Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form
Abstract
:1. Introduction
2. Governing Equations
3. Converting the Governing Equations into a Fluid Dynamics Form
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Jog, C.S. A Monolithic Finite Element Formulation for Magnetohydrodynamics Involving a Compressible Fluid. Fluids 2022, 7, 27. [Google Scholar] [CrossRef]
- Suponitsky, V.; Khalzov, I.V.; Avital, E.J. Magnetohydrodynamics Solver for a Two-Phase Free Surface Flow Developed in OpenFOAM. Fluids 2022, 7, 210. [Google Scholar] [CrossRef]
- Smolentsev, S. Physical Background, Computations and Practical Issues of the Magnetohydrodynamic Pressure Drop in a Fusion Liquid Metal Blanket. Fluids 2021, 6, 110. [Google Scholar] [CrossRef]
- Vlachomitrou, M.; Pelekasis, N. Numerical Study of a Liquid Metal Oscillating inside a Pore in the Presence of Lorentz and Capillary Forces. Fluids 2020, 5, 12. [Google Scholar] [CrossRef]
- Nabwey, H.A.; SMMEl-Kabeir, S.M.M.; Rashad, A.M.; Abdou, M.M.M. Effectiveness of Magnetized Flow on Nanofluid Containing Gyrotactic Micro-Organisms over an Inclined Stretching Sheet with Viscous Dissipation and Constant Heat Flux. Fluids 2021, 6, 253. [Google Scholar] [CrossRef]
- Mahdy, A.; El-Zahar, E.R.; Rashad, A.M.; Saad, W.; Al-Juaydi, H.S. The Magneto-Natural Convection Flow of a Micropolar Hybrid Nanofluid over a Vertical Plate Saturated in a Porous Medium. Fluids 2021, 6, 202. [Google Scholar] [CrossRef]
- Sarada, K.; Gowda, R.J.P.; Sarris, I.E.; Kumar, R.N.; Prasannakumara, B.C. Effect of Magnetohydrodynamics on Heat Transfer Behaviour of a Non-Newtonian Fluid Flow over a Stretching Sheet under Local Thermal Non-Equilibrium Condition. Fluids 2021, 6, 264. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in quantum theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Further considerations on electromagnetic potentials in quantum theory. Phys. Rev. 1961, 123, 1511–1524. [Google Scholar] [CrossRef]
- Vadasz, P. Newtonian Gravitational Waves from a Continuum. Submitted for Publication. 2023. Available online: https://ssrn.com/abstract=4499000 (accessed on 30 July 2023).
- Marmanis, H. Analogy between the Navier-Stokes equations and Maxwell equations: Application to turbulence. Phys. Fluids 1998, 10, 1428–1437. [Google Scholar] [CrossRef]
- Lamb, H. On the conditions of steady motion of a fluid. Proc. Lond. Math. Soc. 1877, 1–9, 91–93. [Google Scholar] [CrossRef]
- Sridhar, S. Turbulent transport of a tracer: An electromagnetic formulation. Phys. Rev. E 1998, 58, 522–525. [Google Scholar] [CrossRef]
- Rousseaux, G.; Seifer, S.; Steinberg, V.; Wiebel, A. On the Lamb vector and the hydrodynamic charge. Exp. Fluids 2006, 42, 291–299. [Google Scholar] [CrossRef]
- Yoshida, Z.; Ohsaki, S.; Ito, A.; Mahajan, S.M. Stability of Beltrami flows. J. Math. Phys. 2003, 44, 2168–2178. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Yoshida, Z. Double curl Beltrami flow: Diamagnetic structures. Phys. Rev. Lett. 1998, 81, 4863–4866. [Google Scholar] [CrossRef]
- Gerner, W. Typical field lines of Beltrami flows and boundary field line behaviour of Beltrami flows on simply connected, compact, smooth manifolds with boundary. Ann. Glob. Anal. Geom. 2021, 60, 65–82. [Google Scholar] [CrossRef]
- Amari, T.; Boulbe, C.; Boulmezaoud, T.Z. Computing Beltrami fields. SIAM J. Sci. Comput. 2009, 31, 3217–3254. [Google Scholar] [CrossRef]
- Bhattacharjee, C. Beltrami-Bernoulli equilibria in weakly rotating self-gravitating fluid. J. Plasma Phys. 2022, 88, 175880101. [Google Scholar] [CrossRef]
- Lakhatakia, A. Viktor Trkal, Beltrami fields, and Trkalian flows. Czechoslov. J. Phys. 1994, 44, 89–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadasz, P. Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form. Fluids 2023, 8, 284. https://doi.org/10.3390/fluids8110284
Vadasz P. Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form. Fluids. 2023; 8(11):284. https://doi.org/10.3390/fluids8110284
Chicago/Turabian StyleVadasz, Peter. 2023. "Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form" Fluids 8, no. 11: 284. https://doi.org/10.3390/fluids8110284
APA StyleVadasz, P. (2023). Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form. Fluids, 8(11), 284. https://doi.org/10.3390/fluids8110284