Stochastic Equations of Hydrodynamic Theory of Plasma
Abstract
:1. Introduction
2. Definition of Equivalence of Measures between Deterministic and Random Motions
3. Stochastic Equations for Plasma
4. Equivalent Measures and Excitation of Plasma Turbulence by an Electric Field
- (a)
- (b)
- (c)
- (d)
- For the energy equation, respectively, the work caused by the collision of particles of different sorts is and
5. Plasma Conductivity
6. Comparison of Calculation Results with Experiments
- (1)
- (2)
- − = 1.967106 [m/c]
- (3)
- = 7.74; = /ωpe = 3.506*10−5; rd/rs = 41.52*104; ()3 = 1040.9439.69 = 3.272105 [c−1]
- (4)
- ;
- (5)
- ; ;
- (6)
- = 3.67 + 76.176 − 76.176 [B/m]
- (7)
- = 9669.56 [V/m]
- (8)
- + = 11,044.19 [V/m] = [110.44] [V/cm]
- (9)
- [1/(Om*m)]
- (1)
- (2)
- − = 107 [m/c]=
- (3)
- = /ωpe = 1.996*10−4; rd/rs = 4.149*108;()3 = = 2.7489431852103 [c−1]
- (4)
- ;
- (5)
- ; ;
- (6)
- = |0.187 + + * 1.018 = 1033.87 [B/m]
- (7)
- = 66,050.8 [V/m]
- (8)
- + 66,050.8 = 67,084.6703 [V/m] = [671.72] [V/cm]
- (9)
- [1/(Om*m)]
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sreenivasan, K.R. Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 1991, 23, 539–600. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. On a dynamical system generated by Navier–Stokes equations. J. Sov. Math. 1975, 3, 458–479. [Google Scholar] [CrossRef]
- Vishik, M.I.; Komech, A.I. Kolmogorov equations corresponding to a two-dimensional stochastic Navier–Stokes system. Tr. Mosk. Mat. Obs. 1983, 46, 3–43. [Google Scholar]
- Samarskii, A.A.; Mazhukin, V.I.; Matus, P.P.; Mikhailik, I.A. Z/2 conservative schemes for the Korteweg–de Vries equations. Dokl. Akad. Nauk. 1997, 357, 458–461. [Google Scholar]
- Ruelle, D.; Takens, F. On the nature of turbulence. Commun. Math. Phys. 1971, 20, 167–192. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–715. [Google Scholar] [CrossRef]
- Malraison, B.; Berge, P.; Dubois, M. Dimension of strange attractors: An experimental determination for the chaotic regime of two convective systems. J. Phys. Lett. 1983, 44, L897–L902. [Google Scholar] [CrossRef]
- Procaccia, I.; Grassberger, P. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 1983, 28, 2591–2593. [Google Scholar]
- Constantin, P.; Foais, C.; Temam, R. On dimensions of the attractors in two-dimensional turbulence. Phys. D 1988, 30, 284–296. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Phys. D Nonlinear Phenom. 1984, 13, 34–54. [Google Scholar] [CrossRef]
- Kozlov, V.V.; Rabinovich, M.I.; Ramazanov, M.P.; Reiman, A.M.; Sushchik, M.M. Correlation dimension of the flow and spatial development of dynamic chaos in the boundary layer. JETP Lett. 1987, 13, 987. [Google Scholar]
- Haller, G. Chaos near Resonance; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, D.J.; Jen, E.; Crutchfield, P.J. Low-dimensional chaos in hydrodynamic system. Phys. Rev. Lett. 1983, 51, 1442–1446. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Feigenbaum, M. The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 1980, 77, 65–86. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Mathematical models of turbulent motion of an incompressible viscous fluid. Usp. Mat. Nauk. 2004, 59, 5–10. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. About the entropy per time unit as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 1958, 124, 754–755. [Google Scholar]
- Taylor, G.A. Statistical theory of turbulence. Proc. R. Soc. Lond. A 1935, 151, 421–444. [Google Scholar] [CrossRef]
- Hinze, J.O. Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Schlichting, H. Boundary-Layer Theory, 6th ed.; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Dmitrenko, A.V. Fundamentals of heat and mass transfer and hydrodynamics of single-phase and two-phase media. In Criterial Integral Statistical Methods and Direct Numerical Simulation; Galleya Print: Moscow, Russia, 2008; 254p, Available online: http://search.rsl.ru/ru/catalog/record/6633402 (accessed on 10 April 2024).
- Dmitrenko, A.V. Heat and mass transfer in combustion chamber using a second-moment turbulence closure including an influence coefficient of the density fluctuation in film cooling conditions. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 98-3444, Cleveland, OH, USA, 13–15 July 1998. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Nonselfsimilarity of a boundary-layer flow of a high-temperature gas in a Laval nozzle. Aviats. Tekh. 1993, 1, 39–42. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Landau, L.D. Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 1944, 44, 339–342. [Google Scholar]
- Landau, L.D.; Lifshits, E.F. Fluid Mechanics; Perg. Press Oxford: London, UK, 1959. [Google Scholar]
- Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 1941, 32, 16–18. [Google Scholar]
- Kolmogorov, A.N. A new metric invariant of transitive dynamic sets and automorphisms of the Lebesgue spaces. Dokl. Akad. Nauk SSSR 1958, 119, 861–864. [Google Scholar]
- Klimontovich, Y.L. Problems of the statistical theory of open sets: Criteria of the relative degree of the ordering of states in the self-organization processes. Usp. Fiz. Nauk. 1989, 158, 59–91. [Google Scholar] [CrossRef]
- Struminskii, V.V. Origination of turbulence. Dokl. Akad. Nauk SSSR 1989, 307, 564–567. [Google Scholar]
- Mayer, C.S.J.; von Terzi, D.A.; Fasel, H.F. Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 2011, 674, 5–42. [Google Scholar] [CrossRef]
- Ma, Y.; Zu, J. The simulation of canopy fabric air permeability’s influence on the round parachute during the landing process. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering, Xi’an, China, 10–11 January 2015; pp. 2156–2159. [Google Scholar]
- Content, C.; Houdeville, R. Application of the g-R laminar-turbulent transition model in Navier-Stokes computations. In Proceedings of the AIAA 40 Fluid Dynamics, Chicago, IL, USA, 28 June 2010. [Google Scholar]
- Orzag, S.A.; Kells, L.C. Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 1980, 96, 159–205. [Google Scholar] [CrossRef]
- Goldstein, M.E. Effect of free-stream turbulence on boundary layer transition. Philos. Trans. R. Soc. A 2014, 372, 20130354. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 102, 16–42. [Google Scholar] [CrossRef]
- Visbal, M.R.; Gaitonde, D.V. On the use of high-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. V 2002, 181, 155–185. [Google Scholar] [CrossRef]
- Mardsen, O.; Bogey, C.; Bailly, C. High-order curvilinear simulations of flows around non-cartesian bodies. J. Comput. Acoust. V 2005, 13, 731–748. [Google Scholar]
- Tam, C.K.W.; Ju, H. Numerical simulation of the generation of airfoil tones at a moderate Reynolds number. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8–10 May 2006; 23p. [Google Scholar]
- Yee, H.C.; Sandham, N.D.; Djomehri, M.J. Low dissipation high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 1999, 150, 199–238. [Google Scholar] [CrossRef]
- Desquenes, G.; Terracol, M.; Sagaut, P. Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 2007, 591, 155–182. [Google Scholar] [CrossRef]
- Chuvakhov, P.V.; Fedorov, A.V.; Obraz, A.O. Numerical simulation of turbulent spots generated by unstable wave packets in a hypersonic boundary layer. Comput. Fluids 2018, 162, 26–38. [Google Scholar] [CrossRef]
- Salwen, H.; Cotton, F.W.; Grosch, C.E. Linear stability of Poiseuille flow in a circular pipe. J. Fluid Mech. 1980, 98, 273–284. [Google Scholar] [CrossRef]
- Priymak, V.G. Splitting dynamics of coherent structures in a transitional round-pipe flow. Dokl. Phys. 2013, 58, 457–465. [Google Scholar] [CrossRef]
- Newton, P.K. The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 2016, 786, 1–4. [Google Scholar] [CrossRef]
- Tutt, B.; Charles, R.; Roland, S.; Noetscher, G. Development of parachute simulation techniques in LS-DYNA. In Proceedings of the 11th International LS-DYNA Users Conference, Detroit, MI, USA, 9–11 May 2017; pp. 19–25. [Google Scholar]
- Dmitrenko, A.V. Calculation of the boundary layer of a two-phase medium. High Temp. 2002, 40, 706–715. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Heat and mass transfer and friction in injection to a supersonic region of the Laval nozzle. Heat Transf. Res. 2000, 31, 338–399. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Film cooling in nozzles with large geometric expansion using method of integral relation and second moment closure model for turbulence. In Proceedings of the 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 97-2911. Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Computational investigations of a turbulent thermal boundary layer in the presence of external flow pulsations. In Proceedings of the 11th Conference on Young Scientists, Moscow, Russia, 10 November 1986; Part 2. Physicotechnical Institute: Moscow, Russia, 1986; pp. 48–52, Deposited at VINITI 08.08.86, No. 5698-B8. [Google Scholar]
- Dmitrenko, A.V. Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 2007, 52, 384–387. [Google Scholar] [CrossRef]
- Dodin, I.Y. Quasilinear theory for inhomogeneous plasma. J. Plasma Phys. 2022, 88, 905880407. [Google Scholar] [CrossRef]
- Joglekar, A.S.; Thomas, A.G.R. Unsupervised discovery of nonlinear plasma physics using differentiable kinetic simulations. J. Plasma Phys. 2022, 88, 905880608. [Google Scholar] [CrossRef]
- Rogister, A.; Oberman, C. On the kinetic theory of stable and weakly unstable plasma. Part 1. J. Plasma Phys. 1968, 2, 33. [Google Scholar] [CrossRef]
- Rogister, A.; Oberman, C. On the kinetic theory of stable and weakly unstable plasma. Part 2. J. Plasma Phys. 1969, 3, 119. [Google Scholar] [CrossRef]
- Besse, N.; Elskens, Y.; Escande, D.F.; Bertrand, P. Validity of quasilinear theory: Refutations and new numerical confirmation. Plasma Phys. Control. Fusion 2011, 53, 025012. [Google Scholar] [CrossRef]
- Chernyshov, A.; Karelsky, K.V.; Petrosyan, A.S. Three-dimensional modeling of compressible magnetohydrodynamic turbulence in the local interstellar medium. Astrophys. J. 2008, 686, 1137. [Google Scholar] [CrossRef]
- Miesch, M.S.; Matthaeus, W.H.; Brandenburg, A.; Petrosyan, A.; Pouquet, A.; Cambon, C.; Jenko, F.; Uzdensky, D.; Stone, J.; Tobias, S.; et al. Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics. Space Sci. Rev. 2015, 194, 97. [Google Scholar] [CrossRef]
- Petrosyan, A.; Balogh, A.; Goldstein, M.L.; Léorat, J.; Marsch, E.; Petrovay, K.; Roberts, B.; von Steiger, R.; Vial, J.C. Turbulence in the Solar Atmosphere and Solar Wind. Space Sci. Rev. 2010, 156, 135–238. [Google Scholar] [CrossRef]
- Petrosyan, A.; Galperin, B.; Larsen, S.E.; Lewis, S.R.; Määttänen, A.; Read, P.L.; Renno, N.; Rogberg, L.P.H.T.; Savijärvi, H.; Siili, T.; et al. The Martian Atmospheric Boundary Layer. Rev. Geophys. 2011, 49, RG3005. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Karelsky, K.V.; Petrosyan, A.S. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas. Phys. Usp. 2014, 57, 421–452. [Google Scholar] [CrossRef]
- Smolyakov, A.; Zintel, T.; Couedel, L.; Sydorenko, D.; Umnov, A.; Sorokina, E.; Marusov, N. Anomalous Electron Transport in One-Dimensional ElectronCyclotron Drift Turbulence. Plasma Phys. Rep. 2020, 46, 408–418. [Google Scholar] [CrossRef]
- Benyahia, A.; Castillon, L.; Houdeville, R. Prediction of separation-induced transition on high lift low pressure turbine blade. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011; ASME: The American Society of Mechanical Engineers: New York, NY, USA, 2011; pp. 1835–1846. [Google Scholar]
- Artsimovich, L.A.; Sagdeev, R.G. Plasma Physics for Physicists; Atomizdat Publisher: Moscow, Russia, 1979; p. 318. (In Russian) [Google Scholar]
- Hansen, J.-P.; McDonald, I.R. Theory of Simple Liquids; Elsevier: London, UK, 2006; 416p. [Google Scholar]
- Freidberg, J. Plasma Physics and Fusion Energy; Cambridge University Press: Cambridge, UK, 2007; p. 666. ISBN 139780521851077. [Google Scholar]
- Bittencourt, J.A. Fundamentals of Plasma Physics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004; p. 378. [Google Scholar]
- Tsytovich, V.N. Theory of Turbulent Plasma, 1st ed.; Springer: New York, NY, USA, 1977; p. 535. ISBN 978-0-306-10894-5. [Google Scholar]
- Golant, V.E.; Zhilinsky, A.P.; Sakharov, I.E. Fundamentals of Plasma Physics; John Wiley & Sons: Hoboken, NJ, USA, 1980; 405p. [Google Scholar]
- Tsytovich, V.N. Development of the concepts of plasma turbulence. Phys. Usp. 1973, 15, 632–650. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 2013, 58, 228–235. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions-Equivalence of Measures. Sci. Discov. Diploma 2013. [Google Scholar]
- Dmitrenko, A.V. Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. In Stochastic Thermodynamics and Turbulence Determinacy–Randomness Correlator; Galleya-Print: Moscow, Russia, 2013; Available online: https://search.rsl.ru/ru/record/01006633402 (accessed on 10 April 2024). (In Russian)
- Mataoui, A.; Schiestel, R.; Salem, A. Study of the oscillatory regime of a turbulent plane jet impinging in a rectangular cavity. Appl. Math. Model. 2003, 27, 89–114. [Google Scholar] [CrossRef]
- Saiyed, N.H.; Mikkelsen, K.L.; Bridges, J.E. Acoustics and thrust of quiet separate-fow high-bypass-ratio nozzles. AIAA J. 2003, 41, 372–378. [Google Scholar] [CrossRef]
- Alkislar, M.B.; Krothapalli, A.; Choutapalli, I.; Lourenco, L. Structure of supersonic twin jets. AIAA J. 2005, 43, 2309–2318. [Google Scholar] [CrossRef]
- Kompenhans, J.; Arnott, A.; Agos, A.; Gilliot, A.; Monnier, J.C. Application of PIV for the investigation of high speed fow felds. In West East High Speed Flow Field; Artes Gráfcas Torres, S.A.: Barcelona, Spain, 2002; pp. 39–52. [Google Scholar]
- Knob, M.; Safarik, P.; Uruba, V. The efect of the side walls on a two-dimensional impinging jet. In Proceedings of the 16th International Symposium on Transport Phenomena, Prague, Czech, 29 August–3 September 2005; Available online: http://fuids.fs.cvut.cz/akce/konference/istp_2005/full/168.pdf (accessed on 10 April 2024).
- Suzuki, T.; Colonius, T. Instability waves in a subsonic round jet detected using a near-feld phased microphone array. J. Fluid Mech. 2006, 565, 197–226. [Google Scholar] [CrossRef]
- Kopiev, V.F.; Zaitsev, M.Y.; Chernyshev, S.A.; Ostrikov, N.N. Vortex ring input in subsonic jet noise. Int. J. Aeroacoust 2007, 6, 375–405. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 2014, 8, 1101–1111. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of critical Reynolds numbers for non-isothermal flows using stochastic theory of turbulence and equivalent measures. Heat Transf. Res. 2016, 47, 41–48. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 2016, 43, 182–187. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2015, 88, 1569–1576. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. An estimation of turbulent vector fields, spectral and correlation functions depending on initial turbulence based on stochastic equations. The Landau fractal equation. Int. Fluid Mech. Res. 2016, 43, 82–91. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Contin. Mech. Thermodyn. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical determination of the heat transfer coefficient for gas, liquid and liquidmetal flows in the tube based on stochastic equations and equivalence of measures for continuum. Contin. Mech. Thermodyn. 2017, 29, 1197–1205. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2017, 90, 1288–1294. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Analytical estimates of critical Taylor number for motion between rotating coaxial cylinders based ontheory of stochastic equations and equivalence of measures. Fluids 2021, 6, 306. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Results of investigations of non-isothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1009, 012017. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The stochastic theory of the turbulence. IOP Conf. Ser. Mater. Sci. Eng. 2018, 468, 012021. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2019, 1250, 012001. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere. J. Phys. Conf. Ser. 2019, 1337, 012006. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The correlation dimension of an attractor determined on the base of the theory of equivalence of measures and stochastic equations for continuum. Contin. Mech. Therm. 2020, 32, 63–74. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The possibility of using low-potential heat based on the organicRankine cycle and determination of hydraulic characteristics of industrial units based on the theory of stochastic equations. JP J. Heat Mass Transfer. 2020, 21, 125–132. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The theoretical solution for the Reynolds analogy based on the stochastic theory of turbulence. JP J. Heat Mass Transfer. 2019, 18, 463–476. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Reynolds Analogy Based on the Theory of Stochastic Equations and Equivalence of Measures. J. Eng. Phys. Thermophy. 2021, 94, 186–193. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Formation of the turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 2020, 93, 122–127. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. The Spectrum of the turbulence based on theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012021. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Theoretical solutions for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures. Contin. Mech. Thermod. 2021, 33, 603–610. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Some aspects of the formation of the spectrum of atmospheric turbulence. JP J. Heat Mass Transf. 2020, 19, 201–208. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Uncertainty relation in turbulent shear flow based on stochastic equations of the continuum and the equivalence of measures. Contin. Mech. Thermod. 2020, 32, 161–171. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures. J. Phys. Conf. Ser. 2020, 1705, 012015. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. An estimation of the velocity profile for the laminar-turbulent transition in the plane jet on the basis of the theory of stochastic equations and equivalence of measures. Adv. Aerodyn. 2022, 4, 40. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Determination of Critical Reynolds Number for the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures. Fluids 2021, 6, 5. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Theoretical calculation of laminar–turbulent transition in the round tube on the basis of stochastic theory of turbulence and equivalence of measures. Contin. Mech Thermodyn. 2022, 34, 1375–1392. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Prediction of laminar–turbulent transition on flat plate on the basis of stochastic theory of turbulence and equivalence of measures. Contin. Mech. Thermodyn. 2022, 34, 601–615. [Google Scholar] [CrossRef]
- Dmitrenko, A.V. Theoretical Estimates of the Critical Reynolds Number in the Flow around the Sphere on the Basis of Theory of Stochastic Equations and Equivalence of Measures. Fluids 2023, 8, 81. [Google Scholar] [CrossRef]
- Ivlev, A.; Lowen, H.; Morfill, G.; Royall, C.P. Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids; Series in Soft Condensed Matter; World Scientific: Singapore, 2012; Volume 5. [Google Scholar]
- Belashov, V.Y.; Vladimirov, S.V. Solitary Waves in Dispersive Complex Media. Theory Simulation Applications; Springer: Berlin/Heidelberg, Germany, 2005; 292p. [Google Scholar]
- Dudoladov, S.O.; Larionov, N.V. The condition for application of the Crocco integral in the mathematical description of a laser welding plasma plume. St. Petersburg Polytech. Univ. J. Phys. Math. 2021, 14, 60–75. [Google Scholar]
- Wesson, J. Tokamaks, 4th ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Stejner, M.; Salewski, M.; Korsholm, S.B.; Bindslev, H.; Delabie, E.; Leipold, F.; Meo, F.; Michelsen, P.K.; Moseev, D.; Nielsen, S.K.; et al. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR. Plasma Phys. Control. Fusion 2013, 55, 085002. [Google Scholar] [CrossRef]
- Valinurov, M.A.; Gavrikov, A.V.; Liziakin, G.D.; Oiler, A.P.; Timirkhanov, R.A. Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode. Plasma Phys. Rep. 2023, 49, 649. [Google Scholar] [CrossRef]
- Akishev Yu, S.; Alekseeva, T.; Karalnik, V.; Petryakov, A. Phenomenology of High-Current Discharge in N2 and He at Medium Pressures between Two Electrodes of Rail Geometry. Plasma Phys. Rep. 2023, 49, 549. [Google Scholar] [CrossRef]
- Schweitzer, F. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Longair Malcolm, S. High Energy Astrophysics; Cambridge University Press: Cambridge, UK, 1994; pp. xv–xvi. [Google Scholar] [CrossRef]
- Hamberger, S.M.; Friedman, M. Electrical conductivity of a highly turbulent plasma. Phys. Rev. Lett. 1968, 21, 674–676. [Google Scholar] [CrossRef]
- Fanchenko, S.D.; Demidov, A.; Elagin, N.I.; Ryutov, D.D. Anomalous Resistance and Microwave Radiation from a Plasma in a Strong Electric Field. Sov. Phys. JETP 1964, 19, 337. [Google Scholar]
- Zavoiski, E.K.; Rydakov, L.I. Turbulent plasma heating. Sov. At. Energy 1967, 23, 1171–1186. [Google Scholar] [CrossRef]
- Braginskii, V.B.; Manukin, Z. Ponderomotive Effects of Electromagnetic Radiation. Sov. Phys. JETP 1967, 25, 653. [Google Scholar]
- Shapiro, V.E. Ponderomotive Effects of Electromagnetic Radiation. Sov. Phys.-Tech. Phys. 1969, 28, 301. [Google Scholar]
- Burdakov, A.V.; Arzhannikov, A.V.; Astrelin, V.T.; Ivanov, I.A.; Ivantsivsky, M.V.; Koidan, V.S.; Mekler, K.I.; Polosatkin, S.V.; Postupaev, V.V.; Rovenskikh, A.F.; et al. Fast heating of ions in GOL-3 multiple mirror trap. In Proceedings of the 31th European Physical Society Conference on Plasma Physics, London, UK, 28 June–2 July 2004. [Google Scholar]
- Bobylev, A.V.; Bychenkov VYu Potapenko, I.F. Numerical and analytical study of the electron heating by plasma. Plasma Waves 2017. [Google Scholar] [CrossRef]
- Astrelin, V.T.; Burdakov, A.V.; Kozlinskaya, T.V. Numerical Simulation of Plasma Dynamics in a Nonuniform Magnetic Field. J. App. Mech. Technol. 2006, 47, 27–35. [Google Scholar] [CrossRef]
- Sun, X.; Yang, M.; Chai, S.; Li, H. Fluid Simulation of the Plasma Characteristics in an Inductively Coupled Plasma Source with Planar and Cylindrical Coils. Plasma Phys. Rep. 2023, 49, 491–501. [Google Scholar] [CrossRef]
- Fedotova, M.A.; Klimchakova, D.A.; Petrosyan, A.S. Wave Processes in Plasma Astrophysics. Plasma Phys. Rep. 2023, 49, 303–350. Available online: https://link.springer.com/content/pdf/10.1134/S1063780X22601900.pdf?pdf=core (accessed on 10 April 2024).
- Dreicer, H. Electron and Ion Runaway in a Fully Ionized Gas. I Phys. Rev. 1959, 115, 238. [Google Scholar] [CrossRef]
- Nagata, M. Electron Transport under the Influence of Two Kinds of Friction in an Electron-Deuteron Plasma. J. Mod. Phys. 2020, 11, 1111108. [Google Scholar] [CrossRef]
- Shao, Z.Q. Global structure stability of Riemann solutions for linearly degenerate hyperbolic conservation laws under small BV perturbations of the initial data. Nonlinear Anal. Real World Appl. 2010, 11, 3791–3808. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Gao, T.; Ribeiro, R., Jr. An investigation of the flow structure beneath solitary waves with constant vorticity on a conducting fluid under normal electric fields. Phys. Fluids 2023, 35, 037118. [Google Scholar] [CrossRef]
- Ghany, H.A. Exact Solutions for Stochastic Generalized Hirota-Satsuma Coupled KdV Equations. Chin. J. Phys. 2011, 49, 926–940. [Google Scholar]
n | ωpe c−1 |
---|---|
1011cm−3 (1017m−3) | 0.178 × 1011 |
1012cm−3 (1018m−3) | 0.561 × 1011 |
1013cm−3 (1019m−3) | 1.78 × 1011 |
Te | rs | |
---|---|---|
100 Ev (160 × 10−19 J) | 4.193 × 106 | 0.18 × 10−9 |
200 Ev (320 × 10−19 J) | 5.929 × 106 | 0.09 × 10−9 |
104Ev (16,000 × 10−19 J) | 4.193 × 107 | 0.18 × 10−11 |
ωpe [c−1] | [m/c] | *10−5 | ᴧ = Ln(rd/rs) | [c−1] | [c−1] | [V/m] | [V/m] | [V/m] | [V/m] | [c−1] | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.561*1011 | 1.967106 | 7.474 | 3.506 | 12.94 | 12.18 | 3.5841 × 104 | 3.272105 | 3.67 | 1374.8 | 9669.56 | 11,044.4 | 0.261012 |
ωpe [c−1] | [m/c] | × 10−4 | ᴧ = Ln(rd/rs) | [c−1] | [c−1] | [V/m] | [V/m] | [V/m] | [V/m] | [c−1] | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.561 × 1011 | 1.12 × 107 | 7.474 | 1.996 | 19,843 | 18.52 | 56.65 | 2.748103 | 0.187 | 1033.87 | 66,050.8 | 67,084.08 | 0.241012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrenko, A.V. Stochastic Equations of Hydrodynamic Theory of Plasma. Fluids 2024, 9, 139. https://doi.org/10.3390/fluids9060139
Dmitrenko AV. Stochastic Equations of Hydrodynamic Theory of Plasma. Fluids. 2024; 9(6):139. https://doi.org/10.3390/fluids9060139
Chicago/Turabian StyleDmitrenko, Artur V. 2024. "Stochastic Equations of Hydrodynamic Theory of Plasma" Fluids 9, no. 6: 139. https://doi.org/10.3390/fluids9060139
APA StyleDmitrenko, A. V. (2024). Stochastic Equations of Hydrodynamic Theory of Plasma. Fluids, 9(6), 139. https://doi.org/10.3390/fluids9060139