microRNA Biomarkers in Paediatric Infection Diagnostics—Bridging the Gap Between Evidence and Clinical Application: A Scoping Review
Abstract
1. Introduction
2. Results
2.1. Search Selection and Study Characteristics
2.2. Characteristics of Populations
2.3. Reference Standards
2.4. Study Methodologies
Author [Citation] | Year | Study Methods | RNA Extraction Kit | NGS Kit | Sample Type (Volume) | Normalisation |
---|---|---|---|---|---|---|
Jone, et al. [43] | 2020 | Microarray | Own Methods | N/A | Serum (3 mL) | hsa-miR-320 |
Zhang, et al. [25] | 2020 | NGS + RT-qPCR | Trizol Reagent | NEBNext Ultra RNA Library Prep Kit for Illumina | Whole blood | U6 |
Zhang, et al. [26] | 2021 | RT-qPCR | Trizol Reagent | N/A | Whole blood | U6 |
Tian, et al. [27] | 2021 | RT-qPCR | Trizol Reagent | N/A | BALF | U6 |
Mao, et al. [28] | 2021 | RT-qPCR | Trizol Reagent | N/A | Serum | U6 |
Liu, et al. [30] | 2024 | RT-qPCR | miRNeasy Serum Kit | N/A | Serum | U6 |
Kyo, et al. [44] | 2024 | NGS | Direct-zol RNA Miniprep Kit | NEXTFLEX® small RNAseq v3 kit with Unique Dual Indexes | Nasal + Nasopharyngeal | N/A |
Yin, et al. [29] | 2021 | Microarray + RT-qPCR | Trizol Reagent | N/A | Plasma | Actb |
Arroyo, et al. [45] | 2020 | Viral PCR, + miRNA RT-qPCR | MirVana miRNA isolation kit | N/A | Nasal | cel-mir-39 |
Janec, et al. [53] | 2024 | Luminex® and NGS | miRNeasy Serum/Plasma Kit | NEXTFlex small RNA-Seq v3 | Plasma (100 µL) | N/A |
Zhu, et al. [46] | 2023 | NGS | Direct-zol RNA Miniprep Kit | NEXTFLEX® small RNA-seq v3 kit with Unique Dual Indexes | Nasal + Nasopharyngeal | N/A |
Savino, et al. [54] | 2023 | RT-qPCR | Promega Simply RNA Blood Kit | N/A | Throat swab (1 mL) + Heparinised blood (200 µL) | RNU43 |
Ernst, et al. [47] | 2021 | Microarray | miRNeasy Serum/Plasma Advanced Kit | N/A | Cord plasma + Cord tissue | Global normalisation |
Huang, et al. [31] | 2021 | RT-qPCR + ELSIA | miRNeasy Serum/Plasma Kit | N/A | Plasma (3–5 mL) | U6 |
Beheshti, et al. [48] | 2023 | NGS + ELLA | miRNeasy Kit | Illumina TruSeq Small RNA Prep protocol | Saliva | N/A |
Jia, et al. [32] | 2023 | RT-qPCR + ELISA | Trizol Reagent | N/A | Plasma | U6 |
Sriprapun, et al. [55] | 2023 | RT-qPCR | miRNeasy mini kit | N/A | Serum | hsa-miR-16-5p |
Torii, et al. [51] | 2022 | NGS | miRCURY Exosome Cell/Urine/CSF kit + miRCURY Exosome Serum/Plasma kit | NEBNext Multiplex Small RNA Library Prep Set for Illumina | CSF (31–1418 mL) + Serum (120 mL) | hsa-miR-204-5p |
Qi, et al. [33] | 2014 | Microarray + RT-qPCR | mirVana PARIS kits | N/A | Serum (400 µL) | cel-miR-238 |
Chen, et al. [34] | 2014 | Microarray + RT-qPCR | Trizol Reagent | N/A | Leukocytes | used but does not mention |
Wang, et al. [56] | 2016 | Microarray + RT-qPCR | mirVana PARIS kit | N/A | Serum (100 µL) | Global Normalisation + U6 |
Gao, et al. [35] | 2015 | RT-qPCR | miRNeasy serum/plasma kit + miRNeasy mini kit | N/A | Plasma (200 µL) + PBMCs | U6 + cel-miR-39 |
Liu, et al. [36] | 2015 | RT-qPCR | Trizol Reagent | N/A | PBMCs | GAPDH + U6 |
Inchley, et al. [57] | 2015 | Microarray + RT-qPCR | miRNeasy mini kit | N/A | Nasal | RNU24 |
Dhas, et al. [58] | 2018 | RT-qPCR* | miRNeasy Serum/Plasma kit | N/A | Plasma (500 µL) | cel-miR-39 |
Kawano, et al. [52] | 2016 | RT-qPCR | mirVana PARIS Kit | N/A | Plasma | hsa-miR-16 |
Gutierrez, et al. [49] | 2016 | Microarray | SeraMir kit | N/A | Nasal | Global normalisation |
Min, et al. [60] | 2018 | RT-qPCR | Biofluid extraction kit (Exiqon, Inc., Woburn, MA, USA) | N/A | Throat swab + Saliva | hsa-miR-23a-3p |
Hasegawa, et al. [50] | 2018 | Microarray + NGA | Norgen RNA/DNA Purification Kit | Nasal | Global Normalisation | |
Li, et al. [37] | 2019 | RT-qPCR | mirVanaTM miRNA Isolation Kit | N/A | PMBCs | U6 |
Huang, et al. [38] | 2019 | NGS + RT-qPCR | Trizol Reagent | NEBNext® Multiplex Small RNA Library Prep Set for Illumina® | Serum exosomes | N/A |
Huang, et al. [39] | 2018 | NGS + RT-qPCR | RiboPure™ Blood RNA Isolation Kit | Own Method | Whole blood | U6 |
Cui, et al. [40] | 2012 | Microarray + RT-qPCR | mirVana PARIS kit | N/A | Serum (400 μL) | cel-miR-238 |
Gao, et al. [42] | 2024 | RT-qPCR | Trizol Reagent | N/A | Serum | U6 |
Hamdy, et al. [59] | 2024 | RT-qPCR | miRNeasy Serum/Plasma Kit | N/A | Serum | hsa-miR-16-5p |
Qi, et al. [41] | 2025 | RT-qPCR | Trizol Reagent | N/A | Serum | U6 |
2.5. RNA Extraction Methods
2.6. Next-Generation Sequencing Methods
2.7. Sample Type and Volume
2.8. Normalisation miRNA
2.9. Included Current Blood-Based Biomarkers
2.10. Novel miRNA Biomarkers Identified
2.11. Bacterial Infection-Associated miRNA
Author [Citation] | Biomarkers | Clinical Question | Study Methods | Ages | Sample Size | CRP/PCT | Reference Standard | ||
---|---|---|---|---|---|---|---|---|---|
Jone et al. [43] |
| Kawasaki and Febrile Non-Kawasaki | Microarray | Febrile = 3.5–13 years Kawasaki = 1.8–5.4 years | n = 113 | CRP | Lab confirmed | ||
Zhang et al. [26] |
| Neonatal Sepsis vs. Respiratory Infection/Pneumonia | RT-qPCR | Neonatal sepsis = 11.88 days Control = 11.21 days | n = 148 | CRP + PCT | Lab confirmed + clinical | ||
Tian et al. [27] |
| MRSA Pneumonia vs. Bronchial Foreign Bodies | RT-qPCR | <18 years | n = 40 | Guidelines | |||
Mao et al. [28] |
| Neonatal Sepsis vs. Healthy | RT-qPCR | Neonatal sepsis = 10.21 days Control = 11.41 days | n = 178 | CRP + PCT | Lab confirmed + clinical | ||
Yin et al. [29] |
| Mycoplasma Pneumoniae Pneumonia vs. Healthy | Microarray + RT-qPCR | MPP =7.1 years Control = 6.9 | n = 57 | CRP | Lab confirmed | ||
Janec et al. [53] |
|
|
| Neonatal Sepsis vs. Healthy | Luminex® sRNA-sequencing | 1 day | n = 20 | Lab confirmed | |
Ernst et al. [47] |
|
|
| EOS vs. Presumed Sepsis vs. Healthy | Microarray | 1 day | n = 41 | Lab confirmed + Clinical | |
Huang et al. [31] |
|
| Sepsis vs. Sepsis and Myocardial Injury vs. Healthy | RT-qPCR + ELSIA | median age 6.9 years | n = 132 | CRP + PCT | Clinical Guidelines | |
Jia et al. [32] |
|
| Mycoplasma Pneumoniae Pneumonia vs. Healthy | RT-qPCR + ELSIA | median age 6.4 years | n = 86 | CRP | Lab confirmed | |
Chen et al. [34] |
|
|
| Neonatal Sepsis vs. Healthy | Microarray + RT-qPCR | median age 12.5 days | n = 48 | Lab confirmed + clinical | |
Dhas et al. [58] |
| EOS vs. Healthy | RT-qPCR | <3 days old | n = 50 | CRP | Clinical only | ||
Li et al. [37] |
| Mycoplasma Pneumoniae Pneumonia vs. Healthy | RT-qPCR | median age 6.4 years | n = 78 | CRP | Lab confirmed | ||
Cui et al. [40] |
|
| B. Pertussis vs. Healthy | Microarray + RT-qPCR | median age 1 year | n = 134 | Lab confirmed | ||
Hamdy et al. [59] |
| Neonatal Sepsis vs. Healthy | PCR | <21 days | n = 110 | CRP | Lab confirmed |
2.12. Viral Infection-Associated miRNA
Author [Citation] | Year | Biomarkers | Clinical Question | Study Methods | Ages | Sample Size | CRP/PCT | Reference Standard | ||
---|---|---|---|---|---|---|---|---|---|---|
Jone et al. [43] | 2020 |
| Kawasaki and Febrile Non-Kawasaki | Microarray | Febrile = 3.5–13 years Kawasaki = 1.8–5.4 years | n = 113 | CRP | Lab confirmed | ||
Zhang et al. [25] | 2020 |
|
| Mild or Severe RSV-Associated Pneumonia | NGS + RT-qPCR | Median age 6.22 months | n = 46 | CRP | Lab confirmed + clinical | |
Liu et al. [30] | 2024 |
| Viral Encephalitis vs. Healthy | RT-qPCR | Median age 5.74 years | n = 196 | Lab confirmed + clinical | |||
Kyo et al. [44] | 2024 |
| Severity of RSV Bronchiolitis | NGS | Median age 3 months | n = 493 | Lab confirmed + clinical | |||
Arroyo et al. [45] | 2020 |
| Viral Respiratory Infections vs. Healthy | RT-qPCR + protein detection | Median age 1.2 years | n = 151 | Lab confirmed | |||
Zhu et al. [46] | 2023 |
| Severe Bronchiolitis: No Asthma vs. With Asthma | NGS | Median age 3 months | n = 575 | Clinical only | |||
Savino et al. [54] | 2023 |
| RSV vs. Healthy | RT-qPCR | Median age 93 days | n = 66 | Lab confirmed | |||
Beheshti et al. [48] | 2023 |
|
| URTIs in the first 12 months after birth | NGS + protein detection | <1 year | n = 146 | Clinical only | ||
Sriprapun et al. [55] | 2023 |
| Dengue vs. Acute Febrile Illness | RT-qPCR | Median age 10.5 years | n = 90 | Lab confirmed + clinical | |||
Torii et al. [51] | 2022 |
|
|
| Human Herpesvirus 6 (HHV-6): Acute Encephalopathy vs. Febrile Seizures | NGS | Median age 15 months | n = 15 | Lab confirmed | |
Qi et al. [33] | 2014 |
|
| Varicella vs. Healthy | Microarray + RT-qPCR | Median age 1 year | n = 102 | Lab confirmed + clinical | ||
Wang et al. [56] | 2016 |
|
|
| EV71 (Severe + Mild) vs. Healthy | Microarray + RT-qPCR | Median age 2.6 years | n = 12 | Clinical only | |
Gao et al. [35] | 2015 |
|
|
| EBV vs. Healthy | RT-qPCR | Median age 5.4 years | n = 30 | Lab confirmed + clinical | |
Liu et al. [36] | 2015 |
| RSV vs. Healthy | RT-qPCR | <1 year | n = 40 | Lab confirmed + clinical | |||
Inchley et al. [57] | 2015 |
|
| RSV vs. Healthy | Microarray + RT-qPCR | <1 year | n = 61 | Lab confirmed | ||
Kawano et al. [52] | 2016 |
| CMV vs. Healthy | RT-qPCR | Median age 25 days | n = 23 | Lab confirmed + clinical | |||
Gutierrez et al. [49] | 2016 |
| RV vs. non-RV | Microarray | Median age 1.5 years | n = 20 | Lab confirmed | |||
Min et al. [60] | 2018 |
| HEV vs. Healthy | PCR | <5 years | n = 59 | Lab confirmed | |||
Hasegawa et al. [50] | 2019 |
|
| Sole Rhinovirus Infection vs. Sole RSV Infection | Microarray + protein detection | <6 months | n = 32 | Lab confirmed | ||
Huang et al. [37] | 2019 |
|
| HAdV vs. Healthy | NGS + RT-qPCR | Median age 2.5 years | n = 59 | Lab confirmed + clinical | ||
Huang et al. [39] | 2018 |
|
|
| HAdV vs. Healthy | NGS + RT-qPCR | Median age 2.2 years | n = 6 | CRP | Lab confirmed + clinical |
Gao et al. [42] | 2024 |
| Viral Induced Myocarditis vs. Healthy | RT-qPCR | 3–8 years | n = 108 | CRP | Lab confirmed + clinical | ||
Qi et al. [41] | 2025 |
| Pneumonia vs. Healthy | RT-qPCR | 2–10 years | n = 218 | CRP | Lab confirmed + clinical |
2.13. Diagnostic Accuracy of Biomarkers
Author [Citation] | Bacterial or Viral | Sensitivity | Specificity | AUC | Cut off Value |
---|---|---|---|---|---|
Jone et al. [43] | Bacterial + Viral | 76.9% | 76.9% | 0.769 | N/A |
Zhang et al. [26] | Bacterial | 80.2% (with PCT) | 76.1% (with PCT) | 0.904 (with PCT) | 1.202 |
Mao et al. [28] | Bacterial | 80.2% | 85.2% | 0.895 | 1.254 |
Liu et al. [30] | Viral | 75% | 88.04% | 0.8675 | N/A |
Ernst et al. [47] | Bacterial | Cord plasma = 62.5% Umbilical cord tissue = 100% | Cord plasma = 90% Umbilical cord tissue = 90% | Cord plasma = 0.79 Umbilical cord tissue = 0.99 | Cord plasma = −8.13 Umbilical cord tissue = −6.79 |
Huang et al. [31] | Bacterial | miR-497 = 95.65% FABP3 = 88.89% GPBB = 82.61% cTnI = 87.50% | miR-497 =83.33% FABP3 =94.12% GPBB = 83.33%, cTnI = 90.91% | N/A | miR-497 =2.03 FABP3 = 6.23 ng/mL GPBB = 4.01 ng/mL cTnI = 1.23 ng/mL |
Qi et al. [33] | Viral | 93.1% | 72% | 0.872 | −13.03 |
Min et al. [60] | Viral | 100% | 88.89% | N/A | N/A |
Cui et al. [40] | Bacterial | miR-202 = 97.4% miR-576-5p = 86.8% miR-342-5p = 77.8% miR-487b = 73% miR-206 = 48.6% miR panel = 97.4% | miR-202 = 87.2% miR-576-5p = 97.1% miR-342-5p = 97.1% miR-487b = 91.4% miR-206 = 100% miR panel = 94.3% | miR-202 = 0.981 miR-576-5p = 0.971 miR-342-5p = 0.870 miR-487b = 0.853 miR-206 = 0.664 miR panel = 0.980 | miR-202 = −5.91 miR-576-5p = −10.64 miR-342-5p = −8.19 miR-487b = −7.94 miR-206 = −7.79 miR panel = 0.07 |
Gao et al. [42] | Viral | miR-425-3p = 79.63% miR + NEAT1 = 80.60% | miR-425-3p = 77.45% miR + NEAT1 = 87.3% | miR-425-3p = 0.832 miR + NEAT1 = 0.901 | N/A |
Hamdy et al. [59] | Bacterial | miR-182-5P = 62% miR-590-3p = 70% | miR-182-5P = 100% miR-590-3p = 100% | miR-182-5P = 0.620 miR-590-3p = 0.700 | N/A |
Qi et al. [41] | Viral | 83.3% | 89.8% | 0.909 | N/A |
3. Discussion
4. Materials and Methods
4.1. Protocol
4.2. Eligibility Criteria
4.3. Information Sources
4.4. Selection of Sources of Evidence
4.5. Data Charting Process and Data Items
4.6. Synthesis of Results
5. Conclusions
6. Research Gaps
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ED | Emergency department |
CRP | C reactive protein |
PCT | Procalcitonin |
NICE | National Institute for Health and Care Excellence |
UK | United Kingdom |
miRNA | microRNA |
PCR | Polymerase chain reaction |
RNA | Ribonucleic acid |
snoRNAs | small nucleolar RNAs |
STARD | Assessment of Standards for Reporting of Diagnostic Accuracy |
References
- Hagedoorn, N.N.; Borensztajn, D.M.; Nijman, R.; Balode, A.; von Both, U.; Carrol, E.D.; Eleftheriou, I.; Emonts, E.; van der Flier, M.; de Groot, R.; et al. Variation in antibiotic prescription rates in febrile children presenting to emergency departments across Europe (MOFICHE): A multicentre observational study. PLoS Med. 2020, 17, e1003208. Available online: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003208 (accessed on 14 March 2025). [CrossRef]
- van de Maat, J.; van de Voort, E.; Mintegi, S.; Gervaix, A.; Nieboer, D.; Moll, H.; Oostenbrink, R. Antibiotic prescription for febrile children in European emergency departments: A cross-sectional, observational study. Lancet Infect. Dis. 2019, 19, 382–391. Available online: https://www.thelancet.com/action/showFullText?pii=S1473309918306728 (accessed on 14 March 2025). [CrossRef]
- Hersh, A.L.; Shapiro, D.J.; Pavia, A.T.; Shah, S.S. Antibiotic Prescribing in Ambulatory Pediatrics in the United States. Pediatrics 2011, 128, 1053–1061. Available online: https://pubmed.ncbi.nlm.nih.gov/22065263/ (accessed on 14 March 2025). [CrossRef]
- Klein, E.Y.; Impalli, I.; Poleon, S.; Denoel, P.; Cipriano, M.; Van Boeckel, T.P.; Pecetta, S.; Bloom, D.; Nandi, A. Global trends in antibiotic consumption during 2016-2023 and future projections through 2030. Proc. Natl. Acad. Sci. USA 2024, 121, e2411919121. Available online: https://www.pnas.org/doi/abs/10.1073/pnas.2411919121 (accessed on 14 March 2025). [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673624018671 (accessed on 14 March 2025). [CrossRef] [PubMed]
- Costelloe, C.; Metcalfe, C.; Lovering, A.; Mant, D.; Hay, A.D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ 2010, 340, c2096. Available online: https://www-bmj-com.qub.idm.oclc.org/content/340/bmj.c2096 (accessed on 14 March 2025). [CrossRef] [PubMed]
- Rentschler, S.; Kaiser, L.; Deigner, H.P. Emerging Options for the Diagnosis of Bacterial Infections and the Characterization of Antimicrobial Resistance. Int. J. Mol. Sci. 2021, 22, 456. Available online: https://www.mdpi.com/1422-0067/22/1/456/htm (accessed on 14 March 2025). [CrossRef] [PubMed]
- Shah, P.; Voice, M.; Calvo-Bado, L.; Rivero-Calle, I.; Morris, S.; Nijman, R.; Brodericka, C.; Dea, T.; Eleftherioue, I.; Galassini, R.; et al. Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: A multicentre, prospective observational study. Lancet Reg. Health Eur. 2023, 32, 100682. Available online: https://www.thelancet.com/action/showFullText?pii=S2666776223001011 (accessed on 14 March 2025). [CrossRef]
- Stol, K.; Nijman, R.G.; van Herk, W.; van Rossum, A.M.C. Biomarkers for Infection in Children: Current Clinical Practice and Future Perspectives. Pediatr. Infect. Dis. J. 2019, 38, S7–S13. Available online: https://journals.lww.com/pidj/fulltext/2019/06001/biomarkers_for_infection_in_children__current.3.aspx (accessed on 14 March 2025). [CrossRef]
- Van den Bruel, A.; Thompson, M. Research into practice: Acutely ill children. Br. J. Gen. Pract. 2014, 64, 311–313. [Google Scholar] [CrossRef]
- Gomez, B.; Mintegi, S.; Bressan, S.; Da Dalt, L.; Gervaix, A.; Lacroix, L. Validation of the “step-by-step” approach in the management of young febrile infants. Pediatrics 2016, 138, e20154381. Available online: https://publications.aap.org/pediatrics/article-abstract/138/2/e20154381/52410/Validation-of-the-Step-by-Step-Approach-in-the?redirectedFrom=fulltext (accessed on 26 May 2025). [CrossRef]
- Pantell, R.H.; Roberts, K.B.; Adams, W.G.; Dreyer, B.P.; Kuppermann, N.; O’Leary, S.T.; Okechukwu, K.M.; Woods, C.R. Evaluation and management of well-appearing febrile infants 8 to 60 days old. Pediatrics 2021, 148, e2021052228. Available online: https://publications.aap.org/pediatrics/article/148/2/e2021052228/179783/Evaluation-and-Management-of-Well-Appearing (accessed on 26 May 2025). [CrossRef] [PubMed]
- Kuppermann, N.; Dayan, P.S.; Levine, D.A.; Vitale, M.; Tzimenatos, L.; Tunik, M.G.; Saunders, M.; Ruddy, R. A Clinical Prediction Rule to Identify Febrile Infants 60 Days and Younger at Low Risk for Serious Bacterial Infections. JAMA Pediatr. 2019, 173, 342–351. Available online: https://jamanetwork.com/journals/jamapediatrics/fullarticle/2725042 (accessed on 26 May 2025). [CrossRef] [PubMed]
- Norman-Bruce, H.; Umana, E.; Mills, C.; Mitchell, H.; McFetridge, L.; McCleary, D.; Waterfield, T. Diagnostic test accuracy of procalcitonin and C-reactive protein for predicting invasive and serious bacterial infections in young febrile infants: A systematic review and meta-analysis. Lancet Child. Adolesc. Health 2024, 8, 358–368. Available online: https://www.thelancet.com/action/showFullText?pii=S235246422400021X (accessed on 26 May 2025). [CrossRef] [PubMed]
- Sepsis: Recognition, Diagnosis and Early Management. NICE Guideline [NG51]. NICE. 2017. Available online: https://www.nice.org.uk/guidance/ng51 (accessed on 26 May 2025).
- Rodgers, O.; Mills, C.; Watson, C.; Waterfield, T. Role of diagnostic tests for sepsis in children: A review. Arch. Dis. Child. 2024, 109, 786–793. Available online: https://adc.bmj.com/content/109/10/786 (accessed on 1 March 2025). [CrossRef]
- Savva, K.V.; Kawka, M.; Vadhwana, B.; Penumaka, R.; Patton, I.; Khan, K.; Perrott, C.; Das, S. The Biomarker Toolkit—An evidence-based guideline to predict cancer biomarker success and guide development. BMC Med. 2023, 21, 383. [Google Scholar] [CrossRef]
- Skibsted, S.; Bhasin, M.K.; Aird, W.C.; Shapiro, N.I. Bench-to-bedside review: Future novel diagnostics for sepsis—A systems biology approach. Crit. Care 2013, 17, 231. Available online: https://link.springer.com/article/10.1186/cc12693 (accessed on 19 July 2025). [CrossRef]
- Ioannidis, J.P.A.; Bossuyt, P.M.M. Waste, Leaks, and Failures in the Biomarker Pipeline. Clin. Chem. 2017, 63, 963–972. [Google Scholar] [CrossRef]
- Castaldi, P.J.; Dahabreh, I.J.; Ioannidis, J.P.A. An empirical assessment of validation practices for molecular classifiers. Brief. Bioinform. 2011, 12, 189–202. [Google Scholar] [CrossRef]
- Buonsenso, D.; Sodero, G.; Valentini, P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr. Res. 2021, 91, 454–463. Available online: https://www.nature.com/articles/s41390-021-01890-z (accessed on 14 March 2025). [CrossRef]
- Metcalf, G.A.D. MicroRNAs: Circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024, 43, 2135–2142. Available online: https://www.nature.com/articles/s41388-024-03076-3 (accessed on 20 September 2024). [CrossRef] [PubMed]
- Chorley, B.N.; Atabakhsh, E.; Doran, G.; Gautier, J.C.; Ellinger-Ziegelbauer, H.; Jackson, D.; Sharapova, T.; Yuen, P. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit. Rev. Toxicol. 2021, 51, 264. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8577439/ (accessed on 5 September 2025). [CrossRef] [PubMed]
- Sandau, U.S.; Wiedrick, J.T.; McFarland, T.J.; Galasko, D.R.; Fanning, Z.; Quinn, J.F.; Saugstad, J. Analysis of the longitudinal stability of human plasma miRNAs and implications for disease biomarkers. Sci. Rep. 2024, 14, 2148. Available online: https://www.nature.com/articles/s41598-024-52681-5 (accessed on 5 September 2025). [CrossRef] [PubMed]
- Zhang, X.; Huang, F.; Yang, D.; Peng, T.; Lu, G. Identification of miRNA-mRNA Crosstalk in Respiratory Syncytial Virus- (RSV-) Associated Pediatric Pneumonia through Integrated miRNAome and Transcriptome Analysis. Mediat. Inflamm. 2020, 2020, 8919534. Available online: https://onlinelibrary.wiley.com/doi/full/10.1155/2020/8919534 (accessed on 10 March 2025). [CrossRef]
- Zhang, J.; Xu, X.; Wang, M. Clinical Significance of Serum miR-101-3p Expression in Patients with Neonatal Sepsis. Pers. Med. 2021, 18, 541–550. Available online: https://www.tandfonline.com/doi/abs/10.2217/pme-2020-0182 (accessed on 10 March 2025). [CrossRef]
- Tian, K.; Xu, W. MiR-155 regulates Th9 differentiation in children with methicillin-resistant Staphylococcus aureus pneumonia by targeting SIRT1. Hum. Immunol. 2021, 82, 775–781. [Google Scholar] [CrossRef]
- Mao, Y.Y.; Su, C.; Fang, C.C.; Fan, X.P.; Wang, L.P.; Zhu, S.S.; Yao, H. Clinical significance of the serum miR-455-5p expression in patients with neonatal sepsis. Bioengineered 2021, 12, 4174–4182. Available online: https://www.tandfonline.com/doi/abs/10.1080/21655979.2021.1955580 (accessed on 10 March 2025). [CrossRef]
- Yin, L.; Ma, Y.; Wang, W.; Zhu, Y. The critical function of miR-1323/Il6 axis in children with Mycoplasma pneumoniae pneumonia. J. Pediatr. 2021, 97, 552–558. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.F.; Liu, X.; Yang, Q.; Tian, Z.; Liu, J. Serum mir-142-3p release in children with viral encephalitis and its relationship with nerve injury and inflammatory response. J. Neurovirol. 2024, 30, 267–273. Available online: https://link.springer.com/article/10.1007/s13365-024-01214-x (accessed on 10 March 2025). [CrossRef]
- Huang, C.; Xiao, S.; Xia, Z.; Cheng, Y.; Li, Y.; Tang, W.; Shi, B.; Qin, C.; Xu, H. The Diagnostic Value of Plasma miRNA-497, cTnI, FABP3 and GPBB in Pediatric Sepsis Complicated with Myocardial Injury. Ther. Clin. Risk Manag. 2021, 17, 563–570. Available online: https://www.dovepress.com/the-diagnostic-value-of-plasma-mirna-497-ctni-fabp3-and-gpbb-in-pediat-peer-reviewed-fulltext-article-TCRM (accessed on 10 March 2025). [CrossRef]
- Jia, Z.; Sun, Q.; Zheng, Y.; Xu, J.; Wang, Y. The immunogenic involvement of miRNA-492 in mycoplasma pneumoniae infection in pediatric patients. J. Pediatr. 2023, 99, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhu, Z.; Shi, Z.; Ge, Y.; Zhao, K.; Zhou, M.; Cui, L. Dysregulated microRNA Expression in Serum of Non-Vaccinated Children with Varicella. Viruses 2014, 6, 1823–1836. Available online: https://www.mdpi.com/1999-4915/6/4/1823/htm (accessed on 10 March 2025). [CrossRef] [PubMed]
- Chen, J.; Jiang, S.; Cao, Y.; Yang, Y. Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J. Clin. Immunol. 2014, 34, 340–348. Available online: https://link.springer.com/article/10.1007/s10875-014-0004-9 (accessed on 10 March 2025). [CrossRef]
- Gao, L.; Ai, J.; Xie, Z.; Zhou, C.; Liu, C.; Zhang, H.; Shen, K. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children Herpes viruses. Virol. J. 2015, 12, 208. Available online: https://virologyj.biomedcentral.com/articles/10.1186/s12985-015-0441-y (accessed on 10 March 2025). [CrossRef]
- Liu, S.; Gao, L.; Wang, X.; Xing, Y. Respiratory syncytial virus infection inhibits TLR4 signaling via up-regulation of miR-26b. Cell Biol. Int. 2015, 39, 1376–1383. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/cbin.10518 (accessed on 10 March 2025). [CrossRef]
- Li, Q.L.; Wu, Y.Y.; Sun, H.M.; Gu, W.J.; Zhang, X.X.; Wang, M.J.; Yan, Y.; Hao, C.; Ji, W.; Chen, Z. The role of miR-29c/B7-H3/Th17 axis in children with Mycoplasma pneumoniae pneumonia. Ital. J. Pediatr. 2019, 45, 61. Available online: https://ijponline.biomedcentral.com/articles/10.1186/s13052-019-0655-5 (accessed on 10 March 2025). [CrossRef]
- Huang, F.; Bai, J.; Zhang, J.; Yang, D.; Fan, H.; Hunag, L.; Shi, T.; Lu, G. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol. Med. Rep. 2019, 19, 4306–4314. Available online: https://www.spandidos-publications.com/10.3892/mmr.2019.10107 (accessed on 10 March 2025). [CrossRef]
- Huang, F.; Zhang, J.; Yang, D.; Zhang, Y.; Huang, J.; Yuan, Y.; Li, X.; Lu, G. MicroRNA Expression Profile of Whole Blood Is Altered in Adenovirus-Infected Pneumonia Children. Mediat. Inflamm. 2018, 2018, 2320640. Available online: https://onlinelibrary.wiley.com/doi/full/10.1155/2018/2320640 (accessed on 10 March 2025). [CrossRef]
- Cui, L.; Ge, Y.; Zhao, K.; Qi, Y.; Min, X.; Shi, Z.; Qi, X.; Shan, Y.; Cui, L.; Zhou, M.; et al. Serum microRNA expression profile as a biomarker for the diagnosis of pertussis. Mol. Biol. Rep. 2012, 40, 1325–1332. Available online: https://link.springer.com/article/10.1007/s11033-012-2176-9 (accessed on 10 March 2025). [CrossRef]
- Qi, W.; Teng, B.; Zhang, F.; Chen, Y.; Xu, J.; Luan, J. Clinical value of miR-200b in diagnosis and prognosis of childhood pneumonia. BMC Pediatr. 2025, 25, 42. Available online: https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-024-05370-1 (accessed on 21 May 2025). [CrossRef]
- Gao, J.; Qin, L.; Guo, Q.; Zhao, D.; Ma, G.; Zhou, K.; Wang, S.; Hao, H. Diagnostic value and clinical significance of lncRNA NEAT1 combined with miR-425-3p in children with viral myocarditis. Turk. J. Pediatr. 2024, 66, 439–447. Available online: https://turkjpediatr.org/article/view/4579 (accessed on 21 May 2025). [CrossRef] [PubMed]
- Jone, P.N.; Korst, A.; Karimpour-Fard, A.; Thomas, T.; Dominguez, S.R.; Heizer, H.; Anderson, M.; Glode, M.; Sucharov, C.; Miyamoto, S. Circulating microRNAs differentiate Kawasaki Disease from infectious febrile illnesses in childhood. J. Mol. Cell Cardiol. 2020, 146, 12–18. Available online: https://www.jmcc-online.com/action/showFullText?pii=S0022282820302224 (accessed on 10 March 2025). [CrossRef] [PubMed]
- Kyo, M.; Zhu, Z.; Shibata, R.; Ooka, T.; Mansbach, J.M.; Harmon, B.; Hahn, A.; Pérez-Losada, M.; Camargo, C.; Hasegawa, K. Nasal microRNA signatures for disease severity in infants with respiratory syncytial virus bronchiolitis: A multicentre prospective study. BMJ Open Respir. Res. 2024, 11, e002288. Available online: https://bmjopenrespres.bmj.com/content/11/1/e002288 (accessed on 10 March 2025). [CrossRef] [PubMed]
- Arroyo, M.; Salka, K.; Chorvinsky, E.; Xuchen, X.; Abutaleb, K.; Perez, G.F.; Weinstock, J.; Gaviria, S.; Gutierrez, M.; Nino, G. Airway mir-155 responses are associated with TH1 cytokine polarization in young children with viral respiratory infections. PLoS ONE 2020, 15, e0233352. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233352 (accessed on 10 March 2025). [CrossRef]
- Zhu, Z.; Freishtat, R.J.; Harmon, B.; Hahn, A.; Teach, S.J.; Pérez-Losada, M.; Hasegawa, K.; Camargo, C. Nasal airway microRNA profiling of infants with severe bronchiolitis and risk of childhood asthma: A multicenter prospective study. Eur. Respir. J. 2023, 62, 2300502. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10578345/ (accessed on 10 March 2025). [CrossRef]
- Ernst, L.M.; Mithal, L.B.; Mestan, K.; Wang, V.; Mangold, K.A.; Freedman, A.; Das, S. Umbilical cord miRNAs to predict neonatal early onset sepsis. PLoS ONE 2021, 16, e0249548. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249548 (accessed on 10 March 2025). [CrossRef]
- Beheshti, R.; Gauthier, B.; Roukos, D.H.; Fusco, A.; Halstead, E.S.; Cusack, B.; Hicks, S. Multi-Omic Factors Associated with Frequency of Upper Respiratory Infections in Developing Infants. Int. J. Mol. Sci. 2023, 24, 934. Available online: https://www.mdpi.com/1422-0067/24/2/934/htm (accessed on 10 March 2025). [CrossRef]
- Gutierrez, M.J.; Gomez, J.L.; Perez, G.F.; Pancham, K.; Val, S.; Pillai, D.K.; Giri, M.; Ferrante, S.; Freishtat, R.; Rose, M.; et al. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood. PLoS ONE 2016, 11, e0162244. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162244 (accessed on 10 March 2025). [CrossRef]
- Hasegawa, K.; Pérez-Losada, M.; Hoptay, C.E.; Epstein, S.; Mansbach, J.M.; Teach, S.J.; Piedra, P.; Camargo, C.; Freishtat, R. RSV vs. rhinovirus bronchiolitis: Difference in nasal airway microRNA profiles and NFκB signaling. Pediatr. Res. 2018, 83, 606–614. Available online: https://www.nature.com/articles/pr2017309 (accessed on 10 March 2025). [CrossRef]
- Torii, Y.; Kawada Jichi Horiba, K.; Okumura, T.; Suzuki, T.; Ito, Y. MicroRNA expression profiling of cerebrospinal fluid/serum exosomes in children with human herpesvirus 6-associated encephalitis/encephalopathy by high-throughput sequencing. J. Neurovirol. 2022, 28, 151–157. Available online: https://link.springer.com/article/10.1007/s13365-022-01058-3 (accessed on 10 March 2025). [CrossRef]
- Kawano, Y.; Kawada, J.; Kamiya, Y.; Suzuki, M.; Torii, Y.; Kimura, H.; Ito, Y. Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection. J. Perinatol. 2016, 36, 1101–1105. Available online: https://www.nature.com/articles/jp2016157 (accessed on 10 March 2025). [CrossRef]
- Janec, P.; Mojžíšek, M.; Pánek, M.; Haluzík, M.; Živný, J.; Janota, J. Early-Onset Neonatal Sepsis: Inflammatory Biomarkers and MicroRNA as Potential Diagnostic Tools in Preterm Newborns. Folia. Biol. 2024, 69, 173–180. Available online: https://doi.org/10.14712/fb2023069050173 (accessed on 10 March 2025).
- Savino, F.; Gambarino, S.; Dini, M.; Savino, A.; Clemente, A.; Calvi, C.; Galliano, I.; Bergallo, M. Peripheral Blood and Nasopharyngeal Swab MiRNA-155 Expression in Infants with Respiratory Syncytial Virus Infection. Viruses 2023, 15, 1668. Available online: https://www.mdpi.com/1999-4915/15/8/1668 (accessed on 10 March 2025). [CrossRef]
- Sriprapun, M.; Rattanamahaphoom, J.; Sriburin, P.; Chatchen, S.; Limkittikul, K.; Sirivichayakul, C. The expression of circulating hsa-miR-126-3p in dengue-infected Thai pediatric patients. Pathog. Glob. Health 2023, 117, 76–84. Available online: https://www.tandfonline.com/doi/abs/10.1080/20477724.2022.2088465 (accessed on 10 March 2025). [CrossRef] [PubMed]
- Wang, R.Y.L.; Weng, K.F.; Huang, Y.C.; Chen, C.J. Elevated expression of circulating miR876-5p is a specific response to severe EV71 infections. Sci. Rep. 2016, 6, 24149. Available online: https://www.nature.com/articles/srep24149 (accessed on 10 March 2025). [CrossRef] [PubMed]
- Inchley, C.S.; Sonerud, T.; Fjærli, H.O.; Nakstad, B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect. Dis. 2015, 15, 150. Available online: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-015-0878-z (accessed on 10 March 2025). [CrossRef]
- Dhas, B.B.; Dirisala, V.R.; Bhat, B.V. Expression Levels of Candidate Circulating microRNAs in Early-Onset Neonatal Sepsis Compared with Healthy Newborns. Genom. Insights 2018, 11, 1178631018797079. Available online: https://journals.sagepub.com/doi/10.1177/1178631018797079 (accessed on 10 March 2025). [CrossRef]
- Hamdy, S.M.; Othman, Y.A.; Abdelaleem, O.O.; Abd El-Hamid, R.G.; Ali, D.Y. Expression of serum microRNAs, mir-182-5p, and miR-590-3p and its clinical significance in neonatal sepsis. Egypt. Pediatr. Assoc. Gaz. 2024, 72, 17. Available online: https://epag.springeropen.com/articles/10.1186/s43054-024-00260-8 (accessed on 21 May 2025). [CrossRef]
- Min, N.; Sakthi Vale, P.D.; Wong, A.A.; Tan, N.W.H.; Chong, C.Y.; Chen, C.J.; Wang, R.; Chu, J. Circulating Salivary miRNA hsa-miR-221 as Clinically Validated Diagnostic Marker for Hand, Foot, and Mouth Disease in Pediatric Patients. EBioMedicine 2018, 31, 299–306. Available online: https://www.thelancet.com/action/showFullText?pii=S2352396418301610 (accessed on 10 March 2025). [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.; O’Grady, N.; Bartlett, J.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Chinese Medical Association Pediatric Emergency Medicine Group; Chinese Medical Association Emergency Medicine Group; Chinese Medical Association Pediatric Critical Care Physicians Association. Expert consensus on the diagnosis and treatment of septic shock in children (2015 edition). Chin. J. Pediatr. 2015, 53, 576–580. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.; De Vet, H.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. Available online: https://bmjopen.bmj.com/content/6/11/e012799 (accessed on 26 May 2025). [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambrost, V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to &II-14. Cell 1993, 75, 843–854. [Google Scholar]
- Global Expert Mission Precision Medicine & Vaccines China 2018 Precision Medicine & Vaccines China 2018. 2018. Available online: https://iuk-business-connect.org.uk/wp-content/uploads/2020/12/B2_6_KTN_GA_ChinaPrecisionMedicine.pdf (accessed on 21 May 2025).
- Rodgers, O.; Watson, C.; Waterfield, T. miRNA Library Preparation Optimisation for Low-Concentration and Low-Volume Paediatric Plasma Samples. Non-Coding RNA 2025, 11, 11. Available online: https://www.mdpi.com/2311-553X/11/1/11/htm (accessed on 1 March 2025). [CrossRef] [PubMed]
- Felekkis, K.; Papaneophytou, C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 561. Available online: https://www.mdpi.com/1422-0067/21/2/561/htm (accessed on 28 June 2024). [CrossRef] [PubMed]
- Brown, R.A.M.; Epis, M.R.; Horsham, J.L.; Kabir, T.D.; Richardson, K.L.; Leedman, P.J. Total RNA extraction from tissues for microRNA and target gene expression analysis: Not all kits are created equal. BMC Biotechnol. 2018, 18, 16. Available online: https://link.springer.com/article/10.1186/s12896-018-0421-6 (accessed on 7 March 2025). [CrossRef] [PubMed]
- Wakabayashi, I.; Marumo, M.; Ekawa, K.; Daimon, T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract. Lab. Med. 2024, 39, e00376. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10924119/ (accessed on 7 March 2025). [CrossRef]
- De Ronde, M.W.J.; Ruijter, J.M.; Lanfear, D.; Bayes-Genis, A.; Kok, M.G.M.; Creemers, E.E.; Pinto, Y.; Pinto-Sietsma, S. Practical data handling pipeline improves performance of qPCR-based circulating miRNA measurements. RNA 2017, 23, 811–821. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5393188/ (accessed on 20 November 2024). [CrossRef]
- Joshi, C.J.; Ke, W.; Drangowska-Way, A.; O’Rourke, E.J.; Lewis, N.E. What are housekeeping genes? PLoS Comput. Biol. 2022, 18, e1010295. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9312424/ (accessed on 7 March 2025). [CrossRef]
- Benz, F.; Roderburg, C.; Cardenas, D.V.; Vucur, M.; Gautheron, J.; Koch, A.; Zimmermann, H.; Janssen, J.; Nieuwenhuijsen, L.; Luedde, M.; et al. U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Exp. Mol. Med. 2013, 45, e42. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3789266/ (accessed on 7 March 2025). [CrossRef]
- Xiang, M.; Zeng, Y.; Yang, R.; Xu, H.; Chen, Z.; Zhong, J.; Xie, H.; Xu, Y.; Zeng, X. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 2014, 454, 210–214. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Da Silva, A.M.; Calin, G.; Pantel, K. Which is the accurate data normalization strategy for microRNA quantification? Clin. Chem. 2015, 61, 1333. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4890630/ (accessed on 7 March 2025). [CrossRef]
- Busato, F.; Ursuegui, S.; Deleuze, J.F.; Tost, J. Multiplex digital PCR for the simultaneous quantification of a miRNA panel. Anal. Chim. Acta 2025, 1335, 343440. Available online: https://www.sciencedirect.com/science/article/pii/S0003267024012418?via%3Dihub#sec4 (accessed on 6 September 2025). [CrossRef]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. Available online: https://www.nature.com/articles/nmeth.2633 (accessed on 6 September 2025). [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. Available online: https://www.prisma-statement.org/scoping (accessed on 2 April 2025). [CrossRef] [PubMed]
- Rodgers, O.; De Beer, A.; Waterfield, T. microRNA Biomarkers in Paediatric Infection Diagnostics. Bridging the Gap Between Evidence and Clinical Application: A Scoping Review. medRxiv 2025. medRxiv:2025.04.11.25325664. Available online: https://www.medrxiv.org/content/10.1101/2025.04.11.25325664v1 (accessed on 21 May 2025).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
Variable | Range | Number of Studies | |
---|---|---|---|
Age (years) | 0–13 | ||
Gender (% Female) | 14–67 | ||
Sample size | Total | 6–575 | |
Study focus size | 3–575 | ||
Study comparator size | 3–102 | ||
Setting | Hospital | n = 35 | |
Outside of Hospital | n = 1 | ||
Clinical Question | Disease vs. Healthy | n = 24 | |
Disease vs. Disease | n = 9 | ||
Severity | n = 3 | ||
Include Bacterial infections | n = 14 | ||
Include Viral infections | n = 23 | ||
Study methods | RT-qPCR methods | n = 27 | |
NGS | n = 8 | ||
Microarray | n = 9 | ||
Sample type | Serum | n = 10 | |
Nasal/Saliva/Throat | n = 9 | ||
Plasma | n = 9 | ||
Whole Blood/PBMCs | n = 6 |
miRNA | Conditions Associated | Number of Sources | Bacterial Associations | Viral Associations |
---|---|---|---|---|
hsa-miR-155 |
| 6 | 1 | 5 |
hsa-miR-29 |
| 5 | 1 | 4 |
hsa-miR-206 |
| 4 | 1 | 3 |
has-miR-142-3p |
| 3 | 1 | 2 |
hsa-miR-182-5p |
| 3 | 2 | 1 |
hsa-miR-363-3p |
| 3 | 2 | 1 |
hsa-miR-155-5p |
| 2 | 0 | 2 |
hsa-miR-101-3p |
| 2 | 1 | 1 |
hsa-miR-140-3p |
| 2 | 0 | 2 |
hsa-miR-142-5p |
| 2 | 1 | 1 |
hsa-miR-142-3p |
| 2 | 1 | 1 |
hsa-miR-150-5p |
| 2 | 1 | 1 |
hsa-miR-183-5p |
| 2 | 1 | 1 |
hsa-miR-210-3p |
| 2 | 0 | 1 |
hsa-miR-34 |
| 2 | 0 | 2 |
hsa-miR-486-3p |
| 2 | 1 | 1 |
Viral miRNA Associations | Bacterial miRNA Associations | |||||
---|---|---|---|---|---|---|
Respiratory Syncytial Virus | Human Adenovirus | Rhinovirus | Systemic Viral Infection | Sepsis | Mycoplasma pneumoniae + Respiratory Infections | |
|
|
|
|
|
|
|
Inclusion Criteria | Exclusion Criteria |
---|---|
0–18 years | Parasite, fungal, or sexually transmitted infections |
Bacterial or Viral infection | Cancer-related miRNA |
Host miRNA | Pathogen miRNA |
Biofluid samples | Animal models, in vitro, tissue samples, and in silico only studies |
Human | Pregnancy-associated/foetal miRNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodgers, O.; De Beer, A.; Waterfield, T. microRNA Biomarkers in Paediatric Infection Diagnostics—Bridging the Gap Between Evidence and Clinical Application: A Scoping Review. Non-Coding RNA 2025, 11, 71. https://doi.org/10.3390/ncrna11050071
Rodgers O, De Beer A, Waterfield T. microRNA Biomarkers in Paediatric Infection Diagnostics—Bridging the Gap Between Evidence and Clinical Application: A Scoping Review. Non-Coding RNA. 2025; 11(5):71. https://doi.org/10.3390/ncrna11050071
Chicago/Turabian StyleRodgers, Oenone, Anna De Beer, and Thomas Waterfield. 2025. "microRNA Biomarkers in Paediatric Infection Diagnostics—Bridging the Gap Between Evidence and Clinical Application: A Scoping Review" Non-Coding RNA 11, no. 5: 71. https://doi.org/10.3390/ncrna11050071
APA StyleRodgers, O., De Beer, A., & Waterfield, T. (2025). microRNA Biomarkers in Paediatric Infection Diagnostics—Bridging the Gap Between Evidence and Clinical Application: A Scoping Review. Non-Coding RNA, 11(5), 71. https://doi.org/10.3390/ncrna11050071