Identification and Functions of lncRNAs in Fungi
Abstract
1. Introduction
2. Identification of Antisense RNAs and lncRNAs in Fungi
2.1. Saccharomyces cerevisiae
2.2. Other Yeasts
2.3. Dimorphic Fungi
2.4. Filamentous Fungi
2.5. Other Global Studies
3. Mechanisms of Action of Fungal lncRNAs
4. Functions of Specific lncRNAs Investigated in Fungi
4.1. Saccharomyces cerevisiae
4.1.1. Metabolism and Cellular Functions
4.1.2. Cell Cycle and Stress Responses
4.1.3. Sexual Cycle and Development
4.1.4. Genome Integrity
4.2. Schizosaccaromyces pombe
4.2.1. Metabolism, Cellular Functions and Stress Responses
4.2.2. Sexual Cycle and Development
4.3. Other Yeasts
4.4. Dimorphic Fungi
4.4.1. Ustilago maydis
4.4.2. Candida auris
4.4.3. Cryptococcus neoformans
4.4.4. Ustilaginoidea virens
4.5. Filamentous Fungi
4.5.1. Neurospora crassa
4.5.2. Trichoderma reesei
4.5.3. Fusarium fujikuroi and Fusarium oxysporum
4.5.4. Fusarium graminearum
4.5.5. Cochliobolus heterostrophus
4.5.6. Metharhizium robertsii
4.5.7. Phytophthora infestans
4.5.8. Pyricularia oryzae
4.5.9. Rhizopus delemar
4.5.10. Verticillium dahliae
5. Conclusions and Future Prospects
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CTD | Carboxy terminal domain |
CUT | Cryptic unstable transcript |
DON | Deoxynivalenol |
DSR | Determinant of selective removal |
DUT | Dicer-sensitive unstable transcript |
EST | Expressed sequence tag |
lncRNA | Long non-coding RNA |
lincRNA | Long intergenic non-coding RNA |
MUT | Meiotic unannotated transcripts |
ncRNA | Non-coding RNA |
NMD | Nonsense-mediated decay |
NUT | Nrd1-unterminated transcript |
snoRNA | small nucleolar RNA |
SUT | Stable unannotated transcript |
TSS | Transcription start site |
XUT | Xrn1-sensitive unstable transcripts XUT |
cenRNA | Centromeric RNA |
References
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique Features of Long Non-Coding RNA Biogenesis and Function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Rutenberg-Schoenberg, M.; Sexton, A.N.; Simon, M.D. The Properties of Long Noncoding RNAs That Regulate Chromatin. Annu. Rev. Genomics Hum. Genet. 2016, 17, 69–94. [Google Scholar] [CrossRef]
- Bester, A.C. Deciphering the Hidden Language of Long Non-Coding RNAs: Recent Findings and Challenges. In Genetics; Dabas, P., Ed.; IntechOpen: London, UK, 2024; Volume 2, ISBN 978-1-80356-710-5. [Google Scholar]
- Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of lncRNAs. Adv. Exp. Med. Biol. 2017, 1008, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the Classification of Long Non-Coding RNAs. RNA Biol. 2013, 10, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Tani, H. Biomolecules Interacting with Long Noncoding RNAs. Biology 2025, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, Y.; Liao, Q. Long Noncoding RNA: A Crosslink in Biological Regulatory Network. Brief. Bioinform. 2018, 19, 930–945. [Google Scholar] [CrossRef]
- Munroe, S.H.; Zhu, J. Overlapping Transcripts, Double-Stranded RNA and Antisense Regulation: A Genomic Perspective. Cell. Mol. Life Sci. CMLS 2006, 63, 2102–2118. [Google Scholar] [CrossRef]
- Szachnowski, U.; Becker, E.; Stuparević, I.; Wery, M.; Sallou, O.; Boudet, M.; Bretaudeau, A.; Morillon, A.; Primig, M. Pervasive Formation of Double-Stranded RNAs by Overlapping Sense/Antisense Transcripts in Budding Yeast Mitosis and Meiosis. RNA 2025, 31, 497–513. [Google Scholar] [CrossRef]
- Lamping, J.-P.; Krebber, H. The Hidden Power of Antisense Long Non-Coding RNAs: A Dive into a Novel Regulatory Layer Mediated by Double-Stranded RNA Formation. RNA Biol. 2025, 22, 1–16. [Google Scholar] [CrossRef]
- Wery, M.; Descrimes, M.; Vogt, N.; Dallongeville, A.-S.; Gautheret, D.; Morillon, A. Nonsense-Mediated Decay Restricts lncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure. Mol. Cell 2016, 61, 379–392. [Google Scholar] [CrossRef]
- Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative Annotation of Human Large Intergenic Noncoding RNAs Reveals Global Properties and Specific Subclasses. Genes Dev. 2011, 25, 1915–1927. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef]
- de Poloni, J.F.; de Oliveira, F.H.S.; Feltes, B.C. Localization Is the Key to Action: Regulatory Peculiarities of lncRNAs. Front. Genet. 2024, 15, 1478352. [Google Scholar] [CrossRef]
- Kashi, K.; Henderson, L.; Bonetti, A.; Carninci, P. Discovery and Functional Analysis of lncRNAs: Methodologies to Investigate an Uncharacterized Transcriptome. Biochim. Biophys. Acta 2016, 1859, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Hon, C.-C.; Carninci, P. Expanded ENCODE Delivers Invaluable Genomic Encyclopedia. Nature 2020, 583, 685–686. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.; Li, Y.; Song, T.; Wu, Y.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Pei, D.; et al. NONCODEV6: An Updated Database Dedicated to Long Non-Coding RNA Annotation in Both Animals and Plants. Nucleic Acids Res. 2021, 49, D165–D171. [Google Scholar] [CrossRef]
- Meijueiro, M.L.; Santoyo, F.; Ramírez, L.; Pisabarro, A.G. Transcriptome Characteristics of Filamentous Fungi Deduced Using High-Throughput Analytical Technologies. Brief. Funct. Genomics 2014, 13, 440–450. [Google Scholar] [CrossRef]
- Werner, A.; Kanhere, A.; Wahlestedt, C.; Mattick, J.S. Natural Antisense Transcripts as Versatile Regulators of Gene Expression. Nat. Rev. Genet. 2024, 25, 730–744. [Google Scholar] [CrossRef]
- Mockler, T.C.; Chan, S.; Sundaresan, A.; Chen, H.; Jacobsen, S.E.; Ecker, J.R. Applications of DNA Tiling Arrays for Whole-Genome Analysis. Genomics 2005, 85, 1–15. [Google Scholar] [CrossRef]
- David, L.; Huber, W.; Granovskaia, M.; Toedling, J.; Palm, C.J.; Bofkin, L.; Jones, T.; Davis, R.W.; Steinmetz, L.M. A High-Resolution Map of Transcription in the Yeast Genome. Proc. Natl. Acad. Sci. USA 2006, 103, 5320–5325. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Miura, F.; Onda, M. Unexpected Complexity of the Budding Yeast Transcriptome. IUBMB Life 2008, 60, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Miura, F.; Kawaguchi, N.; Sese, J.; Toyoda, A.; Hattori, M.; Morishita, S.; Ito, T. A Large-Scale Full-Length cDNA Analysis to Explore the Budding Yeast Transcriptome. Proc. Natl. Acad. Sci. USA 2006, 103, 17846–17851. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, U.; Wang, Z.; Waern, K.; Shou, C.; Raha, D.; Gerstein, M.; Snyder, M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 2008, 320, 1344–1349. [Google Scholar] [CrossRef]
- Yassour, M.; Pfiffner, J.; Levin, J.Z.; Adiconis, X.; Gnirke, A.; Nusbaum, C.; Thompson, D.-A.; Friedman, N.; Regev, A. Strand-Specific RNA Sequencing Reveals Extensive Regulated Long Antisense Transcripts That Are Conserved across Yeast Species. Genome Biol. 2010, 11, R87. [Google Scholar] [CrossRef]
- Li, D.; Dong, Y.; Jiang, Y.; Jiang, H.; Cai, J.; Wang, W. A de Novo Originated Gene Depresses Budding Yeast Mating Pathway and Is Repressed by the Protein Encoded by Its Antisense Strand. Cell Res. 2010, 20, 408–420. [Google Scholar] [CrossRef]
- Huber, F.; Bunina, D.; Gupta, I.; Khmelinskii, A.; Meurer, M.; Theer, P.; Steinmetz, L.M.; Knop, M. Protein Abundance Control by Non-Coding Antisense Transcription. Cell Rep. 2016, 15, 2625–2636. [Google Scholar] [CrossRef]
- Wyers, F.; Rougemaille, M.; Badis, G.; Rousselle, J.-C.; Dufour, M.-E.; Boulay, J.; Régnault, B.; Devaux, F.; Namane, A.; Séraphin, B.; et al. Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. Cell 2005, 121, 725–737. [Google Scholar] [CrossRef]
- Gudipati, R.K.; Xu, Z.; Lebreton, A.; Séraphin, B.; Steinmetz, L.M.; Jacquier, A.; Libri, D. Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Mol. Cell 2012, 48, 409–421. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, W.; Gagneur, J.; Perocchi, F.; Clauder-Münster, S.; Camblong, J.; Guffanti, E.; Stutz, F.; Huber, W.; Steinmetz, L.M. Bidirectional Promoters Generate Pervasive Transcription in Yeast. Nature 2009, 457, 1033–1037. [Google Scholar] [CrossRef]
- Neil, H.; Malabat, C.; d’Aubenton-Carafa, Y.; Xu, Z.; Steinmetz, L.M.; Jacquier, A. Widespread Bidirectional Promoters Are the Major Source of Cryptic Transcripts in Yeast. Nature 2009, 457, 1038–1042. [Google Scholar] [CrossRef]
- Thiebaut, M.; Kisseleva-Romanova, E.; Rougemaille, M.; Boulay, J.; Libri, D. Transcription Termination and Nuclear Degradation of Cryptic Unstable Transcripts: A Role for the Nrd1-Nab3 Pathway in Genome Surveillance. Mol. Cell 2006, 23, 853–864. [Google Scholar] [CrossRef]
- Arigo, J.T.; Eyler, D.E.; Carroll, K.L.; Corden, J.L. Termination of Cryptic Unstable Transcripts Is Directed by Yeast RNA-Binding Proteins Nrd1 and Nab3. Mol. Cell 2006, 23, 841–851. [Google Scholar] [CrossRef]
- Vasiljeva, L.; Kim, M.; Terzi, N.; Soares, L.M.; Buratowski, S. Transcription Termination and RNA Degradation Contribute to Silencing of RNA Polymerase II Transcription within Heterochromatin. Mol. Cell 2008, 29, 313–323. [Google Scholar] [CrossRef]
- Schulz, D.; Schwalb, B.; Kiesel, A.; Baejen, C.; Torkler, P.; Gagneur, J.; Soeding, J.; Cramer, P. Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis. Cell 2013, 155, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Samanta, M.P.; Tongprasit, W.; Sethi, H.; Chin, C.-S.; Stolc, V. Global Identification of Noncoding RNAs in Saccharomyces cerevisiae by Modulating an Essential RNA Processing Pathway. Proc. Natl. Acad. Sci. USA 2006, 103, 4192–4197. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.J.; Mosley, A.L. Rrp6: Integrated Roles in Nuclear RNA Metabolism and Transcription Termination. Wiley Interdiscip. Rev. RNA 2016, 7, 91–104. [Google Scholar] [CrossRef]
- Davis, C.A.; Ares, M. Accumulation of Unstable Promoter-Associated Transcripts upon Loss of the Nuclear Exosome Subunit Rrp6p in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2006, 103, 3262–3267. [Google Scholar] [CrossRef]
- Lardenois, A.; Liu, Y.; Walther, T.; Chalmel, F.; Evrard, B.; Granovskaia, M.; Chu, A.; Davis, R.W.; Steinmetz, L.M.; Primig, M. Execution of the Meiotic Noncoding RNA Expression Program and the Onset of Gametogenesis in Yeast Require the Conserved Exosome Subunit Rrp6. Proc. Natl. Acad. Sci. USA 2011, 108, 1058–1063. [Google Scholar] [CrossRef]
- Castelnuovo, M.; Zaugg, J.B.; Guffanti, E.; Maffioletti, A.; Camblong, J.; Xu, Z.; Clauder-Münster, S.; Steinmetz, L.M.; Luscombe, N.M.; Stutz, F. Role of Histone Modifications and Early Termination in Pervasive Transcription and Antisense-Mediated Gene Silencing in Yeast. Nucleic Acids Res. 2014, 42, 4348–4362. [Google Scholar] [CrossRef]
- Lykke-Andersen, S.; Jensen, T.H. Nonsense-Mediated mRNA Decay: An Intricate Machinery That Shapes Transcriptomes. Nat. Rev. Mol. Cell Biol. 2015, 16, 665–677. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Chen, C.L.; d’Aubenton-Carafa, Y.; Gourvennec, S.; Kwapisz, M.; Roche, V.; Bertrand, C.; Silvain, M.; Legoix-Né, P.; Loeillet, S.; et al. XUTs Are a Class of Xrn1-Sensitive Antisense Regulatory Non-Coding RNA in Yeast. Nature 2011, 475, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Andjus, S.; Morillon, A.; Wery, M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Non-Coding RNA 2021, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Malabat, C.; Feuerbach, F.; Ma, L.; Saveanu, C.; Jacquier, A. Quality Control of Transcription Start Site Selection by Nonsense-Mediated-mRNA Decay. eLife 2015, 4, e06722. [Google Scholar] [CrossRef] [PubMed]
- Wery, M.; Szachnowski, U.; Andjus, S.; de Andres-Pablo, A.; Morillon, A. The RNA Helicases Dbp2 and Mtr4 Regulate the Expression of Xrn1-Sensitive Long Non-Coding RNAs in Yeast. Front. RNA Res. 2023, 1, 1244554. [Google Scholar] [CrossRef]
- Wilhelm, B.T.; Marguerat, S.; Watt, S.; Schubert, F.; Wood, V.; Goodhead, I.; Penkett, C.J.; Rogers, J.; Bähler, J. Dynamic Repertoire of a Eukaryotic Transcriptome Surveyed at Single-Nucleotide Resolution. Nature 2008, 453, 1239–1243. [Google Scholar] [CrossRef]
- Rhind, N.; Chen, Z.; Yassour, M.; Thompson, D.A.; Haas, B.J.; Habib, N.; Wapinski, I.; Roy, S.; Lin, M.F.; Heiman, D.I.; et al. Comparative Functional Genomics of the Fission Yeasts. Science 2011, 332, 930–936. [Google Scholar] [CrossRef]
- Sun, W.-H.; Wang, Y.-Z.; Xu, Y.; Yu, X.-W. Genome-Wide Analysis of Long Non-Coding RNAs in Pichia pastoris during Stress by RNA Sequencing. Genomics 2019, 111, 398–406. [Google Scholar] [CrossRef]
- Ho, E.C.H.; Cahill, M.J.; Saville, B.J. Gene Discovery and Transcript Analyses in the Corn Smut Pathogen Ustilago maydis: Expressed Sequence Tag and Genome Sequence Comparison. BMC Genomics 2007, 8, 334. [Google Scholar] [CrossRef]
- Donaldson, M.E.; Ostrowski, L.A.; Goulet, K.M.; Saville, B.J. Transcriptome Analysis of Smut Fungi Reveals Widespread Intergenic Transcription and Conserved Antisense Transcript Expression. BMC Genom. 2017, 18, 340. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, X.; Yan, Y.; Huang, J.; Luo, C.; Tom, H.; Zheng, L. Comprehensive Transcriptome Profiling Reveals Abundant Long Non-Coding RNAs Associated with Development of the Rice False Smut Fungus, Ustilaginoidea virens. Environ. Microbiol. 2021, 23, 4998–5013. [Google Scholar] [CrossRef] [PubMed]
- Arthanari, Y.; Heintzen, C.; Griffiths-Jones, S.; Crosthwaite, S.K. Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa. PLoS ONE 2014, 9, e91353. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, B.; Yin, C.; Guo, Y.; Lin, Y.; Pan, L.; Wang, B. Characterization of Natural Antisense Transcript, Sclerotia Development and Secondary Metabolism by Strand-Specific RNA Sequencing of Aspergillus flavus. PLoS ONE 2014, 9, e97814. [Google Scholar] [CrossRef]
- Choi, G.; Jeon, J.; Lee, H.; Zhou, S.; Lee, Y.-H. Genome-Wide Profiling of Long Non-Coding RNA of the Rice Blast Fungus Magnaporthe oryzae during Infection. BMC Genom. 2022, 23, 132. [Google Scholar] [CrossRef]
- Shi, H.; Ding, G.; Wang, Y.; Wang, J.; Wang, X.; Wang, D.; Lu, P. Genome-Wide Identification of Long Non-Coding RNA for Botrytis cinerea during Infection to Tomato (Solanum lycopersicum) Leaves. BMC Genom. 2025, 26, 7. [Google Scholar] [CrossRef]
- Liu, N.; Wang, P.; Li, X.; Pei, Y.; Sun, Y.; Ma, X.; Ge, X.; Zhu, Y.; Li, F.; Hou, Y. Long Non-Coding RNAs Profiling in Pathogenesis of Verticillium dahliae: New Insights in the Host-Pathogen Interaction. Plant Sci. Int. J. Exp. Plant Biol. 2022, 314, 111098. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Peng, J.; Cheng, Z.; Liu, X.; Zhang, Z.; Bhadauria, V.; Zhao, W.; Peng, Y.-L. Transcriptional Landscapes of Long Non-Coding RNAs and Alternative Splicing in Pyricularia oryzae Revealed by RNA-Seq. Front. Plant Sci. 2021, 12, 723636. [Google Scholar] [CrossRef]
- Kim, W.; Miguel-Rojas, C.; Wang, J.; Townsend, J.P.; Trail, F. Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018, 9, e01292-18. [Google Scholar] [CrossRef]
- Alcid, E.A.; Tsukiyama, T. Expansion of Antisense lncRNA Transcriptomes in Budding Yeast Species since the Loss of RNAi. Nat. Struct. Mol. Biol. 2016, 23, 450–455. [Google Scholar] [CrossRef]
- Szachnowski, U.; Andjus, S.; Foretek, D.; Morillon, A.; Wery, M. Endogenous RNAi Pathway Evolutionarily Shapes the Destiny of the Antisense lncRNAs Transcriptome. Life Sci. Alliance 2019, 2, e201900407. [Google Scholar] [CrossRef] [PubMed]
- Quintales, L.; Sánchez, M.; Antequera, F. Analysis of DNA Strand-Specific Differential Expression with High Density Tiling Microarrays. BMC Bioinform. 2010, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.R.; Marguerat, S.; Bitton, D.A.; Rodríguez-López, M.; Rallis, C.; Lemay, J.-F.; Cotobal, C.; Malecki, M.; Smialowski, P.; Mata, J.; et al. Long Noncoding RNA Repertoire and Targeting by Nuclear Exosome, Cytoplasmic Exonuclease, and RNAi in Fission Yeast. RNA 2018, 24, 1195–1213. [Google Scholar] [CrossRef] [PubMed]
- DeGennaro, C.M.; Alver, B.H.; Marguerat, S.; Stepanova, E.; Davis, C.P.; Bähler, J.; Park, P.J.; Winston, F. Spt6 Regulates Intragenic and Antisense Transcription, Nucleosome Positioning, and Histone Modifications Genome-Wide in Fission Yeast. Mol. Cell. Biol. 2013, 33, 4779–4792. [Google Scholar] [CrossRef]
- Wery, M.; Gautier, C.; Descrimes, M.; Yoda, M.; Migeot, V.; Hermand, D.; Morillon, A. Bases of Antisense lncRNA-Associated Regulation of Gene Expression in Fission Yeast. PLoS Genet. 2018, 14, e1007465. [Google Scholar] [CrossRef]
- Watts, B.R.; Wittmann, S.; Wery, M.; Gautier, C.; Kus, K.; Birot, A.; Heo, D.-H.; Kilchert, C.; Morillon, A.; Vasiljeva, L. Histone Deacetylation Promotes Transcriptional Silencing at Facultative Heterochromatin. Nucleic Acids Res. 2018, 46, 5426–5440. [Google Scholar] [CrossRef]
- Eser, P.; Wachutka, L.; Maier, K.C.; Demel, C.; Boroni, M.; Iyer, S.; Cramer, P.; Gagneur, J. Determinants of RNA Metabolism in the Schizosaccharomyces pombe Genome. Mol. Syst. Biol. 2016, 12, 857. [Google Scholar] [CrossRef]
- Klosterman, S.J.; Perlin, M.H.; Garcia-Pedrajas, M.; Covert, S.F.; Gold, S.E. Genetics of Morphogenesis and Pathogenic Development of Ustilago maydis. Adv. Genet. 2007, 57, 1–47. [Google Scholar] [CrossRef]
- Morrison, E.N.; Donaldson, M.E.; Saville, B.J. Identification and Analysis of Genes Expressed in the Ustilago maydis Dikaryon: Uncovering a Novel Class of Pathogenesis Genes. Can. J. Plant Pathol. 2012, 34, 417–435. [Google Scholar] [CrossRef]
- Hovhannisyan, H.; Gabaldón, T. The Long Non-Coding RNA Landscape of Candida Yeast Pathogens. Nat. Commun. 2021, 12, 7317. [Google Scholar] [CrossRef]
- Roche, C.M.; Loros, J.J.; McCluskey, K.; Glass, N.L. Neurospora crassa: Looking Back and Looking Forward at a Model Microbe. Am. J. Bot. 2014, 101, 2022–2035. [Google Scholar] [CrossRef]
- Dunlap, J.C.; Borkovich, K.A.; Henn, M.R.; Turner, G.E.; Sachs, M.S.; Glass, N.L.; McCluskey, K.; Plamann, M.; Galagan, J.E.; Birren, B.W.; et al. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Adv. Genet. 2007, 57, 49–96. [Google Scholar] [CrossRef]
- Cemel, I.A.; Ha, N.; Schermann, G.; Yonekawa, S.; Brunner, M. The Coding and Noncoding Transcriptome of Neurospora crassa. BMC Genom. 2017, 18, 978. [Google Scholar] [CrossRef] [PubMed]
- Amaike, S.; Keller, N.P. Aspergillus flavus. Annu. Rev. Phytopathol. 2011, 49, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Robertson, D.; Yates, B.; Nielsen, D.M.; Brown, D.; Dean, R.A.; Payne, G.A. The Effect of Temperature on Natural Antisense Transcript (NAT) Expression in Aspergillus flavus. Curr. Genet. 2008, 54, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Davati, N.; Ghorbani, A. Discovery of Long Non-Coding RNAs in Aspergillus flavus Response to Water Activity, CO2 Concentration, and Temperature Changes. Sci. Rep. 2023, 13, 10330. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.; Zhu, Y.; Wang, K.; Ma, B.; Zhou, Q.; Chen, A.; Chen, H. XRN1-Associated Long Non-Coding RNAs May Contribute to Fungal Virulence and Sexual Development in Entomopathogenic Fungus Cordyceps militaris. Pest Manag. Sci. 2019, 75, 3302–3311. [Google Scholar] [CrossRef]
- Smith, J.E.; Baker, K.E. Nonsense-Mediated RNA Decay—A Switch and Dial for Regulating Gene Expression. BioEssays News Rev. Mol. Cell. Dev. Biol. 2015, 37, 612–623. [Google Scholar] [CrossRef]
- Veloso, J.; van Kan, J.A.L. Many Shades of Grey in Botrytis-Host Plant Interactions. Trends Plant Sci. 2018, 23, 613–622. [Google Scholar] [CrossRef]
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van Der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; et al. A Gapless Genome Sequence of the Fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [Google Scholar] [CrossRef]
- Li, R.; Xue, H.-S.; Zhang, D.-D.; Wang, D.; Song, J.; Subbarao, K.V.; Klosterman, S.J.; Chen, J.-Y.; Dai, X.-F. Identification of Long Non-Coding RNAs in Verticillium dahliae Following Inoculation of Cotton. Microbiol. Res. 2022, 257, 126962. [Google Scholar] [CrossRef]
- Glad, H.M.; Tralamazza, S.M.; Croll, D. The Expression Landscape and Pangenome of Long Non-Coding RNA in the Fungal Wheat Pathogen Zymoseptoria tritici. Microb. Genomics 2023, 9, 001136. [Google Scholar] [CrossRef]
- Menegidio, F.B.; Aciole Barbosa, D.; Alencar, V.C.; Vilas Boas, R.O.; Costa de Oliveira, R.; Jabes, D.L.; Nunes, L.R. Transcriptomic Profiling Identifies Novel Transcripts, Isomorphs, and Noncoding RNAs in Paracoccidioides brasiliensis. Med. Mycol. 2021, 59, 197–200. [Google Scholar] [CrossRef]
- Kalem, M.C.; Panepinto, J.C. Long Non-Noding RNAs in Cryptococcus neoformans: Insights into Fungal Pathogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 858317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, W.; Wang, Y. Genome-Wide Identification of Long Non-Coding RNAs Suggests a Potential Association with Effector Gene Transcription in Phytophthora sojae. Mol. Plant Pathol. 2018, 19, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, Y.; Wu, H.; Xie, X.; Huang, B. Genome-Wide Identification and Functional Prediction of Long Non-Coding RNAs Involved in the Heat Stress Response in Metarhizium robertsii. Front. Microbiol. 2019, 10, 2336. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Zhang, L.; Zhou, X. Long Noncoding RNAs Are Potentially Involved in the Degeneration of Virulence in an Aphid-Obligate Pathogen, Conidiobolus obscurus (Entomophthoromycotina). Virulence 2021, 12, 1705–1716. [Google Scholar] [CrossRef]
- Lai, T.; Yu, Q.; Pan, J.; Wang, J.; Tang, Z.; Bai, X.; Shi, L.; Zhou, T. The Identification and Comparative Analysis of Non-Coding RNAs in Spores and Mycelia of Penicillium expansum. J. Fungi Basel Switz. 2023, 9, 999. [Google Scholar] [CrossRef]
- Silva, R.G.; Amaral, P.P.; Franco, G.R.; Góes-Neto, A. Exploring the Hidden Hot World of Long Non-Coding RNAs in Thermophilic Fungus Using a Robust Computational Pipeline. Sci. Rep. 2024, 14, 19797. [Google Scholar] [CrossRef]
- Song, X.; Zhang, M.; Chen, M.; Shang, X.; Zhou, F.; Yu, H.; Song, C.; Tan, Q. Transcriptomic Communication between Nucleus and Mitochondria during the Browning Process of Lentinula edodes. J. Agric. Food Chem. 2024, 72, 23592–23605. [Google Scholar] [CrossRef]
- Coltman, B.L.; Motheramgari, K.; Tatto, N.; Gasser, B. Identification and Functional Analysis of Growth Rate Associated Long Non-Coding RNAs in Komagataella phaffii. Comput. Struct. Biotechnol. J. 2025, 27, 1693–1705. [Google Scholar] [CrossRef]
- Cao, W.; Pan, X.; Yu, R.; Sheng, Y.; Zhang, H. Genome-Wide Identification of Long Non-Coding RNAs Reveals Potential Association with Phytophthora infestans Asexual and Sexual Development. Microbiol. Spectr. 2025, 13, e0199824. [Google Scholar] [CrossRef]
- Till, P.; Mach, R.L.; Mach-Aigner, A.R. A Current View on Long Noncoding RNAs in Yeast and Filamentous Fungi. Appl. Microbiol. Biotechnol. 2018, 102, 7319–7331. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Yin, Z.; Hu, Z.; Zhang, K.-Q. An Overview on Identification and Regulatory Mechanisms of Long Non-Coding RNAs in Fungi. Front. Microbiol. 2021, 12, 638617. [Google Scholar] [CrossRef]
- Yamashita, A.; Shichino, Y.; Yamamoto, M. The Long Non-Coding RNA World in Yeasts. Biochim. Biophys. Acta 2016, 1859, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Niederer, R.O.; Hass, E.P.; Zappulla, D.C. Long Noncoding RNAs in the Yeast S. cerevisiae. Adv. Exp. Med. Biol. 2017, 1008, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; Váchová, L.; Hlaváček, O.; Maršíková, J.; Gilfillan, G.D.; Palková, Z. Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms. Oxid. Med. Cell. Longev. 2018, 2018, 4950591. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, M.E.; Saville, B.J. Natural Antisense Transcripts in Fungi. Mol. Microbiol. 2012, 85, 405–417. [Google Scholar] [CrossRef]
- Hongay, C.F.; Grisafi, P.L.; Galitski, T.; Fink, G.R. Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae. Cell 2006, 127, 735–745. [Google Scholar] [CrossRef]
- Uhler, J.P.; Hertel, C.; Svejstrup, J.Q. A Role for Noncoding Transcription in Activation of the Yeast PHO5 Gene. Proc. Natl. Acad. Sci. USA 2007, 104, 8011–8016. [Google Scholar] [CrossRef]
- Soudet, J.; Beyrouthy, N.; Pastucha, A.M.; Maffioletti, A.; Menéndez, D.; Bakir, Z.; Stutz, F. Antisense-Mediated Repression of SAGA-Dependent Genes Involves the HIR Histone Chaperone. Nucleic Acids Res. 2022, 50, 4515–4528. [Google Scholar] [CrossRef]
- Camblong, J.; Iglesias, N.; Fickentscher, C.; Dieppois, G.; Stutz, F. Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae. Cell 2007, 131, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Hainer, S.J.; Pruneski, J.A.; Mitchell, R.D.; Monteverde, R.M.; Martens, J.A. Intergenic Transcription Causes Repression by Directing Nucleosome Assembly. Genes Dev. 2011, 25, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Shuman, S. Transcriptional Interference at Tandem lncRNA and Protein-Coding Genes: An Emerging Theme in Regulation of Cellular Nutrient Homeostasis. Nucleic Acids Res. 2020, 48, 8243–8254. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.A.; Wu, P.-Y.J.; Winston, F. Regulation of an Intergenic Transcript Controls Adjacent Gene Transcription in Saccharomyces cerevisiae. Genes Dev. 2005, 19, 2695–2704. [Google Scholar] [CrossRef]
- Berretta, J.; Pinskaya, M.; Morillon, A. A Cryptic Unstable Transcript Mediates Transcriptional Trans-Silencing of the Ty1 Retrotransposon in S. cerevisiae. Genes Dev. 2008, 22, 615–626. [Google Scholar] [CrossRef]
- Ostrowski, L.A.; Saville, B.J. Natural Antisense Transcripts Are Linked to the Modulation of Mitochondrial Function and Teliospore Dormancy in Ustilago maydis. Mol. Microbiol. 2017, 103, 745–763. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Lu, S. Role of TERRA in the Regulation of Telomere Length. Int. J. Biol. Sci. 2015, 11, 316–323. [Google Scholar] [CrossRef]
- Ding, D.-Q.; Okamasa, K.; Yamane, M.; Tsutsumi, C.; Haraguchi, T.; Yamamoto, M.; Hiraoka, Y. Meiosis-Specific Noncoding RNA Mediates Robust Pairing of Homologous Chromosomes in Meiosis. Science 2012, 336, 732–736. [Google Scholar] [CrossRef]
- Ding, D.-Q.; Okamasa, K.; Katou, Y.; Oya, E.; Nakayama, J.-I.; Chikashige, Y.; Shirahige, K.; Haraguchi, T.; Hiraoka, Y. Chromosome-Associated RNA-Protein Complexes Promote Pairing of Homologous Chromosomes during Meiosis in Schizosaccharomyces pombe. Nat. Commun. 2019, 10, 5598. [Google Scholar] [CrossRef]
- Till, P.; Derntl, C.; Kiesenhofer, D.P.; Mach, R.L.; Yaver, D.; Mach-Aigner, A.R. Regulation of Gene Expression by the Action of a Fungal lncRNA on a Transactivator. RNA Biol. 2020, 17, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Tisseur, M.; Kwapisz, M.; Morillon, A. Pervasive Transcription—Lessons from Yeast. Biochimie 2011, 93, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.J.; Daugharthy, E.R.; Kim, J. Pervasive Antisense Transcription Is Evolutionarily Conserved in Budding Yeast. Mol. Biol. Evol. 2013, 30, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Pelechano, V. From Transcriptional Complexity to Cellular Phenotypes: Lessons from Yeast. Yeast Chichester Engl. 2017, 34, 475–482. [Google Scholar] [CrossRef]
- Thiebaut, M.; Colin, J.; Neil, H.; Jacquier, A.; Séraphin, B.; Lacroute, F.; Libri, D. Futile Cycle of Transcription Initiation and Termination Modulates the Response to Nucleotide Shortage in S. cerevisiae. Mol. Cell 2008, 31, 671–682. [Google Scholar] [CrossRef]
- Kuehner, J.N.; Brow, D.A. Regulation of a Eukaryotic Gene by GTP-Dependent Start Site Selection and Transcription Attenuation. Mol. Cell 2008, 31, 201–211. [Google Scholar] [CrossRef]
- Houseley, J.; Rubbi, L.; Grunstein, M.; Tollervey, D.; Vogelauer, M. A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Mol. Cell 2008, 32, 685–695. [Google Scholar] [CrossRef]
- Pinskaya, M.; Gourvennec, S.; Morillon, A. H3 Lysine 4 Di- and Tri-Methylation Deposited by Cryptic Transcription Attenuates Promoter Activation. EMBO J. 2009, 28, 1697–1707. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chen, H.-T.; Teng, S.-C. Intragenic Transcription of a Noncoding RNA Modulates Expression of ASP3 in Budding Yeast. RNA 2010, 16, 2085–2093. [Google Scholar] [CrossRef]
- Awasthi, A.; Nain, V.; Srikanth, C.V.; Puria, R. A Regulatory Circuit between lncRNA and TOR Directs Amino Acid Uptake in Yeast. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118680. [Google Scholar] [CrossRef]
- du Mee, D.J.M.; Ivanov, M.; Parker, J.P.; Buratowski, S.; Marquardt, S. Efficient Termination of Nuclear lncRNA Transcription Promotes Mitochondrial Genome Maintenance. eLife 2018, 7, e31989. [Google Scholar] [CrossRef]
- Qin, L.; Pan, Y.; Xue, S.; Yan, Z.; Xiao, C.; Liu, X.; Yuan, D.; Hou, J.; Huang, M. Multi-Omics Analysis Reveals Impacts of lincRNA Deletion on Yeast Protein Synthesis. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2025, 12, e2406873. [Google Scholar] [CrossRef]
- Balarezo-Cisneros, L.N.; Parker, S.; Fraczek, M.G.; Timouma, S.; Wang, P.; O’Keefe, R.T.; Millar, C.B.; Delneri, D. Functional and Transcriptional Profiling of Non-Coding RNAs in Yeast Reveal Context-Dependent Phenotypes and in Trans Effects on the Protein Regulatory Network. PLoS Genet. 2021, 17, e1008761. [Google Scholar] [CrossRef]
- Granovskaia, M.V.; Jensen, L.J.; Ritchie, M.E.; Toedling, J.; Ning, Y.; Bork, P.; Huber, W.; Steinmetz, L.M. High-Resolution Transcription Atlas of the Mitotic Cell Cycle in Budding Yeast. Genome Biol. 2010, 11, R24. [Google Scholar] [CrossRef]
- Nevers, A.; Doyen, A.; Malabat, C.; Néron, B.; Kergrohen, T.; Jacquier, A.; Badis, G. Antisense Transcriptional Interference Mediates Condition-Specific Gene Repression in Budding Yeast. Nucleic Acids Res. 2018, 46, 6009–6025. [Google Scholar] [CrossRef] [PubMed]
- Nadal-Ribelles, M.; Solé, C.; Xu, Z.; Steinmetz, L.M.; de Nadal, E.; Posas, F. Control of Cdc28 CDK1 by a Stress-Induced lncRNA. Mol. Cell 2014, 53, 549–561. [Google Scholar] [CrossRef]
- Lázari, L.C.; Wolf, I.R.; Schnepper, A.P.; Valente, G.T. LncRNAs of Saccharomyces cerevisiae Bypass the Cell Cycle Arrest Imposed by Ethanol Stress. PLoS Comput. Biol. 2022, 18, e1010081. [Google Scholar] [CrossRef] [PubMed]
- van Werven, F.J.; Neuert, G.; Hendrick, N.; Lardenois, A.; Buratowski, S.; van Oudenaarden, A.; Primig, M.; Amon, A. Transcription of Two Long Noncoding RNAs Mediates Mating-Type Control of Gametogenesis in Budding Yeast. Cell 2012, 150, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Moretto, F.; van Werven, F.J. Transcription of the Mating-Type-Regulated lncRNA IRT1 Is Governed by TORC1 and PKA. Curr. Genet. 2017, 63, 325–329. [Google Scholar] [CrossRef]
- Moretto, F.; Wood, N.E.; Kelly, G.; Doncic, A.; van Werven, F.J. A Regulatory Circuit of Two lncRNAs and a Master Regulator Directs Cell Fate in Yeast. Nat. Commun. 2018, 9, 780. [Google Scholar] [CrossRef]
- Moretto, F.; Wood, N.E.; Chia, M.; Li, C.; Luscombe, N.M.; van Werven, F.J. Transcription Levels of a Noncoding RNA Orchestrate Opposing Regulatory and Cell Fate Outcomes in Yeast. Cell Rep. 2021, 34, 108643. [Google Scholar] [CrossRef]
- Gelfand, B.; Mead, J.; Bruning, A.; Apostolopoulos, N.; Tadigotla, V.; Nagaraj, V.; Sengupta, A.M.; Vershon, A.K. Regulated Antisense Transcription Controls Expression of Cell-Type-Specific Genes in Yeast. Mol. Cell. Biol. 2011, 31, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, S.L.; Dowell, R.D.; Grisafi, P.; Gifford, D.K.; Fink, G.R. Toggle Involving Cis-Interfering Noncoding RNAs Controls Variegated Gene Expression in Yeast. Proc. Natl. Acad. Sci. USA 2009, 106, 18321–18326. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wei, W.; Gagneur, J.; Clauder-Münster, S.; Smolik, M.; Huber, W.; Steinmetz, L.M. Antisense Expression Increases Gene Expression Variability and Locus Interdependency. Mol. Syst. Biol. 2011, 7, 468. [Google Scholar] [CrossRef] [PubMed]
- Raupach, E.A.; Martens, J.A.; Arndt, K.M. Evidence for Regulation of ECM3 Expression by Methylation of Histone H3 Lysine 4 and Intergenic Transcription in Saccharomyces cerevisiae. G3 Bethesda Md 2016, 6, 2971–2981. [Google Scholar] [CrossRef]
- Novačić, A.; Vučenović, I.; Primig, M.; Stuparević, I. Non-Coding RNAs as Cell Wall Regulators in Saccharomyces cerevisiae. Crit. Rev. Microbiol. 2020, 46, 15–25. [Google Scholar] [CrossRef]
- Bunina, D.; Štefl, M.; Huber, F.; Khmelinskii, A.; Meurer, M.; Barry, J.D.; Kats, I.; Kirrmaier, D.; Huber, W.; Knop, M. Upregulation of SPS100 Gene Expression by an Antisense RNA via a Switch of mRNA Isoforms with Different Stabilities. Nucleic Acids Res. 2017, 45, 11144–11158. [Google Scholar] [CrossRef]
- Yu, Y.; Yarrington, R.M.; Chuong, E.B.; Elde, N.C.; Stillman, D.J. Disruption of Promoter Memory by Synthesis of a Long Noncoding RNA. Proc. Natl. Acad. Sci. USA 2016, 113, 9575–9580. [Google Scholar] [CrossRef]
- Ling, Y.H.; Yuen, K.W.Y. Point Centromere Activity Requires an Optimal Level of Centromeric Noncoding RNA. Proc. Natl. Acad. Sci. USA 2019, 116, 6270–6279. [Google Scholar] [CrossRef]
- Zappulla, D.C. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Mol. Basel Switz. 2020, 25, 2750. [Google Scholar] [CrossRef]
- Kyriakou, D.; Stavrou, E.; Demosthenous, P.; Angelidou, G.; San Luis, B.-J.; Boone, C.; Promponas, V.J.; Kirmizis, A. Functional Characterisation of Long Intergenic Non-Coding RNAs through Genetic Interaction Profiling in Saccharomyces cerevisiae. BMC Biol. 2016, 14, 106. [Google Scholar] [CrossRef]
- Thebault, P.; Boutin, G.; Bhat, W.; Rufiange, A.; Martens, J.; Nourani, A. Transcription Regulation by the Noncoding RNA SRG1 Requires Spt2-Dependent Chromatin Deposition in the Wake of RNA Polymerase II. Mol. Cell. Biol. 2011, 31, 1288–1300. [Google Scholar] [CrossRef]
- Geisler, S.; Lojek, L.; Khalil, A.M.; Baker, K.E.; Coller, J. Decapping of Long Noncoding RNAs Regulates Inducible Genes. Mol. Cell 2012, 45, 279–291. [Google Scholar] [CrossRef]
- Kim, H.J.; Szurgot, M.R.; van Eeuwen, T.; Ricketts, M.D.; Basnet, P.; Zhang, A.L.; Vogt, A.; Sharmin, S.; Kaplan, C.D.; Garcia, B.A.; et al. Structure of the Hir Histone Chaperone Complex. Mol. Cell 2024, 84, 2601–2617.e12. [Google Scholar] [CrossRef] [PubMed]
- Korber, P.; Barbaric, S. The Yeast PHO5 Promoter: From Single Locus to Systems Biology of a Paradigm for Gene Regulation through Chromatin. Nucleic Acids Res. 2014, 42, 10888–10902. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Hall, M.N. TOR Signalling and Control of Cell Growth. Curr. Opin. Cell Biol. 1997, 9, 782–787. [Google Scholar] [CrossRef] [PubMed]
- de Nadal, E.; Posas, F. The HOG Pathway and the Regulation of Osmoadaptive Responses in Yeast. FEMS Yeast Res. 2022, 22, foac013. [Google Scholar] [CrossRef]
- Wolf, I.R.; Marques, L.F.; de Almeida, L.F.; Lázari, L.C.; de Moraes, L.N.; Cardoso, L.H.; de Alves, C.C.O.; Nakajima, R.T.; Schnepper, A.P.; de Golim, M.A.; et al. Integrative Analysis of the Ethanol Tolerance of Saccharomyces cerevisiae. Int. J. Mol. Sci. 2023, 24, 5646. [Google Scholar] [CrossRef]
- Schnepper, A.P.; Marques, L.F.; Wolf, I.R.; Kubo, A.M.S.; Valente, G.T. Potential Global Cis and Trans Regulation of lncRNAs in Saccharomyces cerevisiae Subjected to Ethanol Stress. Gene 2024, 920, 148521. [Google Scholar] [CrossRef]
- Schnepper, A.P.; Kubo, A.M.S.; Pinto, C.M.; Gomes, R.H.M.; Fioretto, M.N.; Justulin, L.A.; Braz, A.M.M.; de Golim, M.A.; Grotto, R.M.T.; Valente, G.T. Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity. Genes 2025, 16, 170. [Google Scholar] [CrossRef]
- Horsey, E.W.; Jakovljevic, J.; Miles, T.D.; Harnpicharnchai, P.; Woolford, J.L. Role of the Yeast Rrp1 Protein in the Dynamics of Pre-Ribosome Maturation. RNA 2004, 10, 813–827. [Google Scholar] [CrossRef]
- Halme, A.; Bumgarner, S.; Styles, C.; Fink, G.R. Genetic and Epigenetic Regulation of the FLO Gene Family Generates Cell-Surface Variation in Yeast. Cell 2004, 116, 405–415. [Google Scholar] [CrossRef]
- Lee, C.-S.; Haber, J.E. Mating-Type Gene Switching in Saccharomyces cerevisiae. Microbiol. Spectr. 2015, 3, MDNA3-0013-2014. [Google Scholar] [CrossRef]
- Yarrington, R.M.; Rudd, J.S.; Stillman, D.J. Spatiotemporal Cascade of Transcription Factor Binding Required for Promoter Activation. Mol. Cell. Biol. 2015, 35, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Bleykasten-Grosshans, C.; Friedrich, A.; Schacherer, J. Genome-Wide Analysis of Intraspecific Transposon Diversity in Yeast. BMC Genom. 2013, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Talbert, P.B.; Henikoff, S. Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends Genet. TIG 2018, 34, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Corless, S.; Höcker, S.; Erhardt, S. Centromeric RNA and Its Function at and beyond Centromeric Chromatin. J. Mol. Biol. 2020, 432, 4257–4269. [Google Scholar] [CrossRef]
- Ling, Y.H.; Yuen, K.W.Y. Centromeric Non-Coding RNA as a Hidden Epigenetic Factor of the Point Centromere. Curr. Genet. 2019, 65, 1165–1171. [Google Scholar] [CrossRef]
- Wu, R.A.; Upton, H.E.; Vogan, J.M.; Collins, K. Telomerase Mechanism of Telomere Synthesis. Annu. Rev. Biochem. 2017, 86, 439–460. [Google Scholar] [CrossRef]
- Leonardi, J.; Box, J.A.; Bunch, J.T.; Baumann, P. TER1, the RNA Subunit of Fission Yeast Telomerase. Nat. Struct. Mol. Biol. 2008, 15, 26–33. [Google Scholar] [CrossRef]
- McMurdie, K.; Peeney, A.N.; Mefford, M.A.; Baumann, P.; Zappulla, D.C. S. Pombe Telomerase RNA: Secondary Structure and Flexible-Scaffold Function. BioRxiv Prepr. Serv. Biol. 2025; preprint. [Google Scholar] [CrossRef]
- Zeinoun, B.; Teixeira, M.T.; Barascu, A. TERRA and Telomere Maintenance in the Yeast Saccharomyces cerevisiae. Genes 2023, 14, 618. [Google Scholar] [CrossRef] [PubMed]
- Cusanelli, E.; Chartrand, P. Telomeric Repeat-Containing RNA TERRA: A Noncoding RNA Connecting Telomere Biology to Genome Integrity. Front. Genet. 2015, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Miyoshi, T.; Kugou, K.; Hoffman, C.S.; Shibata, T.; Ohta, K. Stepwise Chromatin Remodelling by a Cascade of Transcription Initiation of Non-Coding RNAs. Nature 2008, 456, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Ohta, K. Cascade Transcription of mRNA-Type Long Non-Coding RNAs (mlonRNAs) and Local Chromatin Remodeling. Epigenetics 2009, 4, 5–7. [Google Scholar] [CrossRef]
- Shah, S.; Wittmann, S.; Kilchert, C.; Vasiljeva, L. lncRNA Recruits RNAi and the Exosome to Dynamically Regulate Pho1 Expression in Response to Phosphate Levels in Fission Yeast. Genes Dev. 2014, 28, 231–244. [Google Scholar] [CrossRef]
- Garg, A.; Sanchez, A.M.; Shuman, S.; Schwer, B. A Long Noncoding (Lnc)RNA Governs Expression of the Phosphate Transporter Pho84 in Fission Yeast and Has Cascading Effects on the Flanking Prt lncRNA and Pho1 Genes. J. Biol. Chem. 2018, 293, 4456–4467. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Shuman, S.; Schwer, B. Poly(A) Site Choice and Pol2 CTD Serine-5 Status Govern lncRNA Control of Phosphate-Responsive Tgp1 Gene Expression in Fission Yeast. RNA 2018, 24, 237–250. [Google Scholar] [CrossRef]
- Leong, H.S.; Dawson, K.; Wirth, C.; Li, Y.; Connolly, Y.; Smith, D.L.; Wilkinson, C.R.M.; Miller, C.J. A Global Non-Coding RNA System Modulates Fission Yeast Protein Levels in Response to Stress. Nat. Commun. 2014, 5, 3947. [Google Scholar] [CrossRef]
- Ono, Y.; Katayama, K.; Onuma, T.; Kubo, K.; Tsuyuzaki, H.; Hamada, M.; Sato, M. Structure-Based Screening for Functional Non-Coding RNAs in Fission Yeast Identifies a Factor Repressing Untimely Initiation of Sexual Differentiation. Nucleic Acids Res. 2022, 50, 11229–11242. [Google Scholar] [CrossRef]
- Fauquenoy, S.; Migeot, V.; Finet, O.; Yague-Sanz, C.; Khorosjutina, O.; Ekwall, K.; Hermand, D. Repression of Cell Differentiation by a Cis-Acting lincRNA in Fission Yeast. Curr. Biol. CB 2018, 28, 383–391.e3. [Google Scholar] [CrossRef]
- Andric, V.; Nevers, A.; Hazra, D.; Auxilien, S.; Menant, A.; Graille, M.; Palancade, B.; Rougemaille, M. A Scaffold lncRNA Shapes the Mitosis to Meiosis Switch. Nat. Commun. 2021, 12, 770. [Google Scholar] [CrossRef]
- Touat-Todeschini, L.; Shichino, Y.; Dangin, M.; Thierry-Mieg, N.; Gilquin, B.; Hiriart, E.; Sachidanandam, R.; Lambert, E.; Brettschneider, J.; Reuter, M.; et al. Selective Termination of lncRNA Transcription Promotes Heterochromatin Silencing and Cell Differentiation. EMBO J. 2017, 36, 2626–2641. [Google Scholar] [CrossRef]
- Anver, S.; Sumit, A.F.; Sun, X.-M.; Hatimy, A.; Thalassinos, K.; Marguerat, S.; Alic, N.; Bähler, J. Ageing-Associated Long Non-Coding RNA Extends Lifespan and Reduces Translation in Non-Dividing Cells. EMBO Rep. 2024, 25, 4921–4949. [Google Scholar] [CrossRef]
- Asada, R.; Hirota, K. Multi-Layered Regulations on the Chromatin Architectures: Establishing the Tight and Specific Responses of Fission Yeast Fbp1 Gene Transcription. Biomolecules 2022, 12, 1642. [Google Scholar] [CrossRef]
- Adachi, A.; Senmatsu, S.; Asada, R.; Abe, T.; Hoffman, C.S.; Ohta, K.; Hirota, K. Interplay between Chromatin Modulators and Histone Acetylation Regulates the Formation of Accessible Chromatin in the Upstream Regulatory Region of Fission Yeast Fbp1. Genes Genet. Syst. 2018, 92, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, Y.; Senmatsu, S.; Oe, H.; Hoffman, C.S.; Hirota, K. Metabolic Stress-Induced Long ncRNA Transcription Governs the Formation of Meiotic DNA Breaks in the Fission Yeast Fbp1 Gene. PLoS ONE 2024, 19, e0294191. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.C.; Power, J.E.; Kerwin, C.L.; Mohammed, A.; Weissman, J.S.; Cameron, D.M.; Wykoff, D.D. Systematic Screen of Schizosaccharomyces pombe Deletion Collection Uncovers Parallel Evolution of the Phosphate Signal Transduction Pathway in Yeasts. Eukaryot. Cell 2011, 10, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Sanchez, A.M.; Goldgur, Y.; Shuman, S.; Schwer, B. Transcription of lncRNA Prt, Clustered Prt RNA Sites for Mmi1 Binding, and RNA Polymerase II CTD Phospho-Sites Govern the Repression of Pho1 Gene Expression under Phosphate-Replete Conditions in Fission Yeast. RNA 2016, 22, 1011–1025. [Google Scholar] [CrossRef]
- Schwer, B.; Sanchez, A.M.; Shuman, S. Inactivation of Fission Yeast Erh1 De-Represses Pho1 Expression: Evidence That Erh1 Is a Negative Regulator of Prt lncRNA Termination. RNA 2020, 26, 1334–1344. [Google Scholar] [CrossRef]
- Ard, R.; Tong, P.; Allshire, R.C. Long Non-Coding RNA-Mediated Transcriptional Interference of a Permease Gene Confers Drug Tolerance in Fission Yeast. Nat. Commun. 2014, 5, 5576. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.H.; Spector, D.L. Long Non-Coding RNAs: Modulators of Nuclear Structure and Function. Curr. Opin. Cell Biol. 2014, 26, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Li, P.; Yu, H.; Chen, L.-L. Emerging Roles of Nuclear Bodies in Genome Spatial Organization. Trends Cell Biol. 2024, 34, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Yamamoto, M.S. Pombe Mei2+ Encodes an RNA-Binding Protein Essential for Premeiotic DNA Synthesis and Meiosis I, Which Cooperates with a Novel RNA Species meiRNA. Cell 1994, 78, 487–498. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shinozaki-Yabana, S.; Chikashige, Y.; Hiraoka, Y.; Yamamoto, M. Phosphorylation of RNA-Binding Protein Controls Cell Cycle Switch from Mitotic to Meiotic in Fission Yeast. Nature 1997, 386, 187–190. [Google Scholar] [CrossRef]
- Shichino, Y.; Yamashita, A.; Yamamoto, M. Meiotic Long Non-Coding meiRNA Accumulates as a Dot at Its Genetic Locus Facilitated by Mmi1 and Plays as a Decoy to Lure Mmi1. Open Biol. 2014, 4, 140022. [Google Scholar] [CrossRef]
- Kawamukai, M. Regulation of Sexual Differentiation Initiation in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 2024, 88, 475–492. [Google Scholar] [CrossRef]
- Thillainadesan, G.; Xiao, H.; Holla, S.; Dhakshnamoorthy, J.; Jenkins, L.M.M.; Wheeler, D.; Grewal, S.I.S. Conserved Protein Pir2ARS2 Mediates Gene Repression through Cryptic Introns in lncRNAs. Nat. Commun. 2020, 11, 2412. [Google Scholar] [CrossRef]
- Ohtsuka, H.; Shimasaki, T.; Aiba, H. Genes Affecting the Extension of Chronological Lifespan in Schizosaccharomyces pombe (Fission Yeast). Mol. Microbiol. 2021, 115, 623–642. [Google Scholar] [CrossRef]
- Logeswaran, D.; Li, Y.; Akhter, K.; Podlevsky, J.D.; Olson, T.L.; Forsberg, K.; Chen, J.J.-L. Biogenesis of Telomerase RNA from a Protein-Coding mRNA Precursor. Proc. Natl. Acad. Sci. USA 2022, 119, e2204636119. [Google Scholar] [CrossRef]
- Gao, J.; Chow, E.W.L.; Wang, H.; Xu, X.; Cai, C.; Song, Y.; Wang, J.; Wang, Y. LncRNA DINOR Is a Virulence Factor and Global Regulator of Stress Responses in Candida auris. Nat. Microbiol. 2021, 6, 842–851. [Google Scholar] [CrossRef]
- Chacko, N.; Zhao, Y.; Yang, E.; Wang, L.; Cai, J.J.; Lin, X. The lncRNA RZE1 Controls Cryptococcal Morphological Transition. PLoS Genet. 2015, 11, e1005692. [Google Scholar] [CrossRef] [PubMed]
- Mueller, O.; Kahmann, R.; Aguilar, G.; Trejo-Aguilar, B.; Wu, A.; de Vries, R.P. The Secretome of the Maize Pathogen Ustilago maydis. Fungal Genet. Biol. FG B 2008, 45 (Suppl. S1), S63–S70. [Google Scholar] [CrossRef]
- Donaldson, M.E.; Saville, B.J. Ustilago maydis Natural Antisense Transcript Expression Alters mRNA Stability and Pathogenesis. Mol. Microbiol. 2013, 89, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Staniszewska, M. Virulence Factors in Candida Species. Curr. Protein Pept. Sci. 2020, 21, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Jackson, J.C.; Feretzaki, M.; Xue, C.; Heitman, J. Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans. PLoS Genet. 2010, 6, e1000953. [Google Scholar] [CrossRef]
- Xue, Z.; Ye, Q.; Anson, S.R.; Yang, J.; Xiao, G.; Kowbel, D.; Glass, N.L.; Crosthwaite, S.K.; Liu, Y. Transcriptional Interference by Antisense RNA Is Required for Circadian Clock Function. Nature 2014, 514, 650–653. [Google Scholar] [CrossRef]
- Kramer, C.; Loros, J.J.; Dunlap, J.C.; Crosthwaite, S.K. Role for Antisense RNA in Regulating Circadian Clock Function in Neurospora crassa. Nature 2003, 421, 948–952. [Google Scholar] [CrossRef]
- Li, N.; Joska, T.M.; Ruesch, C.E.; Coster, S.J.; Belden, W.J. The Frequency Natural Antisense Transcript First Promotes, Then Represses, Frequency Gene Expression via Facultative Heterochromatin. Proc. Natl. Acad. Sci. USA 2015, 112, 4357–4362. [Google Scholar] [CrossRef]
- Till, P.; Pucher, M.E.; Mach, R.L.; Mach-Aigner, A.R. A Long Noncoding RNA Promotes Cellulase Expression in Trichoderma reesei. Biotechnol. Biofuels 2018, 11, 78. [Google Scholar] [CrossRef]
- Parra-Rivero, O.; Pardo-Medina, J.; Gutiérrez, G.; Limón, M.C.; Avalos, J. A Novel lncRNA as a Positive Regulator of Carotenoid Biosynthesis in Fusarium. Sci. Rep. 2020, 10, 678. [Google Scholar] [CrossRef]
- Pardo-Medina, J.; Gutiérrez, G.; Limón, M.C.; Avalos, J. The carP lncRNA Is a carS-Related Regulatory Element with Broad Effects on the Fusarium fujikuroi Transcriptome. Non-Coding RNA 2021, 7, 46. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, W.; Xie, J.; Fu, Y.; Jiang, D.; Lin, Y.; Chen, W.; Cheng, J. A Novel Antisense Long Non-coding RNA Participates in Asexual and Sexual Reproduction by Regulating the Expression of GzmetE in Fusarium graminearum. Environ. Microbiol. 2021, 23, 4939–4955. [Google Scholar] [CrossRef]
- Huang, P.; Yu, X.; Liu, H.; Ding, M.; Wang, Z.; Xu, J.-R.; Jiang, C. Regulation of TRI5 Expression and Deoxynivalenol Biosynthesis by a Long Non-Coding RNA in Fusarium graminearum. Nat. Commun. 2024, 15, 1216. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, W.; Cheng, J.; Xie, J.; Fu, Y.; Jiang, D.; Lin, Y. lncRsp1, a Long Noncoding RNA, Influences Fgsp1 Expression and Sexual Reproduction in Fusarium graminearum. Mol. Plant Pathol. 2022, 23, 265–277. [Google Scholar] [CrossRef]
- Lu, P.; Chen, D.; Qi, Z.; Wang, H.; Chen, Y.; Wang, Q.; Jiang, C.; Xu, J.-R.; Liu, H. Landscape and Regulation of Alternative Splicing and Alternative Polyadenylation in a Plant Pathogenic Fungus. New Phytol. 2022, 235, 674–689. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, Y.; Cai, G.; Peng, H.; Wang, X.; Li, P.; Gu, A.; Li, Y.; Ma, D. An Antisense Long Lon-Coding RNA, lncRsn, Is Involved in Sexual Reproduction and Full Virulence in Fusarium graminearum. J. Fungi Basel Switz. 2024, 10, 692. [Google Scholar] [CrossRef]
- Eliahu, N.; Igbaria, A.; Rose, M.S.; Horwitz, B.A.; Lev, S. Melanin Biosynthesis in the Maize Pathogen Cochliobolus heterostrophus Depends on Two Mitogen-Activated Protein Kinases, Chk1 and Mps1, and the Transcription Factor Cmr1. Eukaryot. Cell 2007, 6, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Avrova, A.O.; Whisson, S.C.; Pritchard, L.; Venter, E.; De Luca, S.; Hein, I.; Birch, P.R.J. A Novel Non-Protein-Coding Infection-Specific Gene Family Is Clustered throughout the Genome of Phytophthora infestans. Microbiol. Read. Engl. 2007, 153, 747–759. [Google Scholar] [CrossRef]
- Kalita, B.; Roy, A.; Jayaprakash, A.; Arunachalam, A.; Lakshmi, P.T.V. Identification of lncRNA and Weighted Gene Coexpression Network Analysis of Germinating Rhizopus delemar Causing Mucormycosis. Mycology 2023, 14, 344–357. [Google Scholar] [CrossRef]
- Baker, C.L.; Loros, J.J.; Dunlap, J.C. The Circadian Clock of Neurospora crassa. FEMS Microbiol. Rev. 2012, 36, 95–110. [Google Scholar] [CrossRef]
- Cemel, I.A.; Diernfellner, A.C.R.; Brunner, M. Antisense Transcription of the Neurospora Frequency Gene Is Rhythmically Regulated by CSP-1 Repressor but Dispensable for Clock Function. J. Biol. Rhythms 2023, 38, 259–268. [Google Scholar] [CrossRef]
- Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.; Hornero-Méndez, D.; Limón, M.C. Carotenoid Biosynthesis in Fusarium. J. Fungi 2017, 3, 39. [Google Scholar] [CrossRef]
- Ruger-Herreros, M.; Parra-Rivero, O.; Pardo-Medina, J.; Romero-Campero, F.J.; Limón, M.C.; Avalos, J. Comparative Transcriptomic Analysis Unveils Interactions between the Regulatory CarS Protein and Light Response in Fusarium. BMC Genomics 2019, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Marente, J.; Avalos, J.; Limón, M.C. Controlled Transcription of Regulator Gene carS by Tet-on or by a Strong Promoter Confirms Its Role as a Repressor of Carotenoid Biosynthesis in Fusarium fujikuroi. Microorganisms 2020, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.A.; Ukladov, E.O.; Golubeva, T.S. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J. Fungi Basel Switz. 2021, 7, 1071. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, M.; Anver, S.; Cotobal, C.; Kamrad, S.; Malecki, M.; Correia-Melo, C.; Hoti, M.; Townsend, S.; Marguerat, S.; Pong, S.K.; et al. Functional Profiling of Long Intergenic Non-Coding RNAs in Fission Yeast. eLife 2022, 11, e76000. [Google Scholar] [CrossRef]
- Garg, A. A lncRNA-Regulated Gene Expression System with Rapid Induction Kinetics in the Fission Yeast Schizosaccharomyces pombe. RNA 2020, 26, 1743–1752. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, J.; Hu, G. Genome-Wide Methods for Investigating Long Noncoding RNAs. Biomed. Pharmacother. 2019, 111, 395–401. [Google Scholar] [CrossRef]
- Andjus, S.; Szachnowski, U.; Vogt, N.; Gioftsidi, S.; Hatin, I.; Cornu, D.; Papadopoulos, C.; Lopes, A.; Namy, O.; Wery, M.; et al. Pervasive Translation of Xrn1-Sensitive Unstable Long Noncoding RNAs in Yeast. RNA 2024, 30, 662–679. [Google Scholar] [CrossRef]
- Smith, J.E.; Alvarez-Dominguez, J.R.; Kline, N.; Huynh, N.J.; Geisler, S.; Hu, W.; Coller, J.; Baker, K.E. Translation of Small Open Reading Frames within Unannotated RNA Transcripts in Saccharomyces cerevisiae. Cell Rep. 2014, 7, 1858–1866. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Arbes, H.; Cornu, D.; Chevrollier, N.; Blanchet, S.; Roginski, P.; Rabier, C.; Atia, S.; Lespinet, O.; Namy, O.; et al. The Ribosome Profiling Landscape of Yeast Reveals a High Diversity in Pervasive Translation. Genome Biol. 2024, 25, 268. [Google Scholar] [CrossRef]
- Blevins, W.R.; Ruiz-Orera, J.; Messeguer, X.; Blasco-Moreno, B.; Villanueva-Cañas, J.L.; Espinar, L.; Díez, J.; Carey, L.B.; Albà, M.M. Uncovering de Novo Gene Birth in Yeast Using Deep Transcriptomics. Nat. Commun. 2021, 12, 604. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Callebaut, I.; Gelly, J.-C.; Hatin, I.; Namy, O.; Renard, M.; Lespinet, O.; Lopes, A. Intergenic ORFs as Elementary Structural Modules of de Novo Gene Birth and Protein Evolution. Genome Res. 2021, 31, 2303–2315. [Google Scholar] [CrossRef]
- Wacholder, A.; Parikh, S.B.; Coelho, N.C.; Acar, O.; Houghton, C.; Chou, L.; Carvunis, A.-R. A Vast Evolutionarily Transient Translatome Contributes to Phenotype and Fitness. Cell Syst. 2023, 14, 363–381.e8. [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal Evolution: Cellular, Genomic and Metabolic Complexity. Biol. Rev. Camb. Philos. Soc. 2020, 95, 1198–1232. [Google Scholar] [CrossRef]
Species | IG lncRNAs a | AS lncRNAs b | Technology c | Refs. |
---|---|---|---|---|
Saccharomyces cerevisiae | 77 | 21 | T | [38] |
234 | 193 | T | [23] | |
667 | 367 | C | [25] | |
487 | ND | S | [26] | |
ND | 1103 | S | [27] | |
Schizosaccharomyces pombe | 427 | 37 | S, T | [48] |
338 | 546 | S | [49] | |
Pichia pastoris | 36 | 168 | S | [50] |
Ustilago maydis | ND | 210 | C | [51] |
2414 | 2624 | S | [52] | |
Ustilago hordeum | 1206 | 1606 | S | [52] |
Sporisorium reilianum | 1776 | 1949 | S | [52] |
Ustilaginoidea virens | 1084 | 566 | S | [53] |
Neurospora crassa | 462 | 477 | S | [54] |
Aspergillus flavus | 939 | 1124 | S | [55] |
Magnaporthe oryzae | 1286 | 980 | S | [56] |
Botrytis cinerea | 945 | 743 | S | [57] |
Verticillum dahliae | 1432 | 1533 | S | [58] |
Pyricularia oryzae | 2478 | 508 | S | [59] |
Fusarium graminearum | 1054 | 1040 | S | [60] |
lncRNA | Target | Location a | Cellular Function | Mechanism of Action b | Refs. |
---|---|---|---|---|---|
SRG1 | SER3 | I, US | Serine biosynthesis | C, chromatin remodeling | [104,105,106] |
usURA2 | URA2 | I, DS | Pyrimidine biosynthesis | C, TSS selection | [116] |
Attenuated
transcripts | IMD2 | I, DS | Inosine biosynthesis | C, TSS selection | [117] |
HRA1 | DRS2? 18S RNA? | A of DRS2 | Golgi protein transport? 18S RNA maturation? | T, ND | [38] |
GAL10 ncRNA | GAL1, GAL10 | A of GAL10 O of GAL1 | Galactose utilization | C, chromatin remodeling | [118,119] |
PHO5 antisense | PHO5 | A | Phosphate utilization | C, chromatin remodeling | [102,103] |
PHO84 antisense | PHO84 | A | Phosphate utilization | C, chromatin remodeling | [101,102] |
ncASP3 | ASP3 | O | Nitrogen metabolism | C, chromatin remodeling | [120] |
TBRT | TAT1 BAP2 | A I, UA | Amino acid transport | C, chromatin remodeling | [121] |
CUT60 | ATP16 | I, US | Mitochondrial function | C, transcription promotion | [122] |
SUT067 SUT433 CUT782 | ND | ND | Energy metabolism Translation activity | ND | [123] |
SUT125, SUT126, SUT035, SUT532 | ND | ND | Diverse functions | T, unknown | [124] |
FAR1 antisense CTF4 antisense TAF2 antisense | FAR1 CTF4 TAF2 | A | Cell cycle TFIID function (TAF2) | C, ND | [125] |
PET10 antisense CLD1 antisense MOH1 antisense SSH3 antisense | PET10 CLD1 MOH1 SSH3 | A | Expressed in quiescent cells | C, transcription interference | [126] |
CDC28 antisense | CDC28 | A | Cell cycle and stress | C, chromatin remodeling | [127] |
lnc9136 | Hsl1p and Gin4p? | ND | Cell cycle and ethanol stress. Translation | T, protein decoy? | [128] |
IRT1 (RME1) | IME1 | I, US | Meiosis entry | C, transcription interference, chromatin remodeling | [129,130,131] |
IRT2 | IRT1, IME1 | I, US | Meiosis entry | C, chromatin remodeling | [132] |
RME2 | IME4 | A | Meiosis entry | C, transcription interference. Chromatin remodeling? | [100] |
RME3 | ZIP2 | A | Meiotic recombination | C, chromatin remodeling | [133] |
ICR1 PWR1 | FLO11 ICR1 | I, US A | Pseudohyphal growth | C, chromatin remodeling, transcription interference | [134] |
SUT719 | SUR7 | A | Repressed by α-pheromone | C, ND | [135] |
EUC1 | ECM3 | I, US | Cell wall | C, chromatin remodeling | [136,137] |
SUT228 | PIR3 | I, US | Cell wall | ND | [137] |
SUT169 | SPS100 | A | Cell wall | mRNA isoform regulation | [137,138] |
TIR1axut | TIR1 | A | Cell wall | C, chromatin remodeling | [44,137] |
pHO-lncRNA | HO | I, US, O | Mating type switch | C, transcription interference | [139] |
Ty1 antisense | Ty1 transposon | A | Transposon control | C, chromatin remodeling | [107] |
cenRNAs | CENP-A, CENP-C and others | Centromeres | Kinetochore formation | T, protein recruiting | [140] |
TLC1 | Telomerase | NR | Telomerase function | T, protein recruiting | [141] |
TERRA | Telomerase proteins | Subtelomeric | Telomerase function | T, telomerase inhibition | [109] |
SUT457 | Telomere ends? | NR | Telomere maintenance | T, ND | [142] |
lncRNA | Target | Location a | Cellular Function | Mechanism of Action b | Refs. |
---|---|---|---|---|---|
mlonRNA-a mlonRNA-b mlonRNA-c | fbp1 | I, US | Gluconeogenesis | C, chromatin remodeling | [165,166] |
mlonRNAs | ade6-M26 | I, US | Purine synthesis | C, chromatin remodeling | [166] |
prt | pho1 | I, US, O | Phosphate utilization | C, chromatin remodeling | [167] |
prt2 | pho84 tgp1 | I, US, O I, US | Phosphate utilization | C, transcription interference? C. ND | [168] |
nc-tgp1 | tgp1 | I, US | Phosphate utilization | C, chromatin remodeling, transcription interference | [169] |
SPNCRNA.1164 | atf1 | ND | Oxidative stress | ND | [170] |
XUT0794 | ctt1 | A | Oxidative stress | C, chromatin remodeling | [66] |
nc1995 | ste11 | NR | Sexual development | T, ND | [171] |
rse1 rce1 | ste11 rse1 | I, UA I, US | Sexual development | C, chromatin remodeling C, transcription interference? | [172] |
meiRNA | sme2, Mei2 | I | Nuclear organization | C (at own sme2 locus) T, protein recruiting | [110,111] |
mamRNA | Mmi1, Mei2 | NR | Nuclear organization | T, protein recruiting | [173] |
nam1 | byr2 | I, US | Sexual development | C, chromatin remodeling | [174] |
aal1 | rirpl1901 | NR | Chronological lifespan | T, binding target mRNA | [175] |
TER1 | Telomerase | NR | Telomerase function | T, protein recruiting | [161,162] |
Species a | lncRNA | Target | Location b | Functional Role | Mechanism of Action c | Refs. |
---|---|---|---|---|---|---|
Um | ncRNA1 | um12316 um02150 um12316 | NR I, DA A | Pathogenesis Pathogenesis Pathogenesis? | T, ND C, ND T, ND | [70] |
Um | as-ssm1 | ssm1 | A | Mitochondrial function | C, duplex RNA formation | [108] |
Um | emi1 | Telomerase | NR | Telomerase function | T, Maturation, protein recruiting | [191] |
Ca | DINOR | ND | NR | Genome integrity, Morphological transition | T, protein recruiting? | [192] |
Cn | RZE1 | ZNF2 | I, UA | Morphological transition | C, ND | [193] |
Uv | UvlncNAT-MFS | UvMFS | A | Zinc transport | C, duplex RNA formation | [53] |
Species a | lncRNA | Target | Location b | Functional Role c | Mechanism of Action d | Refs. |
---|---|---|---|---|---|---|
Nc | qrf | frq | A | Circadian rhythm | C, chromatin remodeling | [198,199,200] |
Tr | HAX1 | Xyr1 | NR | Cellulase production | T, protein interaction | [112,201] |
Ff/Fo | Ff-carP | carS | I, US | Photocarotenogenesis | C, transcription interference | [202,203] |
Fg | GzmetE-AS | GzmetE | A | Sexual development | C, sense mRNA degradation | [204] |
Fg | anti TRI5 anti TRI6 anti TRI11 RNA5P | tri5 tri6 tri11 | A A A I, US | Secondary metabolism (DON) | C, ND C, ND C, ND C, transcription interference? | [205] |
Fg | lncRsp1 | Fgsp1 | I, US, O | Sexual development, Secondary metabolism (DON) | ND | [206] |
Fg | LncRsn | FgSna FgPta | I, DA I, DS | Sexual development, pathogenesis | ND | [207,208] |
Ch | cmr1 antisense | cmr1 | A | Melanin production | C, ND | [209] |
Mr | mrLncRNA1 | ND | ND | Conidia thermotolerance | ND | [87] |
Pi | Pinci1-1 Pinci1-5 | ND | I | Pathogenesis | ND | [210] |
Po | G003973 | MGG_15773 | I, US | Hyphal development | C, ND | [59] |
Rd | MSTRG.10396.1 | RO3G_03340 | ND | Cell wall | ND | [211] |
Vd | LNC_01522 | VDAG_09366 VDAG_01782 VDAG_01205 | ND | Pathogenesis | ND | [58] |
Vd | LNC_000201 | VDAG_09366 | ND | Pathogenesis? | ND | [58] |
Vd | lncRNA009491 lncRNA007722 lncRNA009491 | ND | ND | Pathogenesis | ND | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avalos, J.; Perera-Bonaño, A.; Limón, M.C. Identification and Functions of lncRNAs in Fungi. Non-Coding RNA 2025, 11, 72. https://doi.org/10.3390/ncrna11050072
Avalos J, Perera-Bonaño A, Limón MC. Identification and Functions of lncRNAs in Fungi. Non-Coding RNA. 2025; 11(5):72. https://doi.org/10.3390/ncrna11050072
Chicago/Turabian StyleAvalos, Javier, Adrián Perera-Bonaño, and M. Carmen Limón. 2025. "Identification and Functions of lncRNAs in Fungi" Non-Coding RNA 11, no. 5: 72. https://doi.org/10.3390/ncrna11050072
APA StyleAvalos, J., Perera-Bonaño, A., & Limón, M. C. (2025). Identification and Functions of lncRNAs in Fungi. Non-Coding RNA, 11(5), 72. https://doi.org/10.3390/ncrna11050072