Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish
Abstract
:1. Introduction
2. Numerical Methods
2.1. Main Assumptions and Considerations
2.2. Mathematical Model Equations
2.2.1. The Standard k-ε Realizable Turbulence Model
2.2.2. The Lagrangian Discrete Phase Model
2.3. Numerical Procedure
2.4. Physical Model
3. Results and Discussion
3.1. Mathematical Model Validation
3.2. Comparison between Isothermal and Non-Isothermal Cases
4. Conclusions
- (1)
- The quantification of the differences between the results of 1:3 scaled and full-scale models, which have a maximum difference of 4% on the volume fractions percent and residence time, demonstrate that scaled and full-scale models can be used reliably to predict the flow patterns of an isothermal physical model following the Froude criteria.
- (2)
- Temperature gradients inside the tundish induce variations in the flow velocity magnitude; if the stream has a higher temperature than its surrounding flow, its velocity will increase because of the Maxwell-Boltzmann velocity distribution function; this supports why hot streams, e.g., at the bath level, under non-isothermal conditions, have bigger velocity magnitudes than the same streams but under isothermal conditions.
- (3)
- The quantification of the ratio between inertial and buoyancy forces demonstrates that inertial forces dominate over buoyancy forces at the entry zone because turbulence inhibitors strongly control the fluid dynamics in such an area. In contrast, buoyancy forces take more relevance than inertial forces in the recirculation and dead flow zones, inducing noticeable changes in the fluid dynamics between isothermal and non-isothermal cases far from the entry zone.
- (4)
- Although the temperature induces substantial fluid dynamic changes between the analyzed cases, this variable does not significantly impact the volume fraction percentages or the mean residence time results, and it only increases the inclusion removal percentage by 5% for the non-isothermal case.
- (5)
- The effect of the temperature on the flow patterns is not significant when the flow control devices strongly rule the fluid dynamics; nevertheless, when the flow control devices effects are not dominant, the temperature takes substantial importance because of the buoyancy forces and the increment of flow velocity because the Maxwell Boltzmann velocity distribution function changes the fluid dynamics in comparison with the obtained from the isothermal conditions. Consequently, isothermal simulations can accurately describe the flow behavior in tundishes, where flow control devices control the fluid dynamics. However, the simulation of tundishes without control devices or with a weak fluid dynamic dependence on the control devices requires non-isothermal simulations.
5. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ρ | Fluid density (kg/m3) |
Cp | Specific heat (J/(kg K)) |
TC | Thermal conductivity (w/(m K)) |
μ | Dynamic viscosity (kg/(m s)) |
V | Fluid velocity (m/s) |
up | Particle velocity (m/s) |
P | Pressure (Pa) |
t | Time (s) |
T | Temperature (K) |
μeff | Effective Viscosity (kg/(m s)) |
g | Gravity acceleration (m/s2) |
β | Coefficient of volumetric thermal expansion (K−1) |
ε | Turbulent dissipation rate (m2/s3) |
k | Kinetic energy (m2/s2) |
Gk | Generation of turbulent kinetic energy due to the mean velocity gradients |
Gb | Generation of turbulent kinetic energy due to buoyancy |
YM | Contribution of the fluctuating dilatation in compressible turbulence to the dissipation rate |
Fd(V-up) | Drag force per unit mass (N/kg) |
FB, FG, FS, FVM, FPG | The buoyant, gravitational, Saffman, virtual mass, and gradient force per unit mass (N/kg) |
C1ε, C2ε, C3ε | Model constants |
Turbulent Prandtl numbers | |
User-defined source terms | |
L | Characteristic length (m) |
λ | Scale factor |
VP/V | Piston volume fraction |
VM/V | Mixed volume fraction |
Vd/V | Dead volume fraction |
θ | Non-dimensional residence time |
kb | Boltzmann constant |
K | Kelvin |
Ri | Richardson number |
References
- Sheng, D.; Jönsson, P. Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish. Materials 2021, 14, 1906. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Y.; Huang, A.; Yan, W.; Gu, H.; Li, G. CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish. Metall. Mater. Trans. B 2020, 51, 276–292. [Google Scholar] [CrossRef]
- Cwudzinski, A. Physical and mathematical simulation of liquid steel mixing zone in one strand continuous casting tundish. Int. J. Cast. Met. Res. 2017, 30, 50–60. [Google Scholar] [CrossRef]
- Agarwal, R.; Singh, M.K.; Kumar, R.; Ghosh, B.; Pathak, S. Extensive Analysis of Multi Strand Billet Caster Tundish Using Numerical Technique. J. Mech. 2019, 9, 29–51. [Google Scholar] [CrossRef]
- Xing, F.; Zheng, S.; Liu, Z.; Zhu, M. Flow Field, Temperature Field, and Inclusion Removal in a New Induction Heating Tundish with Bent Channels. Metals 2019, 9, 561. [Google Scholar] [CrossRef]
- Ramirez, O.D.; Torres-Alonso, E.; Ramos-Banderas, A.; Villa, S.A.; Bocanegra, C.H.; Martínez, J.T. Thermal and Fluid-Dynamic Optimization of a Five Strand Asymmetric Delta Shaped Billet Caster Tundish. Steel Res. Int. 2018, 89, 1–10. [Google Scholar] [CrossRef]
- Tang, H.; Guo, L.; Wu, G.; Xiao, H.; Yao, H.; Zhang, J. Hydrodynamic Modeling and Mathematical Simulation on Flow Field and Inclusion Removal in a Seven-Strand Continuous Casting Tundish with Channel Type Induction Heating. Metals 2018, 8, 374. [Google Scholar] [CrossRef]
- Neves, L.; Tavares, R. Analysis of the mathematical model of the gas bubbling curtain injection on the bottom and the walls of a continuous casting tundish. Ironmak. Steelmak. 2017, 44, 559–567. [Google Scholar] [CrossRef]
- Sahai, Y. Tundish Technology for Casting Clean Steel: A Review. Metall. Mater. Trans. B 2016, 47, 2095–2106. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Tsukihash, F. Hydrodynamic Problem in Continuous Casting Tundish with Channel Type Induction Heating. ISIJ Int. 2014, 54, 311–320. [Google Scholar] [CrossRef]
- Ni, P.; Jonsson, L.T.I.; Ersson, M.; Jönsson, P.G. Turbulent Flow Phenomena and Ce2O3 Behavior during a Steel Teeming Process. ISIJ Int. 2013, 53, 792–801. [Google Scholar] [CrossRef]
- Qu, T.; Liu, C.; Jiang, M.; Zu, L. Numerical Simulation for Effect of Inlet Cooling Rate on Fluid Flow and Temperature Distribution in Tundish. J. Iron Steel Res. Int. 2012, 19, 12–19. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, L. Numerical Simulation of the Growth and Removal of Inclusions in the Molten Steel of a Two-Strand Tundish. JOM 2013, 65, 1155–1163. [Google Scholar] [CrossRef]
- Singh, V.; Ajmani, S.; Pal, A.; Singh, S.; Denys, M. Single strand continuous caster tundish furniture comparison for optimal performance. Ironmak. Steelmak. 2012, 39, 171–179. [Google Scholar] [CrossRef]
- Braun, A.; Warzecha, M.; Pfeifer, H. Numerical and Physical Modeling of Steel Flow in a Two-Strand Tundish for Different Casting Conditions. Metall. Mater Trans. B 2010, 41, 549–559. [Google Scholar] [CrossRef]
- Vargas-Zamora, A.; Morales, R.D.; Díaz-Cruz, M.; Palafox-Ramos, J.; Demedices, L.G. Heat and mass transfer of a convective-stratified flow in a trough type tundish. Int. J. Heat Mass Transf. 2003, 46, 3029–3039. [Google Scholar] [CrossRef]
- Joo, S.; Han, J.; Guthrie, R. Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: Part II. Mathematical model for liquid steel in tundishes. Metall. Mater Trans. B 1993, 24, 767–777. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sahai, Y. Effect of Varying Ladle Stream Temperature on the Melt Flow and Heat Transfer in Continuous Casting Tundishes. ISIJ Int. 1991, 31, 960–967. Available online: https://www.jstage.jst.go.jp/article/isijinternational1989/31/9/31_9_960/_pdf (accessed on 4 January 2024). [CrossRef]
- Miki, Y.; Thomas, B. Modeling of inclusion removal in a tundish. Metall. Mater. Trans. B 1999, 30, 639–654. [Google Scholar] [CrossRef]
- Alizadeh, M.; Edris, H. Prediction of RTD Curves for Non-isotherm steel Melt Flows in Continuous Casting Tundish. In Proceedings of the International Symposium on Liquid Metal Processing and Casting, LMPC, Nancy, France, 2–5 September 2007; pp. 167–172. [Google Scholar]
- Sun, H.; Yan, B.; Zhang, J. Effect of Thermal Buoyancy Force on the Flow, Temperature Distribution and Residence Time Distribution of Molten Steel in the Slab Casting Tundish. In CFD Modeling and Simulation in Materials Processing; The Minerals, Metals, & Materials Society: Pittsburgh, PA, USA, 2012; pp. 327–334. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chattopadhyay, K. Transient steel quality under non-isothermal conditions in a multi-strand billet caster tundish: Part II. Effect of a flow-control device. Ironmak. Steelmak. 2016, 44, 413–420. [Google Scholar] [CrossRef]
- Zhu, M.; Peng, S.; Jiang, K.; Luo, J.; Zhong, Y.; Tang, P. Fluid Flow and Heat Transfer Behaviors under Non-Isothermal Conditions in a Four-Strand Tundish. Metals 2022, 12, 840. [Google Scholar] [CrossRef]
- Morales, R.; Lopez-Ramirez, S.; Palafox-Ramos, J.; Zacharias, D. Mathematical simulation of effects of flow control devices and buoyancy forces on molten steel flow and evolution of output temperatures in tundish. Ironmak. Steelmak. 2001, 28, 33–43. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Isac, M.; Guthrie, R. Modelling of Non-isothermal Melt Flows in a Four Strand Delta Shaped Billet Caster Tundish Validated by Water Model Experiments. ISIJ Int. 2012, 52, 2026–2035. [Google Scholar] [CrossRef]
- de Sousa, J.; Barros, E.; Marcondes, F.; de Castro, J. Modeling and computational simulation of fluid flow, heat transfer and inclusions trajectories in a tundish of a steel continuous casting machine. J. Mater. Res. Technol. 2019, 8, 4209–4220. [Google Scholar] [CrossRef]
- Neumann, S.; Asad, A.; Schwarze, R. Numerical Simulation of an Industrial-Scale Prototypical Steel Melt Tundish Considering Flow Control and Cleaning Strategies. Adv. Eng. Mater. 2020, 22, 1900658. [Google Scholar] [CrossRef]
- Mishra, R.; Mazumdar, D. Numerical Analysis of Turbulence Inhibitor Toward Inclusion Separation Efficiency in Tundish. Indian Inst. Met. 2019, 72, 889–989. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Garcia-Hernández, S.; de Barreto, J. Mathematical Analysis of the Touching Inclusions Parameters at the Tundish Free Surface to Predict More Realistic Inclusion Removal Rates. Steel Res. Int. 2019, 90, 1900328. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Garcia-Hernández, S.; de Barreto, J. Mathematical Modeling of Inclusions Deposition at the Upper Tundish Nozzle and the Submerged Entry Nozzle. Steel Res. Int. 2016, 87, 1406–1416. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Garcia-Hernández, S.; de Barreto, J. Mathematical Analysis of the Dynamic Effects on the Deposition of Alumina Inclusions inside the Upper Tundish Nozzle. ISIJ Int. 2016, 56, 1394–1403. [Google Scholar] [CrossRef]
- Lei, H.; Zhao, Y.; Geng, D. Mathematical Model for Cluster-Inclusion’s Collision-Growth in Inclusion Cloud at Continuous Casting Mold. ISIJ Int. 2014, 54, 1629–1637. [Google Scholar] [CrossRef]
- Liu, Z.; Li, B.; Jiang, M. Transient Asymmetric Flow and Bubble Transport Inside a Slab Continuous-Casting Mold. Metall. Mater. Trans. B 2014, 45, 675–697. [Google Scholar] [CrossRef]
- Liu, Z.; Li, B.; Jiang, M.; Tsukihashi, F. Euler-Euler-Lagrangian Modeling for Two-Phase Flow and Particle Transport in Continuous Casting Mold. ISIJ Int. 2014, 54, 1314–1323. [Google Scholar] [CrossRef]
- Takahashi, K.; Ando, M.; Ishii, T. Model of Gas Flow Through Porous Refractory Applied to an Upper Tundish Nozzle. ISIJ Int. 2014, 54, 304–405. [Google Scholar] [CrossRef]
- He, Z.; Zhou, K.; Liu, S.; Xiong, W.; Li, B. Numerical Modeling of the Fluid Flow in Continuous Casting Tundish with Different Control Devices. Abstract Appl. Anal. 2013, 2013, 984894. [Google Scholar] [CrossRef]
- Seshadri, V.; da Silva, C.; da Silva, I.; Junior, E. A Physical Modelling Study Of Inclusion Removal In Tundish Using Inert Gas Curtain. Tecnol. Metal. Mater. Min. 2012, 9, 22–29. [Google Scholar] [CrossRef]
- Long, M.; Zuo, X.; Zhang, L.; Chen, D. Kinetic Modeling on Nozzle Clogging During Steel Billet Continuous Casting. ISIJ Int. 2010, 50, 712–720. [Google Scholar] [CrossRef]
- Zhong, L.; Li, L.; Wang, B.; Zhang, L.; Zhu, L.; Zhang, Q. Fluid flow behaviour in slab continuous casting tundish with different configurations of gas bubbling curtain. Ironmak. Steelmak. 2008, 35, 436–440. [Google Scholar] [CrossRef]
- Ramos-Banderas, A.; Morales, R.D.; de Barreto, J.; Solorio-Diaz, G. Modelling Study of Inclusions Removal by Bubble Flotation in the Tundish. Steel Res. Int. 2006, 77, 325–335. [Google Scholar] [CrossRef]
- Yuan, Q.; Thomas, B.; Vanka, S. Study of transient flow and particle transport in continuous steel caster molds: Part II. Particle transport. Metall. Mater. Trans. B 2004, 35B, 703–714. [Google Scholar] [CrossRef]
- Vermeulen, Y.; Coletti, B.; Blanpain, B.; Wollants, P.; Vleugels, J. Material Evaluation to Prevent Nozzle Clogging during Continuous Casting of Al Killed Steels. ISIJ Int. 2002, 42, 1234–1240. [Google Scholar] [CrossRef]
- Zhang, L.; Taniguchi, S.; Cai, K. Fluid flow and inclusion removal in continuous casting tundish. Metall. Mater. Trans. B 2000, 31, 253–266. [Google Scholar] [CrossRef]
- Sasai, K.; Mizukami, Y. Reaction Mechanism between Alumina Graphite Immersion Nozzle and Low Carbon Steel. ISIJ Int. 1994, 34, 802–809. [Google Scholar] [CrossRef]
- Fukuda, Y.; Ueshima, Y.; Mizoguchi, S. Mechanism of Alumina Deposition on Alumina Graphite Immersion Nozzle in Continuous Caster. ISIJ Int. 1992, 32, 164–168. [Google Scholar] [CrossRef]
- Shih, T.; Liou, W.; Shabbir, A.; Yang, Z.; Zhu, J.A. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- ANSYS Inc. FLUENT 12.0, User’s Guide; Centerra Resource Park: Cavendish Court, Lebanon, 2009; Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm (accessed on 4 January 2024).
Property | Steel | Slag | Air | Magnesia |
---|---|---|---|---|
) | ||||
) | ||||
--- |
Wall | Heat Loss |
---|---|
Bottom | |
Back and front | |
Right and left | |
Control flow devices |
Scale | ||||
---|---|---|---|---|
1:3 | 46 | 40 | 14 | 0.9 |
1:1 | 50 | 38 | 12 | 0.92 |
Case | ||||
---|---|---|---|---|
Isothermal | 50 | 38 | 12 | 0.93 |
Non-isothermal | 46 | 39 | 15 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, E.; Garcia-Hernandez, S.; Davila, R.M.; de Jesus Barreto, J. Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish. Fluids 2024, 9, 21. https://doi.org/10.3390/fluids9010021
Gutiérrez E, Garcia-Hernandez S, Davila RM, de Jesus Barreto J. Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish. Fluids. 2024; 9(1):21. https://doi.org/10.3390/fluids9010021
Chicago/Turabian StyleGutiérrez, Enif, Saul Garcia-Hernandez, Rodolfo Morales Davila, and Jose de Jesus Barreto. 2024. "Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish" Fluids 9, no. 1: 21. https://doi.org/10.3390/fluids9010021
APA StyleGutiérrez, E., Garcia-Hernandez, S., Davila, R. M., & de Jesus Barreto, J. (2024). Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish. Fluids, 9(1), 21. https://doi.org/10.3390/fluids9010021