Calculation of Thermodynamic Characteristics and Sound Velocity for Two-Dimensional Yukawa Fluids Based on a Two-Step Approximation for the Radial Distribution Function
Abstract
:1. Introduction
2. RDF Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E. Complex (dusty) plasmas: Current status, open issues, perspectives. Phys. Rep. 2005, 421, 1–103. [Google Scholar] [CrossRef]
- Dubin, D.H.E.; O’Neill, T.M. Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 1999, 71, 87–172. [Google Scholar] [CrossRef]
- Klumov, B.A.; Khrapak, S.A. Two-body entropy of two-dimensional fluids. Results Phys. 2020, 17, 103020. [Google Scholar] [CrossRef]
- Klumov, B.A. Structural Universalities in a Two-Dimensional Yukawa Fluid. JETP Lett. 2022, 115, 108–113. [Google Scholar] [CrossRef]
- Vasilieva, E.V.; Petrov, O.F.; Vasiliev, M.M. Laser-induced melting of two-dimensional dusty plasma system in RF discharge. Sci. Rep. 2021, 11, 523. [Google Scholar] [CrossRef]
- Kononov, E.A.; Vasiliev, M.M.; Petrov, O.F.; Vasilieva, E.V. Particle Surface Modification in the Near-Electrode Region of an RF Discharge. Nanomaterials 2021, 11, 2931. [Google Scholar] [CrossRef]
- Fairushin, I.I.; Vasiliev, M.M.; Petrov, O.F. Effect of Laser Radiation on the Dynamics of Active Brownian Macroparticles in an Extended Plasma-Dust Monolayer. Molecules 2021, 26, 6974. [Google Scholar] [CrossRef]
- Fairushin, I.I.; Petrov, O.F.; Vasiliev, M.M. Dynamics of Macroparticles in a Quasi-Two-Dimensional Dust–Plasma System under Directed External Action: Simulation Results. J. Exp. Theor. Phys. 2020, 130, 477–481. [Google Scholar] [CrossRef]
- Lin, B.J.; Chen, L.J. Phase transitions in two-dimensional colloidal particles at oil/water interfaces. J. Chem. Phys. 2007, 126, 34706. [Google Scholar] [CrossRef]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Academic Press: London, UK, 2006. [Google Scholar]
- Mokshin, A.V. Self-consistent approach to the description of relaxation processes in classical multiparticle systems. Theor. Math. Phys. 2015, 183, 449–477. [Google Scholar] [CrossRef] [Green Version]
- Khrapak, S. Vibrational Model of Heat Conduction in a Fluid of Hard Spheres. Appl. Sci. 2022, 12, 7939. [Google Scholar] [CrossRef]
- Tareyeva, E.E.; Ryzhov, V.N. Supercritical fluid of particles with a Yukawa potential: A new approximation for the direct correlation function and the Widom line. Theor. Math. Phys. 2016, 189, 1806–1817. [Google Scholar] [CrossRef]
- Farouki, R.T.; Hamaguchi, S. Thermodynamics of strongly-coupled Yukawa systems near the one-component-plasma limit. II. Molecular dynamics simulations. J. Chem. Phys. 1994, 101, 9885–9893. [Google Scholar] [CrossRef]
- Hartmann, P.; Kalman, G.J.; Donkó, Z.; Kutasi, K. Equilibrium properties and phase diagram of two-dimensional Yukawa systems. Phys. Rev. E 2005, 72, 026409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrapak, S.A.; Kryuchkov, N.P.; Yurchenko, S.O.; Thomas, H.M. Practical thermodynamics of Yukawa systems at strong coupling. J. Chem. Phys. 2015, 142, 194903. [Google Scholar] [CrossRef] [Green Version]
- Khrapak, S.A. Relations between the longitudinal and transverse sound velocities in strongly coupled Yukawa fluids. Phys. Plasm. 2016, 23, 024504. [Google Scholar] [CrossRef] [Green Version]
- Filippov, A.V.; Reshetnyak, V.V.; Starostin, A.N.; Tkachenko, I.M.; Fortov, V.E. Investigation of Dusty Plasma Based on the Ornstein—Zernike Integral Equation for a Multicomponent Fluid. JETP Lett. 2019, 110, 659–666. [Google Scholar] [CrossRef]
- Baranyai, A.; Evans, D.J. Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 1989, 40, 3817. [Google Scholar] [CrossRef]
- Kryuchkov, N.P.; Khrapak, S.A.; Yurchenko, S.O. Thermodynamics of two-dimensional Yukawa systems across coupling regimes. J. Chem. Phys. 2017, 146, 134702. [Google Scholar] [CrossRef] [Green Version]
- Geronzi, L.; Gasparotti, E.; Capellini, K.; Cella, U.; Groth, C.; Porziani, S.; Chiappa, A.; Celi, S.; Biancolini, M.E. High fidelity fluid–structure interaction by radial basis functions mesh adaption of moving walls: A workflow applied to an aortic valve. J. Comput. Sci. 2021, 51, 101327. [Google Scholar] [CrossRef]
- Groth, C.; Porziani, S.; Biancolini, M.E. Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems. Fluids 2021, 6, 314. [Google Scholar] [CrossRef]
- Mokshin, A.V.; Fairushin, I.I.; Tkachenko, I.M. Self-consistent relaxation theory of collective ion dynamics in Yukawa one-component plasmas under intermediate screening regimes. Phys. Rev. E 2022, 105, 025204. [Google Scholar] [CrossRef] [PubMed]
- Khrapak, S.; Klumov, B.; Couedel, L.; Thomas, H. On the long-waves dispersion in Yukawa systems. Phys. Plasm. 2016, 23, 023702. [Google Scholar] [CrossRef] [Green Version]
- Kalman, G.J.; Golden, K.I. Response function and plasmon dispersion for strongly coupled Coulomb liquids. Phys. Rev. A 1990, 41, 5516–5527. [Google Scholar] [CrossRef] [PubMed]
- Golden, K.I.; Kalman, G.J. Quasilocalized charge approximation in strongly coupled plasma physics. Phys. Plasm. 2000, 7, 14–32. [Google Scholar] [CrossRef]
- Donkó, Z.; Kalman, G.J.; Hartmann, P. Dynamical correlations and collective excitations of Yukawa liquids. J. Phys. Condens. Matter 2008, 20, 413101. [Google Scholar] [CrossRef]
- Fairushin, I.I.; Khrapak, S.A.; Mokshin, A.V. Direct evaluation of the physical characteristics of Yukawa fluids based on a simple approximation for the radial distribution function. Results Phys. 2020, 19, 103359. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1. [Google Scholar] [CrossRef] [Green Version]
- Ott, T.; Bonitz, M.; Stanton, L.; Murillo, M.S. Coupling strength in Coulomb and Yukawa one-component plasmas. Phys. Plasm. 2014, 21, 113704. [Google Scholar] [CrossRef] [Green Version]
1 | 20 | 6.762 | 6.767 | 0.072 | 10.554 | 10.536 | 0.165 | −0.643 | −0.782 | 21.576 |
1 | 50 | 15.901 | 15.951 | 0.319 | 25.518 | 25.461 | 0.225 | −1.111 | −1.068 | 3.883 |
1 | 100 | 30.943 | 30.641 | 0.977 | 50.294 | 49.719 | 1.142 | −1.803 | −1.348 | 25.226 |
1.5 | 20 | 2.732 | 2.708 | 0.871 | 4.958 | 4.919 | 0.797 | −0.542 | −0.679 | 25.377 |
1.5 | 50 | 5.963 | 6.068 | 1.751 | 11.403 | 11.470 | 0.591 | −0.897 | −0.941 | 4.927 |
1.5 | 100 | 11.165 | 11.266 | 0.910 | 21.912 | 21.853 | 0.267 | −1.402 | −1.190 | 15.117 |
2 | 20 | 1.336 | 1.285 | 3.818 | 2.697 | 2.619 | 2.912 | −0.454 | −0.581 | 27.931 |
2 | 50 | 2.647 | 2.699 | 1.982 | 5.766 | 5.823 | 0.986 | −0.716 | −0.808 | 12.893 |
2 | 100 | 4.665 | 4.815 | 3.225 | 10.601 | 10.756 | 1.468 | −1.053 | −1.026 | 2.562 |
1 | 20 | 5.196 | 5.189 | 0.139 |
1 | 50 | 8.145 | 8.13 | 0.184 |
1 | 100 | 11.475 | 11.422 | 0.465 |
1.5 | 20 | 3.777 | 3.761 | 0.434 |
1.5 | 50 | 5.831 | 5.827 | 0.077 |
1.5 | 100 | 8.156 | 8.122 | 0.422 |
2 | 20 | 2.917 | 2.881 | 1.266 |
2 | 50 | 4.391 | 4.392 | 0.030 |
2 | 100 | 6.051 | 6.055 | 0.063 |
1 | 163 | 14.62 | 14.51 | 0.75 |
2 | 362 | 11.25 | 11.02 | 2.04 |
3 | 1033 | 10.23 | 9.87 | 3.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairushin, I.I.; Mokshin, A.V. Calculation of Thermodynamic Characteristics and Sound Velocity for Two-Dimensional Yukawa Fluids Based on a Two-Step Approximation for the Radial Distribution Function. Fluids 2023, 8, 72. https://doi.org/10.3390/fluids8020072
Fairushin II, Mokshin AV. Calculation of Thermodynamic Characteristics and Sound Velocity for Two-Dimensional Yukawa Fluids Based on a Two-Step Approximation for the Radial Distribution Function. Fluids. 2023; 8(2):72. https://doi.org/10.3390/fluids8020072
Chicago/Turabian StyleFairushin, Ilnaz I., and Anatolii V. Mokshin. 2023. "Calculation of Thermodynamic Characteristics and Sound Velocity for Two-Dimensional Yukawa Fluids Based on a Two-Step Approximation for the Radial Distribution Function" Fluids 8, no. 2: 72. https://doi.org/10.3390/fluids8020072
APA StyleFairushin, I. I., & Mokshin, A. V. (2023). Calculation of Thermodynamic Characteristics and Sound Velocity for Two-Dimensional Yukawa Fluids Based on a Two-Step Approximation for the Radial Distribution Function. Fluids, 8(2), 72. https://doi.org/10.3390/fluids8020072