Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer
Abstract
:1. Introduction
2. ncRNAs
3. Biogenesis and Characteristics of miRNAs
4. Biogenesis and Characteristics of circRNA
5. circRNAs Serve as Sponge for miRNAs
6. Sponging of a miRNA by Several circRNAs
7. EOC Therapies
8. circRNAs as Predictive Biomarkers
9. circRNAs as Therapeutic Agents and Targets
10. Conclusions
Funding
Conflicts of Interest
Abbreviations
ABCC | ATP-Binding Cassette Subfamily C Member |
ANXA | Annexin A |
ATG | Autophagy-related |
BRD4 | Bromodomain |
Capn | Calpain |
CBX | Chromobox |
CDC5L/PEAK1 | Cell Division Cycle 5 Like |
CEBPG | CCAAT Enhancer-Binding Protein Gamma |
CLU | Clusterin |
CUL | Cullin |
DUSP | Dual Specificity Phosphatase |
EIF | Eukaryotic Translation Initiation Factor |
ELK | ETS Transcription Factor |
EZH | Enhancer of Zeste Homolog |
FBX | F-box protein |
FMNL | Formin-like |
FOX | Forkhead-box |
FZD | Frizzled Class Receptor |
GAS | Growth Arrest-Specific |
hTERT | Human Telomerase Reverse Transcriptase |
IGFBP | Insulin-like growth factor binding protein |
JAK1 | Janus Kinase |
KLF | Krüppel-like factor |
KLK | Kallikrein-Related Peptidase |
LARP | La Ribonucleoprotein |
LETM1 | Leucine Zipper-EF-Hand-Containing Transmembrane Protein |
LIF | Leukemia Inhibitory Factor |
LSM | U6 snRNA-Associated Sm-like Protein |
MAP3K | Mitogen-Activated Protein Kinase |
MDM | Mouse double minute |
MTM | Myotubular Myopathy |
MTSS | Metastasis suppressor |
MUC1 | Mucin |
NF | Nuclear Factor |
p-GP | P-Glycoprotein |
PIK3R | Phosphoinositide-3-Kinase Regulatory Subunit |
PLXN | Plexin |
PPA | Inorganic Pyrophosphatase |
PSAT | Phosphoserine Aminotransferase |
PTEN | Phosphatase and Tensin homolog |
RAB | Ras-related protein |
RACGAP | Rac GTPase Activating Protein |
RASSF | Ras Association Domain Family Member |
ROCK | Rho-Kinase |
S100B | Calcium Binding Protein B |
SFRP | Secreted Frizzled Related Protein |
SIK | Salt Inducible Kinase |
SLC | Solute Carrier Family |
SMG | Serine/threonine-protein kinase |
SOCS | Suppressor of Cytokine Signaling |
SOX | SRY-Box Transcription Factor |
SREBF | Sterol regulatory element-binding transcription factor |
STAT | Signal transducer and activator of transcription |
TGFβR | Transforming Growth Factor β receptor |
TUBB | Tubulin Beta |
VAMP | Vesicle-Associated Membrane Protein |
VEGF | Vascular Endothelial Growth Factor |
References
- Sambasivan, S. Epithelial Ovarian Cancer: Review Article. Cancer Treat Res. Commun. 2022, 33, 100629. [Google Scholar] [CrossRef] [PubMed]
- Kandukuri, S.R.; Rao, J. FIGO 2013 Staging System for Ovarian Cancer: What Is New in Comparison to the 1988 Staging System? Curr. Opin. Obstet. Gynecol. 2015, 27, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, S.; Adams, J.; De Groote, D.; Campbell, K.; Berx, G.; Goossens, S. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 2022, 211, 157–182. [Google Scholar] [CrossRef] [PubMed]
- Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian Cancer Immunotherapy and Personalized Medicine. Int. J. Mol. Sci. 2021, 22, 6532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liang, X.; Wang, L.; Zhang, X. The Role of MiRNA in Ovarian Cancer: An Overview. Reprod. Sci. 2022, 29, 561–575. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; et al. Cellular MicroRNAs Up-Regulate Transcription via Interaction with Promoter TATA-Box Motifs. RNA 2014, 20, 1878–1889. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Cho, W.C.; Zheng, Y. Argonaute Proteins: Structural Features, Functions and Emerging Roles. J. Adv. Res. 2020, 24, 317–324. [Google Scholar] [CrossRef]
- Harding, C.V.; Heuser, J.E.; Stahl, P.D. Exosomes: Looking Back Three Decades and into the Future. J. Cell Biol. 2013, 200, 367–371. [Google Scholar] [CrossRef]
- Hu, G.; Drescher, K.M.; Chen, X.-M. Exosomal MiRNAs: Biological Properties and Therapeutic Potential. Front. Genet. 2012, 3, 56. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Gahan, P. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019, 5, 28. [Google Scholar] [CrossRef]
- Chen, L.; Shan, G. CircRNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Lett. 2021, 505, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Jha, A.; Panda, A.C.; Dixit, A. Cancer-Associated CircRNA–MiRNA–MRNA Regulatory Networks: A Meta-Analysis. Front. Mol. Biosci. 2021, 8, 671309. [Google Scholar] [CrossRef] [PubMed]
- Park, E.G.; Ha, H.; Lee, D.H.; Kim, W.R.; Lee, Y.J.; Bae, W.H.; Kim, H.S. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. Int. J. Mol. Sci. 2022, 23, 8950. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer 2017, 18, 5–18. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of NcRNAs in Cancer Cells. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 927, pp. 429–458. [Google Scholar]
- Chan, J.; Tay, Y. Noncoding RNA:RNA Regulatory Networks in Cancer. Int. J. Mol. Sci. 2018, 19, 1310. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.T.B.; Clark, I.M.; Le, L.T.T. MicroRNA-Based Diagnosis and Therapy. Int. J. Mol. Sci. 2022, 23, 7167. [Google Scholar] [CrossRef]
- Bortolin-Cavaille, M.-L.; Dance, M.; Weber, M.; Cavaille, J. C19MC MicroRNAs Are Processed from Introns of Large Pol-II, Non-Protein-Coding Transcripts. Nucleic Acids Res. 2009, 37, 3464–3473. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP Recruits the Dicer Complex to Ago2 for MicroRNA Processing and Gene Silencing. Nature 2005, 436, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Updated Overview. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2023; Volume 2595, pp. 1–12. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical Relevance of Circulating Cell-Free MicroRNAs in Cancer. Nat. Rev. Clin. Oncol. 2014, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Staicu, C.E.; Predescu, D.V.; Rusu, C.M.; Radu, B.M.; Cretoiu, D.; Suciu, N.; Crețoiu, S.M.; Voinea, S.C. Role of MicroRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. Cells 2020, 9, 169. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Gahan, P.B. Circulating Non-Coding RNAs in Recurrent and Metastatic Ovarian Cancer. Cancer Drug Resist. 2019, 2, 399. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, Y.Y.; Zhu, B.L.; Feng, F.Z.; Yan, H.; Zhang, H.Y.; Zhou, B. MiR-21 Regulates the Proliferation and Apoptosis of Ovarian Cancer Cells through PTEN/PI3K/AKT. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4149–4155. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kong, W.; He, L.; Zhao, J.J.; O’Donnell, J.D.; Wang, J.; Wenham, R.M.; Coppola, D.; Kruk, P.A.; Nicosia, S.V.; et al. MicroRNA Expression Profiling in Human Ovarian Cancer: MiR-214 Induces Cell Survival and Cisplatin Resistance by Targeting PTEN. Cancer Res. 2008, 68, 425–433. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Taheri, M. MiRNA Profile in Ovarian Cancer. Exp. Mol. Pathol. 2020, 113, 104381. [Google Scholar] [CrossRef]
- Li, N.; Yang, L.; Wang, H.; Yi, T.; Jia, X.; Chen, C.; Xu, P. MiR-130a and MiR-374a Function as Novel Regulators of Cisplatin Resistance in Human Ovarian Cancer A2780 Cells. PLoS ONE 2015, 10, e0128886. [Google Scholar] [CrossRef]
- Meng, X.; Müller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Diagnostic and Prognostic Relevance of Circulating Exosomal MiR-373, MiR-200a, MiR-200b and MiR-200c in Patients with Epithelial Ovarian Cancer. Oncotarget 2016, 7, 16923–16935. [Google Scholar] [CrossRef]
- Pan, C.; Stevic, I.; Müller, V.; Ni, Q.; Oliveira-Ferrer, L.; Pantel, K.; Schwarzenbach, H. Exosomal MicroRNAs as Tumor Markers in Epithelial Ovarian Cancer. Mol. Oncol. 2018, 12, 1935–1948. [Google Scholar] [CrossRef]
- Yu, R.; Cai, L.; Chi, Y.; Ding, X.; Wu, X. MiR-377 Targets CUL4A and Regulates Metastatic Capability in Ovarian Cancer. Int. J. Mol. Med. 2018, 41, 3147–3156. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, Q.; Luo, K.; Zhang, Q.; Geng, J.; Zhou, X.; Xu, Y.; Qian, M.; Zhang, J.-a.; Ji, L.; et al. MiR-340-FHL2 Axis Inhibits Cell Growth and Metastasis in Ovarian Cancer. Cell Death Dis. 2019, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, Y.; Zhang, Y. CircRNA in Ocular Neovascular Diseases: Fundamental Mechanism and Clinical Potential. Pharmacol. Res. 2023, 197, 106946. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Chen, L.-L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, T. EIciRNA-Mediated Gene Expression: Tunability and Bimodality. FEBS Lett. 2018, 592, 3460–3471. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Liu, C.-G.; Xiang, X.; Le, M.T.N.; Sethi, G.; Wang, L.; Goh, B.-C.; Ma, Z. The Potential Role of Exosomal CircRNAs in the Tumor Microenvironment: Insights into Cancer Diagnosis and Therapy. Theranostics 2022, 12, 87–104. [Google Scholar] [CrossRef]
- Chen, J.; Gu, J.; Tang, M.; Liao, Z.; Tang, R.; Zhou, L.; Su, M.; Jiang, J.; Hu, Y.; Chen, Y.; et al. Regulation of Cancer Progression by CircRNA and Functional Proteins. J. Cell Physiol. 2022, 237, 373–388. [Google Scholar] [CrossRef]
- Donati, B.; Lorenzini, E.; Ciarrocchi, A. BRD4 and Cancer: Going beyond Transcriptional Regulation. Mol. Cancer 2018, 17, 164. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/Beta-Catenin Signaling: ComponentMacDonald BT; Tamai, K.; He, X. Wnt/Beta-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, J.; Yu, L.; Wu, S.; Qiu, X. Circular RNA Hsa_circ_0000144 Aggravates Ovarian Cancer Progression by Regulating ELK3 via Sponging MiR-610. J. Ovarian Res. 2022, 15, 113. [Google Scholar] [CrossRef]
- Yu, S.; Yu, M.; Chen, J.; Tang, H.; Gong, W.; Tan, H. Circ_0000471 Suppresses the Progression of Ovarian Cancer through Mediating Mir-135b-5p/Dusp5 Axis. Am. J. Reprod. Immunol. 2023, 89, e13651. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, J.; Li, Y.; Shi, X.; Shen, F.; Chen, M.; Chen, Y.; Wang, J. Hsa_circ_0001445 Works as a Cancer Suppressor via MiR-576-5p/SFRP1 Axis Regulation in Ovarian Cancer. Cancer Med. 2023, 12, 5736–5750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jiang, J.; Guo, S. Hsa_circ_0004712 Downregulation Attenuates Ovarian Cancer Malignant Development by Targeting the MiR-331-3p/FZD4 Pathway. J. Ovarian Res. 2021, 14, 118. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, Y.; Xu, H.; Shi, Y.; Shen, R.; Teng, F.; Xu, J.; Jia, X. Circular Rna Hsa_circ_0007444 Inhibits Ovarian Cancer Progression through Mir-23a-3p/Dicer1 Axis. Acta Biochim. Biophys. Sin. 2023, 55, 574–586. [Google Scholar] [CrossRef]
- Wei, W.; Wang, N.; Lin, L. Prognostic Value of Hsa_circ_0007615 in Epithelial Ovarian Cancer and Its Regulatory Effect on Tumor Progression. Horm. Metab. Res. 2023, 55, 801–808. [Google Scholar] [CrossRef]
- Li, L.; Yu, P.; Zhang, P.; Wu, H.; Chen, Q.; Li, S.; Wang, Y. Upregulation of Hsa_circ_0007874 Suppresses the Progression of Ovarian Cancer by Regulating the MiR-760/SOCS3 Pathway. Cancer Med. 2020, 9, 2491–2499. [Google Scholar] [CrossRef]
- Li, Y.; Lin, S.; An, N. Hsa_circ_0009910: Oncogenic Circular RNA Targets MicroRNA-145 in Ovarian Cancer Cells. Cell Cycle 2020, 19, 1857–1868. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, Q.; Peng, X.; Yu, S.; Liu, N. Circ_0015756 Promotes Ovarian Cancer Progression via the MiR-145–5p/PSAT1 Axis. Reprod. Biol. 2022, 22, 100702. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Han, B.; Liu, L.; Cui, H.; Liu, H.; Jia, R.; Zhang, X.; Lu, X. Circ_0021573 Acts as a Competing Endogenous RNA to Promote the Malignant Phenotypes of Human Ovarian Cancer Cells. Reprod. Biol. 2023, 23, 100704. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, Y.; Li, X. Circ_0072995 Promotes Ovarian Cancer Progression Through Regulating MiR-122-5p/SLC1A5 Axis. Biochem. Genet. 2022, 60, 153–172. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, H. Circ_0078607 Inhibits the Progression of Ovarian Cancer via Regulating the MiR-32-5p/SIK1 Network. J. Ovarian Res. 2022, 15, 3. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, Y. Circ_0025033 Promotes the Progression of Ovarian Cancer by Activating the Expression of LSM4 via Targeting MiR-184. Pathol. Res. Pract. 2021, 217, 153275. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, Q.; Chen, J.; Chang, M.; Ma, Y.; Yu, J. Circ_0061140 Contributes to the Malignant Progression in Ovarian Cancer Cells by Mediating the RAB1A Level Through Sponging MiR-361-5p. Biochem. Genet. 2022, 60, 1946–1962. [Google Scholar] [CrossRef]
- Ma, L.; Liu, W.; Li, M. Circ_0061140 Contributes to Ovarian Cancer Progression by Targeting MiR-761/LETM1 Signaling. Biochem. Genet. 2023, 61, 628–650. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jin, Y.; Hu, Q.; Cheng, S.; Wang, C.; Yang, Z.; Wang, Y. Circular RNA Hsa_circ_0078607 Suppresses Ovarian Cancer Progression by Regulating MiR-518a-5p/Fas Signaling Pathway. J. Ovarian Res. 2020, 13, 64. [Google Scholar] [CrossRef]
- Lyu, M.; Li, X.; Shen, Y.; Lu, J.; Zhang, L.; Zhong, S.; Wang, J. CircATRNL1 and CircZNF608 Inhibit Ovarian Cancer by Sequestering MiR-152-5p and Encoding Protein. Front. Genet. 2022, 13, 784089. [Google Scholar] [CrossRef]
- Lu, M.; Gong, B.; Wang, Y.; Li, J. CircBNC2 Affects Epithelial Ovarian Cancer Progression through the MiR-223-3p/LARP4 Axis. Anticancer Drugs 2023, 34, 384–394. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, L.; Zou, X. Circular RNA Circ-BNC2 (Hsa_circ_0008732) Inhibits the Progression of Ovarian Cancer through MicroRNA-223-3p/FBXW7 Axis. J. Ovarian Res. 2022, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- He, S.L.; Zhao, X.; Yi, S.J. CircAHNAK Upregulates EIF2B5 Expression to Inhibit the Progression of Ovarian Cancer by Modulating the JAK2/STAT3 Signaling Pathway. Carcinogenesis 2022, 43, 941–955. [Google Scholar] [CrossRef]
- Chen, H.; Mao, M.; Jiang, J.; Zhu, D.; Li, P. Circular RNA CDR1as Acts as a Sponge of MiR-135b-5p to Suppress Ovarian Cancer Progression. Onco. Targets Ther. 2019, 12, 3869–3879. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, X.; Zhang, S.; Chen, S.; Guan, X.; Li, Q.; Chen, X.; Zhao, Y. CircCRIM1 Promotes Ovarian Cancer Progression by Working as CeRNAs of CRIM1 and Targeting MiR-383-5p/ZEB2 Axis. Reprod. Biol. Endocrinol. 2021, 19, 176. [Google Scholar] [CrossRef]
- Xie, J.; Wang, S.; Li, G.; Zhao, X.; Jiang, F.; Liu, J.; Tan, W. CircEPSTI1 Regulates Ovarian Cancer Progression via Decoying MiR-942. J. Cell Mol. Med. 2019, 23, 3597–3602. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Fang, J.; Xie, P.; Miao, M.; Yang, H. Circular Rna Circexoc6b Inhibits the Progression of Ovarian Cancer by Sponging MiR-421 and Regulating Rus1 Expression. Onco. Targets Ther. 2020, 13, 8233–8243. [Google Scholar] [CrossRef]
- Sun, D.; Liu, J.; Zhou, L. Upregulation of Circular RNA Circ-FAM53B Predicts Adverse Prognosis and Accelerates the Progression of Ovarian Cancer via the MiR-646/VAMP2 and MiR-647/MDM2 Signaling Pathways. Oncol. Rep. 2019, 42, 2728–2737. [Google Scholar] [CrossRef]
- Wu, M.; Qiu, Q.; Zhou, Q.; Li, J.; Yang, J.; Zheng, C.; Luo, A.; Li, X.; Zhang, H.; Cheng, X.; et al. CircFBXO7/MiR-96-5p/MTSS1 Axis Is an Important Regulator in the Wnt Signaling Pathway in Ovarian Cancer. Mol. Cancer 2022, 21, 137. [Google Scholar] [CrossRef]
- Hu, J.; Wang, L.; Chen, J.; Gao, H.; Zhao, W.; Huang, Y.; Jiang, T.; Zhou, J.; Chen, Y. The Circular RNA Circ-ITCH Suppresses Ovarian Carcinoma Progression through Targeting MiR-145/RASA1 Signaling. Biochem. Biophys. Res. Commun. 2018, 505, 222–228. [Google Scholar] [CrossRef]
- Song, R.; Chai, T.; Liu, J.; Chu, A.; Sun, C.; Liu, Z. Knockdown of CircMFN2 Inhibits Cell Progression and Glycolysis by MiR-198/CUL4B Pathway in Ovarian Cancer. J. Biochem. Mol. Toxicol. 2023, 37, e23383. [Google Scholar] [CrossRef]
- Yang, H.; Guo, Y.; Zhang, Y.; Wang, D.; Zhang, G.; Hou, J.; Yang, J. Circ_MUC16 Attenuates the Effects of Propofol to Promote the Aggressive Behaviors of Ovarian Cancer by Mediating the MiR-1182/S100B Signaling Pathway. BMC Anesthesiol. 2021, 21, 297. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ye, H.; Yang, B.; Ao, M.; Yu, X.; Wu, Y.; Xi, M.; Hou, M. M6A-Modified CircNFIX Promotes Ovarian Cancer Progression and Immune Escape via Activating IL-6R/JAK1/STAT3 Signaling by Sponging MiR-647. Int. Immunopharmacol. 2023, 124, 110879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Zhao, W.; Liu, G.; Yang, Q. Circ-PGAM1 Promotes Malignant Progression of Epithelial Ovarian Cancer through Regulation of the MiR-542-3p/CDC5L/PEAK1 Pathway. Cancer Med. 2020, 9, 3500–3521. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lan, S.; Wang, L.; Zhao, J.; Jia, X.; Xu, J.; Sun, G.; Liu, L.; Gong, S.; Wang, N.; et al. Expression of Circ-PHC3 Enhances Ovarian Cancer Progression via Regulation of the MiR-497-5p/SOX9 Pathway. J. Ovarian Res. 2023, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Chen, A.; Shi, W.; Wang, L.; Yi, R.; Qiu, J. CircPIP5K1A Serves as a Competitive Endogenous RNA Contributing to Ovarian Cancer Progression via Regulation of MiR-661/IGFBP5 Signaling. J. Cell. Biochem. 2019, 120, 19406–19414. [Google Scholar] [CrossRef]
- Wu, S.G.; Zhou, P.; Chen, J.X.; Lei, J.; Hua, L.; Dong, Y.; Hu, M.; Lian, C.L.; Yang, L.C.; Zhou, J. Circ-PTK2 (Hsa_circ_0008305) Regulates the Pathogenic Processes of Ovarian Cancer via MiR-639 and FOXC1 Regulatory Cascade. Cancer Cell Int. 2021, 21, 277. [Google Scholar] [CrossRef]
- Song, W.; Zeng, Z.; Zhang, Y.; Li, H.; Cheng, H.; Wang, J.; Wu, F. CircRNF144B/MiR-342-3p/FBXL11 Axis Reduced Autophagy and Promoted the Progression of Ovarian Cancer by Increasing the Ubiquitination of Beclin-1. Cell Death Dis. 2022, 13, 857. [Google Scholar] [CrossRef]
- Wang, L.L.; Zong, Z.H.; Liu, Y.; Guan, X.; Chen, S.; Zhao, Y. CircRhoC Promotes Tumorigenicity and Progression in Ovarian Cancer by Functioning as a MiR-302e Sponge to Positively Regulate VEGFA. J. Cell Mol. Med. 2019, 23, 8472–8481. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L. CircSETDB1 Knockdown Inhibits the Malignant Progression of Serous Ovarian Cancer through MiR-129-3p-Dependent Regulation of MAP3K3. J. Ovarian Res. 2021, 14, 160. [Google Scholar] [CrossRef]
- Zong, Z.H.; Du, Y.P.; Guan, X.; Chen, S.; Zhao, Y. CircWHSC1 Promotes Ovarian Cancer Progression by Regulating MUC1 and HTERT through Sponging MiR-145 and MiR-1182. J. Exp. Clin. Cancer Res. 2019, 38, 437. [Google Scholar] [CrossRef]
- Sheng, M.; Wei, N.; Yang, H.Y.; Yan, M.; Zhao, Q.X.; Jing, L.J. CircRNA UBAP2 Promotes the Progression of Ovarian Cancer by Sponging MicroRNA-144. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7283–7294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, Q.; Qiu, Q.; Hou, L.; Wu, M.; Li, J.; Li, X.; Lu, B.; Cheng, X.; Liu, P.; et al. CircPLEKHM3 Acts as a Tumor Suppressor through Regulation of the MiR-9/BRCA1/DNAJB6/KLF4/AKT1 Axis in Ovarian Cancer. Mol. Cancer 2019, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Fang, H. Curcumin Inhibits Ovarian Cancer Progression by Regulating Circ-PLEKHM3/MiR-320a/SMG1 Axis. J. Ovarian Res. 2021, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, Y.; Shen, Q.; Chen, Q.; Zhu, X.J.; Jiang, S.S.; Zhang, Q. CircRNA-MYLK Promotes Malignant Progression of Ovarian Cancer through Regulating MicroRNA-652. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5281–5291. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liang, C.; Lin, J.; Dong, Y.; Wang, Y.; Xia, L. Hsa_circ_0001741 Suppresses Ovarian Cancer Cell Proliferations Through Adsorption of MiR-188-5p and Promotion of FOXN2 Expression. Mol. Biotechnol. 2024, 66, 1477–1483. [Google Scholar] [CrossRef]
- Xu, F.; Ni, M.; Li, J.; Cheng, J.; Zhao, H.; Zhao, J.; Huang, S.; Wu, X. Circ0004390 Promotes Cell Proliferation through Sponging MiR-198 in Ovarian Cancer. Biochem. Biophys. Res. Commun. 2020, 526, 14–20. [Google Scholar] [CrossRef]
- Luo, L.; Gao, Y.Q.; Sun, X.F. Circular RNA ITCH Suppresses Proliferation and Promotes Apoptosis in Human Epithelial Ovarian Cancer Cells by Sponging MiR-10a-α. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8119–8126. [Google Scholar]
- Sun, X.; Luo, L.; Gao, Y. Circular RNA PVT1 Enhances Cell Proliferation but Inhibits Apoptosis through Sponging MicroRNA-149 in Epithelial Ovarian Cancer. J. Obstet. Gynaecol. Res. 2020, 46, 625–635. [Google Scholar] [CrossRef]
- Xu, Q.; Deng, B.; Li, M.; Chen, Y.; Zhuan, L. CircRNA-UBAP2 Promotes the Proliferation and Inhibits Apoptosis of Ovarian Cancer Though MiR-382-5p/PRPF8 Axis. J. Ovarian Res. 2020, 13, 81. [Google Scholar] [CrossRef]
- Tian, Q.; Mu, Q.; Liu, S.; Huang, K.; Tang, Y.; Zhang, P.; Zhao, J.; Shu, C. M6A-Modified CircASXL1 Promotes Proliferation and Migration of Ovarian Cancer through the MiR-320d/RACGAP1 Axis. Carcinogenesis 2023, 44, 859–870. [Google Scholar] [CrossRef]
- Qu, B.; Sun, L.; Xiao, P.; Shen, H.; Ren, Y.; Zhang, J. CircCDK17 Promotes the Proliferation and Metastasis of Ovarian Cancer Cells by Sponging MiR-22-3p to Regulate CD147 Expression. Carcinogenesis 2024, 45, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zheng, Y.; You, J.; Han, Y.; Lu, X.; Wang, X.; Shi, C.; Zhu, W. Hsa_circ_0001535 Inhibits the Proliferation and Migration of Ovarian Cancer by Sponging MiR-593-3p, Upregulating PTEN Expression. Clin. Transl. Oncol. 2023, 25, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Qiao, L.; Wang, H. CircRNA Circ_0000554 Promotes Ovarian Cancer Invasion and Proliferation by Regulating MiR-567. Environ. Sci. Pollut. Res. 2022, 29, 19072–19080. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Meng, K.; Qiu, R. Circular RNA Circ_0013958 Functions as a Tumor Promoter in Ovarian Cancer by Regulating MiR-637/PLXNB2 Axis. Front. Genet. 2021, 12, 644451. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Y.; Ye, X.; Xia, X. Circular RNA ABCB10 Promotes Cell Proliferation and Invasion, but Inhibits Apoptosis via Regulating the MicroRNA-1271-Mediated Capn4/Wnt/β-Catenin Signaling Pathway in Epithelial Ovarian Cancer. Mol. Med. Rep. 2021, 23, 387. [Google Scholar] [CrossRef]
- Wang, N.; Cao, Q.X.; Tian, J.; Ren, L.; Cheng, H.L.; Yang, S.Q. Circular RNA MTO1 Inhibits the Proliferation and Invasion of Ovarian Cancer Cells Through the MiR-182-5p/KLF15 Axis. Cell Transplant. 2020, 29, 963689720943613. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Sun, H. The Molecular Mechanism of CircRHOBTB3 Inhibits the Proliferation and Invasion of Epithelial Ovarian Cancer by Serving as the CeRNA of MiR-23a-3p. J. Ovarian Res. 2022, 15, 66. [Google Scholar] [CrossRef]
- Gong, J.; Xu, X.; Zhang, X.; Zhou, Y. Circular RNA-9119 Suppresses in Ovarian Cancer Cell Viability via Targeting the MicroRNA-21-5p-PTEN-Akt Pathway. Aging 2020, 12, 14314–14328. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, G.; Gao, X.; Chen, C.; Zhou, M.; Zhang, L. Propofol Suppresses Cell Viability, Cell Cycle Progression and Motility and Induces Cell Apoptosis of Ovarian Cancer Cells through Suppressing MEK/ERK Signaling via Targeting CircVPS13C/MiR-145 Axis. J. Ovarian Res. 2021, 14, 30. [Google Scholar] [CrossRef]
- Wei, X.; Lv, H.; Yang, S.; Yang, X. CircRNA PLOD2 Enhances Ovarian Cancer Propagation by Controlling MiR-378. Saudi J. Biol. Sci. 2021, 28, 6260–6265. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, B.; Xu, Y.; Zhang, Y.; Xu, J.; Lou, G. Circular RNA (Hsa:Circ_0051240) Promotes Cell Proliferation, Migration and Invasion in Ovarian Cancer through MiR-637/KLK4 Axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 224–1233. [Google Scholar] [CrossRef]
- Li, Q.-h.; Liu, Y.; Chen, S.; Zong, Z.-h.; Du, Y.-p; Sheng, X.-j.; Zhao, Y. Circ-CSPP1 Promotes Proliferation, Invasion and Migration of Ovarian Cancer Cells by Acting as a MiR-1236-3p Sponge. Biomed. Pharmacother. 2019, 114, 108832. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, R.Y.; Yu, X.Z.; Wu, Y.K.; Yang, B.W.; Ao, M.Y.; Xi, M.R.; Hou, M.M. Exosomal CircNFIX Promotes Angiogenesis in Ovarian Cancer via MiR-518a-3p/TRIM44 Axis. Kaohsiung J. Med. Sci. 2023, 39, 26–39. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Li, H.; Sun, Y.; Tong, X. Downregulation of Hsa_circ_0026123 Suppresses Ovarian Cancer Cell Metastasis and Proliferation through the MiR-124-3p/EZH2 Signaling Pathway. Int. J. Mol. Med. 2021, 47, 668–676. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Yuan, J.; Wang, C.; Zeng, D.; Yong, J.H.; Jiang, X.Y.; Lan, H.; Xiao, S.S. CircCELSR1 Facilitates Ovarian Cancer Proliferation and Metastasis by Sponging MiR-598 to Activate BRD4 Signals. Mol. Med. 2020, 26, 70. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhou, J.H.; Shen, F.R.; Shi, X.; Chen, Y.G. CircATRNL1 Activates Smad4 Signaling to Inhibit Angiogenesis and Ovarian Cancer Metastasis via MiR-378. Mol. Oncol. 2021, 15, 1217–1233. [Google Scholar] [CrossRef]
- Wang, F.; Niu, Y.; Chen, K.; Yuan, X.; Qin, Y.; Zheng, F.; Cui, Z.; Lu, W.; Wu, Y.; Xia, D. Extracellular Vesicle-Packaged CircATP2B4 Mediates M2 Macrophage Polarization via MiR-532-3p/SREBF1 Axis to Promote Epithelial Ovarian Cancer Metastasis. Cancer Immunol. Res. 2023, 11, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ren, X.; Jiaoting, E.; Zhou, Y.; Bian, R. Exosome-Transmitted CircIFNGR2 Modulates Ovarian Cancer Metastasis via MiR-378/ST5 Axis. Mol. Cell Biol. 2023, 43, 22–42. [Google Scholar] [CrossRef]
- Xie, W.; Liu, L.; He, C.; Zhao, M.; Ni, R.; Zhang, Z.; Shui, C. Circ_0002711 Knockdown Suppresses Cell Growth and Aerobic Glycolysis by Modulating MiR-1244/ROCK1 Axis in Ovarian Cancer. J. Biosci. 2021, 46, 21. [Google Scholar] [CrossRef]
- Deng, G.; Zhou, X.; Chen, L.; Yao, Y.; Li, J.; Zhang, Y.; Luo, C.; Sun, L.; Tang, J. High Expression of ESRP1 Regulated by Circ-0005585 Promotes Cell Colonization in Ovarian Cancer. Cancer Cell Int. 2020, 20, 174. [Google Scholar] [CrossRef]
- Tang, Q.; Wen, H.; Hu, H.; Chen, X.; Xu, S.; Fan, L.; Liu, L.; Li, J. Circ_0070203 Promotes Epithelial-Mesenchymal Transition in Ovarian Serous Cystadenocarcinoma through MiR-370-3p/TGFβR2 Axis. Recent Pat. Anticancer Drug Discov. 2023, 19, 233–246. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Y.; Yang, M.; Qiao, L.; Wang, H.; Jiang, H.; Fu, M.; Qin, J.; Xu, S. Hsa_circ_0013561 Promotes Epithelial-Mesenchymal Transition and Tumor Progression by Regulating ANXA2 via MiR-23b-3p in Ovarian Cancer. Cancer Gene Ther. 2024, 31, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Dong, Z.N.; Qiu, B.Q.; Hu, M.; Liang, X.Q.; Dai, X.; Hong, D.; Sun, Y.F. CircRNA FGFR3 Induces Epithelial-Mesenchymal Transition of Ovarian Cancer by Regulating MiR-29a-3p/E2F1 Axis. Aging 2020, 12, 14080–14091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, Y.; Ye, W.; Jiang, J.; Wu, C. Circular RNA S-7 Promotes Ovarian Cancer EMT via Sponging MiR-641 to up-Regulate ZEB1 and MDM2. Biosci. Rep. 2020, 40, BSR20200825. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhu, G.; Hong, L.; Hu, C.; Wang, K.; Cui, K.; Hao, C. RNA-Binding Protein IGF2BP2 Enhances Circ_0000745 Abundancy and Promotes Aggressiveness and Stemness of Ovarian Cancer Cells via the MicroRNA-3187-3p/ERBB4/PI3K/AKT Axis. J. Ovarian Res. 2021, 14, 154. [Google Scholar] [CrossRef]
- Huang, K.; Liu, D.; Su, C. Circ_0007841 Accelerates Ovarian Cancer Development through Facilitating MEX3C Expression by Restraining MiR-151-3p Activity. Aging 2021, 13, 12058–12066. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Qu, S.; Zhai, Y.; Yang, X. Circ_0025033 Promotes Ovarian Cancer Development via Regulating the Hsa_miR-370-3p/SLC1A5 Axis. Cell. Mol. Biol. Lett. 2022, 27, 94. [Google Scholar] [CrossRef]
- Li, X.; Jiang, X.; Lu, J.; Lin, Y.; Jiang, L.; Li, Y.; Wan, F.; Wang, C. CircCERS6 Suppresses the Development of Epithelial Ovarian Cancer Through Mediating MiR-630/RASSF8. Biochem. Genet. 2022, 60, 2611–2629. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, M.; Feng, Z.; Wu, H.; Wu, J.; Ha, X.; Wu, Y.; Chen, S.; Xu, F.; Wen, H.; et al. AUF1-Induced Circular RNA Hsa_circ_0010467 Promotes Platinum Resistance of Ovarian Cancer through MiR-637/LIF/STAT3 Axis. Cell. Mol. Life Sci. 2023, 80, 256. [Google Scholar] [CrossRef]
- Dai, C.; Dai, S.Y.; Gao, Y.; Yan, T.; Zhou, Q.Y.; Liu, S.-j.; Liu, X.; Deng, D.N.; Wang, D.H.; Qin, Q.F.; et al. Circ_0078607 Increases Platinum Drug Sensitivity via MiR-196b-5p/GAS7 Axis in Ovarian Cancer. Epigenetics 2023, 18, 2175565. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, Y. Circ_0007841 Knockdown Confers Cisplatin Sensitivity to Ovarian Cancer Cells by Down-Regulation of NFIB Expression in a MiR-532-5p-Dependent Manner. J. Chemother. 2023, 35, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; He, W.; Zhao, H.; Zhao, P. Circ_0026123 Promotes Cisplatin Resistance and Progression of Ovarian Cancer by Upregulating RAB1A through Sequestering MiR-543. Anticancer Drugs 2022, 33, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Han, Y.; Qiao, H.; Han, Y.; Lu, X.; Lu, Y.; Wang, X.; Kai, H.; Zheng, Y. Hsa_circ_0063804 Enhances Ovarian Cancer Cells Proliferation and Resistance to Cisplatin by Targeting MiR-1276/CLU Axis. Aging 2022, 14, 4699–4713. [Google Scholar] [CrossRef]
- Yin, Y.; Li, J.; Rong, J.; Zhang, B.; Wang, X.; Han, H. Circ_0067934 Reduces JNK Phosphorylation through a MicroRNA-545-3p/PPA1 Axis to Enhance Tumorigenesis and Cisplatin Resistance in Ovarian Cancer. Immunopharmacol. Immunotoxicol. 2022, 44, 261–274. [Google Scholar] [CrossRef]
- Luo, Y.; Gui, R. Circulating Exosomal Circfoxp1 Confers Cisplatin Resistance in Epithelial Ovarian Cancer Cells. J. Gynecol. Oncol. 2020, 31, e75. [Google Scholar] [CrossRef]
- Sheng, H.; Wang, X. Knockdown of Circ-PIP5K1A Overcomes Resistance to Cisplatin in Ovarian Cancer by MiR-942-5p/NFIB Axis. Anticancer Drugs 2023, 34, 214–226. [Google Scholar] [CrossRef]
- Li, H.; Lin, R.; Zhang, Y.; Zhu, Y.; Huang, S.; Lan, J.; Lu, N.; Xie, C.; He, S.; Zhang, W. N6-Methyladenosine-Modified CircPLPP4 Sustains Cisplatin Resistance in Ovarian Cancer Cells via PIK3R1 Upregulation. Mol. Cancer 2024, 23, 5. [Google Scholar] [CrossRef]
- Guo, M.; Li, S.; Zhao, X.; Yuan, Y.; Zhang, B.; Guan, Y. Knockdown of Circular Rna Hsa_circ_0000714 Can Regulate Rab17 by Sponging Mir-370-3p to Reduce Paclitaxel Resistance of Ovarian Cancer through Cdk6/Rb Pathway. Onco. Targets Ther. 2020, 13, 13211–13224. [Google Scholar] [CrossRef]
- Huang, H.; Yan, L.; Zhong, J.; Hong, L.; Zhang, N.; Luo, X. Circ_0025033 Deficiency Suppresses Paclitaxel Resistance and Malignant Development of Paclitaxel-Resistant Ovarian Cancer Cells by Modulating the MiR-532-3p/FOXM1 Network. Immunopharmacol. Immunotoxicol. 2022, 44, 275–286. [Google Scholar] [CrossRef]
- Zhu, J.; Luo, J.-e.; Chen, Y.; Wu, Q. Circ_0061140 Knockdown Inhibits Tumorigenesis and Improves PTX Sensitivity by Regulating MiR-136/CBX2 Axis in Ovarian Cancer. J. Ovarian Res. 2021, 14, 136. [Google Scholar] [CrossRef]
- Ying, H.; Zhao, R.; Yu, Q.; Zhang, K.; Deng, Q. CircATL2 Enhances Paclitaxel Resistance of Ovarian Cancer via Impacting MiR-506-3p/NFIB Axis. Drug Dev. Res. 2022, 83, 512–524. [Google Scholar] [CrossRef]
- Wei, S.; Qi, L.; Wang, L. Overexpression of Circ-CELSR1 Facilitates Paclitaxel Resistance of Ovarian Cancer by Regulating MiR-149-5p/SIK2 Axis. Anticancer Drugs 2021, 32, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cheng, J.; Quan, C.; Wen, H.; Feng, Z.; Hu, Q.; Zhu, J.; Huang, Y.; Wu, X. CircCELSR1 (Hsa_circ_0063809) Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Regulating FOXR2 Expression via MiR-1252. Mol. Ther. Nucleic Acids 2020, 19, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Z.; Yang, S.; Wang, Y.; Luan, Z. CircEXOC6B Suppresses the Proliferation and Motility and Sensitizes Ovarian Cancer Cells to Paclitaxel Through MiR-376c-3p/FOXO3 Axis. Cancer Biother. Radiopharm. 2022, 37, 802–814. [Google Scholar] [CrossRef]
- Huang, C.; Qin, L.; Chen, S.; Huang, Q. CircSETDB1 Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Sponging MiR-508-3p and Regulating ABCC1 Expression. Anticancer Drugs 2023, 34, 395–404. [Google Scholar] [CrossRef]
- Chen, Y.-y.; Tai, Y. chun Hsa_circ_0006404 and Hsa_circ_0000735 Regulated Ovarian Cancer Response to Docetaxel Treatment via Regulating P-GP Expression. Biochem. Genet. 2022, 60, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guan, R.; Gong, K.; Xie, H.; Shi, L. Circ_FURIN Knockdown Assuages Testosterone-Induced Human Ovarian Granulosa-like Tumor Cell Disorders by Sponging MiR-423-5p to Reduce MTM1 Expression in Polycystic Ovary Syndrome. Reprod. Biol. Endocrinol. 2022, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Zhu, H.; Jiang, X.; Obiegbusi, S.C.; Yong, M.; Long, X.; Hu, J. CircMUC16 Promotes Autophagy of Epithelial Ovarian Cancer via Interaction with ATG13 and MiR-199a. Mol. Cancer 2020, 19, 45. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Hu, J. CircRAB11FIP1 Promoted Autophagy Flux of Ovarian Cancer through DSC1 and MiR-129. Cell Death Dis. 2021, 12, 219. [Google Scholar] [CrossRef]
- Qu, D.D.; Zou, X.; Liu, Z.L. Propofol Modulates Glycolysis Reprogramming of Ovarian Tumor via Restraining Circular RNA-Zinc Finger RNA-Binding Protein/MicroRNA-212-5p/Superoxide Dismutase 2 Axis. Bioengineered 2022, 13, 11881–11892. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Liu, Y.; Liu, C.; Wang, Y.; He, L.; Cheng, X.; Peng, Y.; Xia, L.; Wu, X.; et al. NFIB Facilitates Replication Licensing by Acting as a Genome Organizer. Nat. Commun. 2023, 14, 5076. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Park, S.J.; Nam, M.; Kang, J.; Kim, K.; Yeo, J.H.; Kim, J.K.; Heo, Y.; Lee, H.S.; Lee, M.Y.; et al. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab. 2020, 31, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.-B.; Li, X.Z.; Zeng, S.; Liu, C.; Yang, S.M.; Yang, L.; Hu, C.J.; Bai, J.Y. Regulation of the Master Regulator FOXM1 in Cancer. Cell Commun. Signal. 2018, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, J.; Liu, J.; Meng, C.; Liu, B.; Shao, C. Analysis of Correlation between Rab1A Expression and Its Prognosis in Cancers: A Meta-Analysis. Clin. Lab. 2024, 70, 1. [Google Scholar] [CrossRef]
- Bertorello, A.M.; Zhu, J.K. SIK1/SOS2 Networks: Decoding Sodium Signals via Calcium-Responsive Protein Kinase Pathways. Pflug. Arch. 2009, 458, 613–619. [Google Scholar] [CrossRef]
- Green, D.R.; Llambi, F. Cell Death Signaling. Cold Spring Harb. Perspect. Biol. 2015, 7, a006080. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Du, J.H.; Xing, Y.J.; Cheng, Y.M.; He, R.F.; Liang, X.L.; Li, H.L.; Yang, Y.X. SIK2: A Critical Glucolipid Metabolic Reprogramming Regulator and Potential Target in Ovarian Cancer. J. Obstet. Gynaecol. Res. 2023, 49, 2000–2009. [Google Scholar] [CrossRef]
- Karin, M.; Baud, V. Is NF-KappaB a Good Target for Cancer Therapy? Hopes and Pitfalls. Nat. Rev. Drug Discov. 2009, 8, 33–40. [Google Scholar]
- Brzozowa-Zasada, M.; Piecuch, A.; Michalski, M.; Segiet, O.; Kurek, J.; Harabin-Słowińska, M.; Wojnicz, R. Notch and Its Oncogenic Activity in Human Malignancies. Eur. Surg. 2017, 49, 199–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Q.; Su, B.; Xu, H.; Sun, Y.; Sun, P.; Li, R.; Peng, X.; Cai, J. Role of RASA1 in Cancer: A Review and Update (Review). Oncol. Rep. 2020, 44, 2386–2396. [Google Scholar] [CrossRef]
- Damia, G.; Broggini, M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers 2019, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, L. Progress in Research on Paclitaxel and Tumor Immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef] [PubMed]
- Yélamos, J.; Moreno-Lama, L.; Jimeno, J.; Ali, S.O. Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies. Cancers 2020, 12, 392. [Google Scholar] [CrossRef]
- Irusta, G. Roads to the Strategic Targeting of Ovarian Cancer Treatment. Reproduction 2021, 161, R1–R11. [Google Scholar] [CrossRef]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Beilerli, A.; Begliarzade, S.; Sufianov, A.; Ilyasova, T.; Liang, Y.; Beylerli, O. Circulating CiRS-7 as a Potential Non-Invasive Biomarker for Epithelial Ovarian Cancer: An Investigative Study. Noncoding RNA Res. 2022, 7, 197–204. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, J.; Zhang, L.Y.; Wang, L. CircHIPK3 Is Upregulated and Predicts a Poor Prognosis in Epithelial Ovarian Cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3713–3718. [Google Scholar] [CrossRef]
- Ning, L.; Long, B.; Zhang, W.; Yu, M.; Wang, S.; Cao, D.; Yang, J.; Shen, K.; Huang, Y.; Lang, J. Circular RNA Profiling Reveals CircEXOC6B and CircN4BP2L2 as Novel Prognostic Biomarkers in Epithelial Ovarian Cancer. Int. J. Oncol. 2018, 53, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Lang, J.; Long, B.; Wu, L. Diagnostic Value of CircN4BP2L2 in Type I and Type II Epithelial Ovarian Cancer. BMC Cancer 2022, 22, 1210. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Liu, Y.; Wang, M. Circular RNA Profiling Reveals CircRNA1656 as a Novel Biomarker in High Grade Serous Ovarian Cancer. Biosci. Trends 2019, 13, 204–211. [Google Scholar] [CrossRef]
- Ge, L.; Sun, Y.; Shi, Y.; Liu, G.; Teng, F.; Geng, Z.; Chen, X.; Xu, H.; Xu, J.; Jia, X. Plasma CircRNA Microarray Profiling Identifies Novel CircRNA Biomarkers for the Diagnosis of Ovarian Cancer. J. Ovarian Res. 2022, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, Z.; Jin, Y.; Cheng, S.; Yang, J.; Wang, Y. Low Expression of Circular RNA Hsa_Circ_0078607 Predicts Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancer Manag. Res. 2021, 13, 2877–2883. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Wang, P.L.; Gao, Y.; Liang, W.T. Circular RNA-LARP4 Is Lower Expressed and Serves as a Potential Biomarker of Ovarian Cancer Prognosis. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7178–7182. [Google Scholar]
- Bao, L.; Zhong, J.; Pang, L. Upregulation of Circular RNA VPS13C-Has-Circ-001567 Promotes Ovarian Cancer Cell Proliferation and Invasion. Cancer Biother. Radiopharm. 2019, 34, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, W.; Li, Q.H.; Xie, B.M.; Shen, F.; Du, Y.P.; Zong, Z.H.; Wang, L.L.; Wei, X.Q.; Zhao, Y. Circ-NOLC1 Promotes Epithelial Ovarian Cancer Tumorigenesis and Progression by Binding ESRP1 and Modulating CDK1 and RhoA Expression. Cell Death Discov. 2021, 7, 22. [Google Scholar] [CrossRef]
- Pei, C.; Wang, H.; Shi, C.; Zhang, C.; Wang, M. CircRNA Hsa_circ_0013958 May Contribute to the Development of Ovarian Cancer by Affecting Epithelial-Mesenchymal Transition and Apoptotic Signaling Pathways. J. Clin. Lab. Anal. 2020, 34, e23292. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Zhang, W.; Lang, J.; Ning, L. Utility of Plasma CircBNC2 as a Diagnostic Biomarker in Epithelial Ovarian Cancer. Onco. Targets Ther. 2019, 12, 9715–9723. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Zhang, X.; Liu, G. Serum CircSETDB1 Is a Promising Biomarker for Predicting Response to Platinum-Taxane-Combined Chemotherapy and Relapse in High-Grade Serous Ovarian Cancer. Onco Targets Ther. 2019, 12, 7451–7457. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; Xia, X.; Lin, X. Circular RNA ABCB10 Correlates with Advanced Clinicopathological Features and Unfavorable Survival, and Promotes Cell Proliferation While Reduces Cell Apoptosis in Epithelial Ovarian Cancer. Cancer Biomark. 2019, 26, 151–161. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—MicroRNAs with a Role in Cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, Z.; Lu, Z.; Xia, J.; Xie, Z.; Jiao, M.; Liu, R.; Chu, Y. MicroRNAs: Immune Modulators in Cancer Immunotherapy. Immunother. Adv. 2021, 1, ltab006. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, G.; Cava, C.; Castiglioni, I. Micrornas: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 2015, 5, 1122–1143. [Google Scholar] [CrossRef]
- Holdt, L.M.; Kohlmaier, A.; Teupser, D. Circular RNAs as Therapeutic Agents and Targets. Front. Physiol. 2018, 9, 1262. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Wesselhoeft, R.A.; Kowalski, P.S.; Anderson, D.G. Engineering Circular RNA for Potent and Stable Translation in Eukaryotic Cells. Nat. Commun. 2018, 9, 2629. [Google Scholar] [CrossRef] [PubMed]
- Rossbach, O. Artificial Circular RNA Sponges Targeting MicroRNAs as a Novel Tool in Molecular Biology. Mol. Ther. Nucleic Acids 2019, 17, 452–454. [Google Scholar] [CrossRef]
- Yang, Q.; Li, F.; He, A.T.; Yang, B.B. Circular RNAs: Expression, Localization, and Therapeutic Potentials. Mol. Ther. 2021, 29, 1683–1702. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Xue, W.; Zhang, L.; Yang, L.Z.; Cao, S.M.; Lei, Y.N.; Liu, C.X.; Guo, S.K.; Shan, L.; et al. Screening for Functional Circular RNAs Using the CRISPR–Cas13 System. Nat. Methods 2021, 18, 51–59. [Google Scholar] [CrossRef]
- Meganck, R.M.; Borchardt, E.K.; Castellanos Rivera, R.M.; Scalabrino, M.L.; Wilusz, J.E.; Marzluff, W.F.; Asokan, A. Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors In Vivo. Mol. Ther. Nucleic Acids 2018, 13, 89–98. [Google Scholar] [CrossRef]
- Ma, J.; Du, W.W.; Zeng, K.; Wu, N.; Fang, L.; Lyu, J.; Yee, A.J.; Yang, B.B. An Antisense Circular RNA CircSCRIB Enhances Cancer Progression by Suppressing Parental Gene Splicing and Translation. Mol. Ther. 2021, 29, 2754–2768. [Google Scholar] [CrossRef]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug Delivery Systems for RNA Therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering Exosomes as Refined Biological Nanoplatforms for Drug Delivery. Acta Pharmacol. Sin. 2017, 38, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 Family: A Potential Tumor Suppressor and Therapeutic Candidate in Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef]
- Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I Study of MRX34, a Liposomal MiR-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Investig. New Drugs 2017, 35, 180–188. [Google Scholar] [CrossRef]
circRNAs | miRNAs | Targets | Function | Ref. | |
---|---|---|---|---|---|
* Increasing | ** Decreasing | ||||
circ_0000144 | miR-610 | ELK3 | progression | - | [45] |
circ_0000471 | miR-135b | dusp5 | progression | [46] | |
circ_0001445 | miR-576 | SFRP1 | - | progression | [47] |
circ_0004712 | miR-331 | FZD4 | progression | - | [48] |
circ_0007444 | miR-23a | Dicer1 | - | progression | [49] |
circ_0007615 | miR-874 | TUBB3 | progression | - | [50] |
circ_0007874 | miR-760 | SOCS3 | - | progression | [51] |
circ_0009910 | miR-145 | - | progression | - | [52] |
circ_0015756 | miR-145 | PSAT1 | progression | - | [53] |
circ_0021573 | miR-936 | CUL4B | progression | - | [54] |
circ_0072995 | miR-122 | SLC1A5 | progression | - | [55] |
circ_0078607 | miR-32 | SIK1 | - | progression | [56] |
circ_0025033 | miR-184 | LSM4 | progression | - | [57] |
circ_0061140 | miR-361 | RAB1A | progression | - | [58] |
miR-761 | LETM1 | progression | - | [59] | |
circ_0070203 | miR-518a | Fas | - | progression | [60] |
circ_ATRNL1 | miR-152 | - | progression | - | [61] |
circ_BNC2 | miR-223 | LARP4 | - | progression | [62] |
miR-223 | FBXW7 | - | progression | [63] | |
circ_AHNAK | miR-28 | EIF2B5 | - | progression | [64] |
circ_CDR1 | miR-135b | - | - | progression | [65] |
circ_CRIM1 | miR-383 | ZEB2 | progression | - | [66] |
circ_EPSTI1 | miR-942 | - | progression | - | [67] |
circ_EXOC6B | miR-421 | RUS1 | - | progression | [68] |
circ_FAM53B | miR-646 | VAMP2 | progression | - | [69] |
miR-647 | MDM2 | progression | - | [69] | |
circ_FBXO7 | miR-96-5p | MTSS1/Wnt | progression | - | [70] |
circ_ITCH | miR-145 | RASA1 | - | progression | [71] |
circ_MFN2 | miR-198 | CUL4B | progression, glycolysis | - | [72] |
circ_MUC16 | miR-1182 | S100B | progression | - | [73] |
circ_NFIX | miR-647 | JAK1/STAT3 | progression | - | [74] |
circ_PGAM1 | miR-542 | CDC5L/PEAK1 | progression | - | [75] |
circ_PHC3 | miR-497 | SOX9 | progression | - | [76] |
circ_PIP5K1A | miR-661 | IGFBP5 | progression | - | [77] |
circ-PTK2 | miR-639 | FOXC1 | progression | - | [78] |
circ_RNF144B | miR-342 | FBXL11 | progression | - | [79] |
circ_RhoC | miR-302e | VEGFA | progression | - | [80] |
circ_SETDB1 | miR-129 | MAP3K3 | progression | - | [81] |
circ_WHSC1 | miR-145 | MUC1 | progression | - | [82] |
circ_WHSC1 | miR-1182 | hTERT | progression | - | [82] |
circ_ZNF608 | miR-152 | - | progression | - | [61] |
circ_UBAP2 | miR-144 | - | - | progression | [83] |
circ_PLEKHM3 | miR-9 | BRCA1/DNAJB6/KLF4/AKT1 | - | progression | [84] |
miR-320a | SMG1 | - | progression | [85] | |
circ_MYLK | miR-652 | - | progression | - | [86] |
circ_0001741 | miR-188 | FOXN2 | - | proliferation | [87] |
circ_0004390 | miR-198 | - | proliferation | - | [88] |
circ_ITCH | miR-10a | - | - | proliferation | [89] |
circ_PVT1 | miR-149 | - | proliferation | - | [90] |
circ_UBAP2 | miR-382 | PRPF8 | proliferation | - | [91] |
circ_ASXL1 | miR-320d | RACGAP1 | proliferation, migration | - | [92] |
circ_CDK17 | miR-22 | CD147 | proliferation, migration | - | [93] |
circ_0001535 | miR-593 | PTEN | - | proliferation, migration [94] | |
circ_0000554 | miR-567 | - | proliferation, invasion | - | [95] |
circ_0013958 | miR-637 | PLXNB2 | proliferation, invasion | - | [96] |
circ_ABCB10 | miR-1271 | Capn4/Wnt | proliferation, invasion | - | [97] |
circ_MTO1 | miR-182 | KLF15 | - | proliferation, invasion | [98] |
circ_RHOBTB3 | miR-23a | - | - | proliferation, invasion | [99] |
circ_9119 | miR-21 | PTEN/Akt | - | cell viability | [100] |
circ_VPS13C | miR-145 | MEK/ERK | cell cycle, motility | - | [101] |
circ_PLOD2 | miR-378 | - | propagation | - | [102] |
circ_0051240 | miR-637 | KLK4 | migration, invasion | - | [103] |
circ_CSPP1 | miR-1236 | - | invasion, migration | - | [104] |
circ_NFIX | miR-518a | TRIM44 | angiogenesis | - | [105] |
circ_0026123 | miR-124 | EZH2 | proliferation, metastasis | - | [106] |
circ_CELSR1 | miR-598 | BRD4 | proliferation, metastasis | - | [107] |
circ_ATRNL1 | miR-378 | Smad4 | - | angiogenesis, metastasis | [108] |
circ_ATP2B4 | miR-532 | SREBF1 | metastasis | - | [109] |
circ_IFNGR2 | miR-378 | ST5 | metastasis | - | [110] |
circ_0002711 | miR-1244 | ROCK1 | cell growth, glycolysis | - | [111] |
circ_0005585 | miR-23a/b/ 15a/15b/16 | ESRP1 | colonization | - | [112] |
circ_0070203 | miR-370 | TGFβR2 | EMT | - | [113] |
circ_0013561 | miR-23b | ANXA2 | EMT | - | [114] |
circ_FGFR3 | miR-29a | E2F1 | EMT | - | [115] |
circ_S-7 | miR-641 | ZEB1, MDM2 | EMT | - | [116] |
circ_0000745 | miR-3187 | ERBB4/PI3K/AKT | cell stemness | - | [117] |
circ_0007841 | miR-151 | MEX3C | development | - | [118] |
circ_002503 | miR-370 | SLC1A5 | development | - | [119] |
circ_CERS6 | miR-630 | RASSF8 | - | development | [120] |
circ_0010467 | miR-637 | LIF/STAT3 | platinum resistance | - | [121] |
circ_0070203 | miR-196b | GAS7 | platinum sensitivity | - | [122] |
circ_0007841 | miR-532 | NFIB | cisplatin resistance | - | [123] |
circ_0026123 | miR-543 | RAB1A | cisplatin resistance | - | [124] |
circ_0063804 | miR-1276 | CLU | cisplatin resistance | - | [125] |
circ_0067934 | miR-545 | PPA1 | - | cisplatin resistance | [126] |
circ_Foxp1 | miR-22 | CEBPG | cisplatin resistance | - | [127] |
miR-150 | FMNL3 | cisplatin resistance | - | [127] | |
circ_NFIX | miR-942 | NFIB | cisplatin resistance | - | [128] |
circ_PLPP4 | miR-136 | PIK3R1 | cisplatin resistance | - | [129] |
circ_0000714 | miR-370 | RAB17, CDK6/RB | paclitaxel resistance | - | [130] |
circ_0025033 | miR-532 | FOXM1 | paclitaxel resistance | - | [131] |
circ_0061140 | miR-136 | CBX2 | - | paclitaxel sensitivity | [132] |
circ_ATL2 | miR-506 | NFIB | paclitaxel resistance | - | [133] |
circ_CELSR1 | miR-149 | SIK2 | paclitaxel resistance | - | [134] |
miR-1252 | FOXR2 | paclitaxel resistance | - | [135] | |
circ_EXOC6B | miR-376c | FOXO3 | - | paclitaxel sensitivity | [136] |
circ_SETDB1 | miR-508 | ABCC1 | paclitaxel resistance | - | [137] |
circ_0000735 | miR-526b | p-GP | docetaxel resistance | - | [138] |
circ_0006404 | miR-346 | p-GP | - | docetaxel | [138] |
circ_FURIN | miR-423 | MTM1 | testosterone effect | - | [139] |
circ_MUC16 | miR-199a | ATG13 | autophagy | - | [140] |
circ_RAB11FIP1 | miR-129 | DSC1 | autophagy | - | [141] |
circ_zinc finger | miR-212 | superoxide dismutase 2 | glycolysis | - | [142] |
circRNAs | miRNAs | Targets | Function | Ref. | |
---|---|---|---|---|---|
* Increasing | ** Decreasing | ||||
circ_CDK17 | miR-22 | CD147 | proliferation, migration | - | [93] |
circ_Foxp1 | CEBPG | cisplatin resistance | - | [127] | |
circ_0007444 | miR-23a | Dicer1 | - | progression | [49] |
circ_RHOBTB3 | - | - | proliferation, invasion | [99] | |
circ_0005585 | miR-23a/b | ESRP1 | colonization | - | [112] |
circ_0013561 | miR-23b | ANXA2 | EMT | - | [114] |
circ_RAB11FIP1 | miR-129 | DSC1 | autophagy | - | [141] |
circ_SETDB1 | MAP3K3 | progression | - | [81] | |
circ_0000471 | miR-135b | dusp5 | - | progression | [46] |
circ_CDR1 | - | - | progression | [65] | |
circ_0061140 | miR-136 | CBX2 | - | paclitaxel sensitivity | [132] |
circ_PLPP4 | PIK3R1 | cisplatin resistance | - | [129] | |
circ_0009910 | miR-145 | - | progression | - | [52] |
circ_0015756 | PSAT1 | progression | - | [53] | |
circ_ITCH | RASA1 | - | progression | [71] | |
circ_VPS13C | MEK/ERK | cell cycle, motility | - | [101] | |
circ_WHSC1 | MUC1 | progression | - | [82] | |
circ_CELSR1 | miR-149 | SIK2 | paclitaxel resistance | - | [134] |
circ_PVT1 | - | proliferation | - | [90] | |
circ_ATRNL1 | miR-152 | - | progression | - | [61] |
circ_ZNF608 | - | progression | - | [61] | |
circ_0004390 | miR-198 | - | proliferation | - | [88] |
circ_MFN2 | CUL4B | progression, glycolysis | - | [72] | |
circ_BNC2 | miR-223 | LARP4 | - | progression | [62] |
circ_BNC2 | FBXW7 | - | progression | [63] | |
circ_0025033 | miR-370 | SLC1A5 | development | - | [119] |
circ_0070203 | TGFβR2 | EMT | - | [113] | |
circ_0000714 | RAB17, CDK6/RB | paclitaxel resistance | - | [130] | |
circ_ATRNL1 | miR-378 | Smad4 | - | angiogenesis, metastasis | [108] |
circ_IFNGR2 | ST5 | metastasis | - | [110] | |
circ_PLOD2 | - | propagation | - | [102] | |
circ_0078607 | miR-518a | Fas | - | progression | [60] |
circ_NFIX | TRIM44 | angiogenesis | - | [105] | |
circ_0007841 | miR-532 | NFIB | cisplatin | - | [123] |
circ_0025033 | FOXM1 | paclitaxel resistance | - | [131] | |
circ_ATP2B4 | SREBF1 | metastasis | - | [109] | |
circ_0010467 | miR-637 | LIF/STAT3 | platinum resistance | - | [121] |
circ_0013958 | PLXNB2 | proliferation, invasion | - | [96] | |
circ_0051240 | KLK4 | migration, invasion | - | [103] | |
circ_EPSTI1 | miR-942 | - | progression | - | [67] |
circ_PIP5K1A | NFIB | cisplatin resistance | - | [128] | |
circ_MUC16 | miR-1182 | S100B | progression | - | [73] |
circ_WHSC1 | hTERT | progression | - | [82] |
circRNAs | Levels | Function | Associations | OC | Ref. | |
---|---|---|---|---|---|---|
Stimulation | Inhibition | Subtype | ||||
circ_RS-7 | up | - | - | FIGO stage | EOC | [158] |
lymph node | ||||||
distant metastasis | ||||||
circ_HIPK3 | up | proliferation, migration | apoptosis | FIGO stage | EOC | [159] |
invasion | lymph node | |||||
circ_EXOC6B | up | - | - | FIGO stage | EOC | [160] |
circ_N4BP2L2 | up | - | - | FIGO stage | EOC | [161] |
circ_RNA1656 | down | - | - | FIGO stage | HGSOC | [162] |
circ_0003972 | down | - | - | - | EOC | [163] |
circ_0007288 | down | - | - | lymph node | EOC | [163] |
circ_0078607 | down | apoptosis | proliferation | - | HGSOC | [164] |
circLARP4 | down | - | - | FIGO, lymph node | EOC | [165] |
circ-001567 | proliferation | apoptosis | E-/N-cadherin | EOC | [166] | |
circ-NOLC1 | up | proliferation, migration | - | FIGO stage | EOC | [167] |
invasion | differentiation | |||||
circ_0013958 | up | proliferation, migration | - | FIGO stage | EOC | [168] |
invasion | lymph node | |||||
circ_BNC2 | down | - | - | FIGO stage | EOC | [169] |
lymph node | ||||||
circ_SETDB1 | up | relapse | - | FIGO stage | HGSOC | [170] |
lymph node | ||||||
circ-ABCB10 | up | proliferation | apoptosis | FIGO stage | EOC | [171] |
differentiation | ||||||
tumor size |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarzenbach, H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA 2024, 10, 51. https://doi.org/10.3390/ncrna10050051
Schwarzenbach H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA. 2024; 10(5):51. https://doi.org/10.3390/ncrna10050051
Chicago/Turabian StyleSchwarzenbach, Heidi. 2024. "Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer" Non-Coding RNA 10, no. 5: 51. https://doi.org/10.3390/ncrna10050051
APA StyleSchwarzenbach, H. (2024). Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA, 10(5), 51. https://doi.org/10.3390/ncrna10050051