastuzumab-Based Neoadjuvant Therapy. Int. J. Mol. Sci. 2020, 21, 1386. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, Y.; Peng, J.; Yuan, C.; Zhou, L.; Xu, S.; Lin, Y.; Du, Y.; Yang, F.; et al. Serum miR-222-3p as a Double-Edged Sword for Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity. Front. Oncol. 2020, 10, 631. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Lara, M.I.; Andonegui-Elguera, A.C.; Romero, M.; Carbonell, A.; Castellana, B. The Role of MicroRNAs in Breast Cancer and Implications on Treatment Response and Resistance. Cells 2023, 12, 1274. [Google Scholar]
- Miglioli, C.; Bakalli, G.; Orso, S.; Karemera, M.; Molinari, R.; Guerrier, S.; Mili, N. Evidence of Antagonistic Predictive Effects of miRNAs in Breast Cancer Cohorts Through Data-Driven Networks. Sci. Rep. 2022, 12, 5166. [Google Scholar] [CrossRef] [PubMed]
- İlhan, A.; Kaya, G.; Filiz, A.; Yıldırım, S.; Çalışkan, A. The Dual Role of miR-20b in Cancers: Friend or Foe? Cell Commun. Signal. 2023, 21, 19. [Google Scholar] [CrossRef]
- Yousefnia, S. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells. Front. Oncol. 2022, 12, 985897. [Google Scholar] [CrossRef]
- Anfossi, S.; Giordano, A.; Gao, H.; Cohen, E.N.; Tin, S.; Wu, Q.; Garza, R.J.; Debeb, B.G.; Alvarez, R.H.; Valero, V.; et al. High Serum miR-19a Levels Are Associated with Inflammatory Breast Cancer and Are Predictive of Favorable Clinical Outcome in Patients with Metastatic HER2+ Inflammatory Breast Cancer. PLoS ONE 2014, 9, e83113. [Google Scholar] [CrossRef]
- Bustin, S.A. Why the need for qPCR publication guidelines?—The case for MIQE. Methods 2010, 50, 217–226. [Google Scholar] [CrossRef]
- Bumgarner, R. Overview of DNA Microarrays: Types, Applications, and Their Future. Curr. Protoc. Mol. Biol. 2013, 101, 22.1.1–22.1.11. [Google Scholar] [CrossRef]
- Li, W.; Ruan, K. MicroRNA Detection by Microarray. Anal. Bioanal. Chem. 2009, 394, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Al Hashami, Z.S.; van der Vegt, B.; Mourits, M.J.E.; Kluiver, J.; van den Berg, A. miRNA-Dependent Resistance Mechanisms to Anti-Hormonal Therapies in Estrogen Receptor-Positive Breast Cancer Patients. Mol. Ther. Oncolytics 2025, 33, 200941. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.D.; Furneaux, H.; White, B.A. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol. 2007, 21, 1132–1147. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Chen, Q.; Zu, F.; Ren, W. Integrated analysis identified prognostic microRNAs in breast cancer. BMC Cancer 2022, 22, 1170. [Google Scholar] [CrossRef]
- Amiruddin, A.; Massi, M.N.; Islam, A.A.; Patellongi, I.; Pratama, M.Y.; Sutandyo, N.; Natzir, R.; Hatta, M.; Md Latar, N.H.; Wahid, S. microRNA-221 and tamoxifen resistance in luminal-subtype breast cancer patients: A case-control study. Ann. Med. Surg. 2021, 73, 103092. [Google Scholar] [CrossRef]
- Patellongi, I.; Amiruddin, A.; Massi, M.N.; Islam, A.A.; Pratama, M.Y.; Sutandyo, N.; Latar, N.H.M.; Faruk, M. Circulating miR-221/222 expression as microRNA biomarker predicting tamoxifen treatment outcome: A case-control study. Ann. Med. Surg. 2023, 85, 3806–3815. [Google Scholar] [CrossRef]
- Ouyang, Y.X.; Feng, J.; Wang, Z.; Zhang, G.J.; Chen, M. miR-221/222 sponge abrogates tamoxifen resistance in ER-positive breast cancer cells through restoring the expression of ERα. Mol. Biomed. 2021, 2, 20. [Google Scholar] [CrossRef]
- Davey, M.G.; Abbas, R.; Kerin, E.P.; Casey, M.C.; McGuire, A.; Waldron, R.M.; Heneghan, H.M.; Newell, J.; McDermott, A.M.; Keane, M.M.; et al. Circulating microRNAs can predict chemotherapy-induced toxicities in patients being treated for primary breast cancer. Breast Cancer Res. Treat. 2023, 202, 73–81. [Google Scholar] [CrossRef]
- Li, Y.; Fan, L.; Yan, A.; Ren, X.; Zhao, Y.; Hua, B. Exosomal miR-361-3p promotes the viability of breast cancer cells by targeting ETV7 and BATF2 to upregulate the PAI-1/ERK pathway. J. Transl. Med. 2024, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Treeck, O.; Römer, A. Non-Coding RNAs Modulating Estrogen Signaling and Endocrine Resistance in Breast Cancer. Cancers 2023, 15, 1632. [Google Scholar] [CrossRef]
- Lettlová, S.; Brynychová, V.; Blecha, J.; Vrana, D.; Vondrusova, M.; Soucek, P.; Truksa, J. miR-301a-3p Suppresses Estrogen Signaling by Targeting ESR1. Cell Physiol. Biochem. 2018, 46, 2601–2615. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Croce, C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Howard, E.W.; Yang, X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol. Proced. Online 2018, 20, 17. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Martino, M.T.D.; Tagliaferri, P.; Tassone, P. MicroRNA in cancer therapy: Breakthroughs and challenges in early clinical applications. J. Exp. Clin. Cancer Res. 2025, 44, 126. [Google Scholar] [CrossRef]
- Kurozumi, S.; Seki, N.; Narusawa, E.; Honda, C.; Tokuda, S.; Nakazawa, Y.; Yokobori, T.; Katayama, A.; Mongan, N.P.; Rakha, E.A.; et al. Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer. Int. J. Mol. Sci. 2024, 25, 35. [Google Scholar] [CrossRef]
- Lowery, A.J.; Miller, N.; Devaney, A.; McNeill, R.E.; Davoren, P.A.; Lemetre, C.; Benes, V.; Schmidt, S.; Blake, J.; Ball, G.; et al. MicroRNA Signatures Predict oestrogen receptor, progesterone receptor and HER2/neu Receptor Status in Breast Cancer. Breast Cancer Res. 2009, 11, R27. [Google Scholar] [CrossRef] [PubMed]
- Ryspayeva, D.; Halytskiy, V.; Kobyliak, N.; Dosenko, I.; Fedosov, A.; Inomistova, M.; Drevytska, T.; Gurianov, V.; Sulaieva, O. Response to Neoadjuvant Chemotherapy in Breast Cancer: Do microRNAs Matter? Discov. Oncol. 2022, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Pridko, O.; Borikun, T.; Rossylna, O.; Rusyn, A.V. Association of miRNA Expression Pattern with Outcome of Letrozole Therapy in Breast Cancer Patients. Exp. Oncol. 2023, 45, 123–129. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komporaly, I.A.; Gheorghe, A.S.; Kajanto, L.A.; Iovănescu, E.A.; Georgescu, B.; Mihăilă, R.I.; Radu, A.M.; Zob, D.L.; Mihai, M.M.; Georgescu, M.T.; et al. miRNA and Its Implications in the Treatment Resistance in Breast Cancer—Narrative Review of What Do We Know So Far. Non-Coding RNA 2025, 11, 78. https://doi.org/10.3390/ncrna11060078
Komporaly IA, Gheorghe AS, Kajanto LA, Iovănescu EA, Georgescu B, Mihăilă RI, Radu AM, Zob DL, Mihai MM, Georgescu MT, et al. miRNA and Its Implications in the Treatment Resistance in Breast Cancer—Narrative Review of What Do We Know So Far. Non-Coding RNA. 2025; 11(6):78. https://doi.org/10.3390/ncrna11060078
Chicago/Turabian StyleKomporaly, Isabela Anda, Adelina Silvana Gheorghe, Lidia Anca Kajanto, Elena Adriana Iovănescu, Bogdan Georgescu, Raluca Ioana Mihăilă, Andreea Mihaela Radu, Daniela Luminița Zob, Mara Mădălina Mihai, Mihai Teodor Georgescu, and et al. 2025. "miRNA and Its Implications in the Treatment Resistance in Breast Cancer—Narrative Review of What Do We Know So Far" Non-Coding RNA 11, no. 6: 78. https://doi.org/10.3390/ncrna11060078
APA StyleKomporaly, I. A., Gheorghe, A. S., Kajanto, L. A., Iovănescu, E. A., Georgescu, B., Mihăilă, R. I., Radu, A. M., Zob, D. L., Mihai, M. M., Georgescu, M. T., & Stănculeanu, D. L. (2025). miRNA and Its Implications in the Treatment Resistance in Breast Cancer—Narrative Review of What Do We Know So Far. Non-Coding RNA, 11(6), 78. https://doi.org/10.3390/ncrna11060078

