Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows
Conflicts of Interest
References
- Charney, J.G. The gulf stream as an inertial boundary layer. Proc. Natl. Acad. Sci. USA 1955, 41, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Stommel, H. The Gulf Stream: A Physical and Dynamical Description; Cambridge University Press: Cambridge, UK, 1965. [Google Scholar]
- Stommel, H.; Yoshida, A. Kuroshio, Its Physical Aspects; University of Tokyo Press: Tokyo, Japan, 1972. [Google Scholar]
- Hidy, G.M. A view of recent air-sea interaction research. Bull. Am. Meteorol. Soc. 1972, 53, 1083–1102. [Google Scholar] [CrossRef]
- Lyu, M.; Potter, H.; Collins, C.O. The Impacts of Gustiness on Air–Sea Momentum Flux. Fluids 2021, 6, 336. [Google Scholar] [CrossRef]
- Potter, H. Swell and drag coefficient. Ocean. Dyn. 2015, 65, 375–384. [Google Scholar] [CrossRef]
- Quintana, A.; Torres, H.S.; Gomez-Valdes, J. Dynamical Filtering Highlights the Seasonality of Surface-Balanced Motions at Diurnal Scales in the Eastern Boundary Currents. Fluids 2022, 7, 271. [Google Scholar] [CrossRef]
- Kuehl, J.; Sheremet, V.A. Effect of the Coastline Geometry on the Boundary Currents Intruding through the Gap. Fluids 2022, 7, 71. [Google Scholar] [CrossRef]
- Sheremet, V.A. Hysteresis of a Western Boundary Current Leaping across a Gap. J. Phys. Oceanogr. 2001, 31, 1247–1259. [Google Scholar] [CrossRef]
- Sheremet, V.A.; Kuehl, J. Gap-Leaping Western Boundary Current in a Circular Tank Model. J. Phys. Oceanogr. 2007, 37, 1488–1495. [Google Scholar] [CrossRef]
- Song, C.; Yuan, D.; Wang, Z. Hysteresis of a periodic or leaking western boundary current flowing by a gap. Acta Oceanol. Sin. 2019, 38, 90–96. [Google Scholar] [CrossRef]
- McMahon, C.W.; Kuehl, J.J.; Sheremet, V.A. A viscous, two-layer western boundary current structure function. Fluids 2020, 5, 63. [Google Scholar] [CrossRef]
- McMahon, C.W.; Kuehl, J.J.; Sheremet, V.A. Dynamics of Gap-leaping Western Boundary Currents with Throughflow Forcing. J. Phys. Oceanogr. 2021, 51, 2243–2256. [Google Scholar] [CrossRef]
- Mei, H.; Qi, Y.; Qiu, B.; Cheng, X.; Wu, X. Influence of an Island on Hysteresis of a Western Boundary Current Flowing across a Gap. J. Phys. Oceanogr. 2019, 49, 1353–1366. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Gulf Research Program; Committee on Advancing Understanding of Gulf of Mexico Loop Current Dynamics. Understanding and Predicting the Gulf of Mexico Loop Current: Critical Gaps and Recommendations; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Yuan, D.; Song, X.; Yang, Y.; Dewar, W.K. Dynamics of Mesoscale Eddies Interacting with a Western Boundary Current Flowing by a Gap. J. Geophys. Res. Ocean. 2019, 014949. [Google Scholar] [CrossRef]
- Sheremet, V.A.; Kan, A.A.; Kuehl, J. Multiple Equilibrium States of the Gulf of Mexico Loop Current. Ocean. Dyn. 2022, 72, 731–740. [Google Scholar] [CrossRef]
- Stommel, H.; Arons, A.B.; Faller, A.J. Some examples of stationary flow patterns in bounded basins. Tellus 1958, 10, 179–187. [Google Scholar] [CrossRef]
- Stommel, H.; Arons, A.B. On the abyssal circulation of the world ocean-l. Stationary planetary flow patterns on a sphere. Deep Sea Res. 1959, 6, 140–154. [Google Scholar] [CrossRef]
- National Ocean Partnership Program. Available online: https://nopp.org/projects/nopp-project-table/ (accessed on 9 October 2023).
- Polzin, K.L.; Wang, B.; Wang, Z.; Thwaites, F.; Williams, A.J. Moored Flux and Dissipation Estimates from the Northern Deepwater Gulf of Mexico. Fluids 2021, 6, 237. [Google Scholar] [CrossRef]
- Garret, C.; MacCready, P.; Rhines, P. Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 1993, 25, 291–323. [Google Scholar] [CrossRef]
- Polzin, K.L.; McDougall, T.J. Mixing at the ocean’s bottom boundary. In Ocean Mixing; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Pollard, R.T.; Rhines, P.B.; Thompson, T. The deepening of the wind-mixed layer. Geophys. Fluid Dyn. 1973, 4, 381–404. [Google Scholar] [CrossRef]
- Brink, K.H.; Lentz, S.J. Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr. 2010, 40, 621–635. [Google Scholar] [CrossRef]
- Thomas, L.N.; Taylor, J.R.; Ferrari, R.; Joyce, T.M. Symmetric instability in the Gulf Stream. Deep Sea Res. Part Top. Stud. Oceanogr. 2013, 91, 96–110. [Google Scholar] [CrossRef]
- Qu, L.; Thomas, L.N.; Hetland, R.D.; Kobashi, D. Mixing Driven by Critical Reflection of Near-Inertial Waves over the Texas–Louisiana Shelf. J. Phys. Oceanogr. 2022, 52, 2891–2906. [Google Scholar] [CrossRef]
- Ruan, X. Note on the Bulk Estimate of the Energy Dissipation Rate in the Oceanic Bottom Boundary Layer. Fluids 2022, 7, 82. [Google Scholar] [CrossRef]
- Taylor, G.I. Tidal friction in the Irish Sea. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1920, 220, 1–33. [Google Scholar]
- Ruan, X.; Thompson, A.F.; Taylor, J.R. The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Upslope regime and PV dynamics. J. Phys. Oceanogr. 2021, 51, 1077–1089. [Google Scholar] [CrossRef]
- Nagano, A.; Hasegawa, T.; Ariyoshi, K.; Matsumoto, H. Interannual Bottom-Intensified Current Thickening Observed on the Continental Slope Off the Southeastern Coast of Hokkaido, Japan. Fluids 2022, 7, 84. [Google Scholar] [CrossRef]
- Nagano, A.; Ichikawa, K.; Ichikawa, H.; Yoshikawa, Y.; Murakami, K. Large ageostrophic currents in the abyssal layer southeast of Kyushu, Japan, by direct measurement of LADCP. J. Oceanogr. 2013, 69, 259–268. [Google Scholar] [CrossRef]
- Nagano, A.; Wakita, M. Wind-driven decadal sea surface height and main pycnocline depth changes in the western subarctic North Pacific. Prog. Earth Planet 2019, 6, 59. [Google Scholar] [CrossRef]
- Nagano, A.; Wakita, M.; Fujiki, T.; Uchida, H. El Niño Vertical Mixing Enhancement under the Winter Mixed Layer at Western Subarctic North Pacific Station K2. J. Geophys. Res. 2021, 126, e2020JC016913. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nagano, A.; Matsumoto, H.; Ariyoshi, K.; Wakita, M. El Niño-related sea surface elevation and ocean bottom pressure enhancement associated with the retreat of the Oyashio southeast of Hokkaido, Japan. Mar. Geophys. Res. 2019, 40, 505–512. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nagano, A.; Ariyoshi, K.; Miyama, T.; Matsumoto, H.; Iwase, R.; Wakita, M. Effect of Ocean Fluid Changes on Pressure on the Seafloor: Ocean Assimilation Data Analysis on Warm-core Rings off the Southeastern Coast of Hokkaido, Japan on an Interannual Timescale. Front. Earth Sci. 2021, 9, 600930. [Google Scholar] [CrossRef]
- Kozelkov, A.; Tyatyushkina, E.; Kurulin, V.; Kurkin, A. Influence of Turbulence Effects on the Runup of Tsunami Waves on the Shore within the Framework of the Navier–Stokes Equations. Fluids 2022, 7, 117. [Google Scholar] [CrossRef]
- Gundersen, D.; Blois, G.; Christensen, K.T. Flow past mound-bearing impact craters: An experimental study. Fluids 2021, 6, 216. [Google Scholar] [CrossRef]
- Blois, G.; Bristow, N.; Kim, T.; Best, J.; Christensen, K. Novel Environment Enables PIV Measurements of Turbulent Flow around and within Complex Topographies. J. Hydraul. Eng. 2020, 146, 04020033. [Google Scholar] [CrossRef]
- Hu, L.; Dong, Z.; Peng, C.; Wang, L.P. Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow Using the Lattice Boltzmann Method. Fluids 2021, 6, 217. [Google Scholar] [CrossRef]
- Gao, H.; Li, H.; Wang, L.P. Lattice Boltzmann simulation of turbulent flow laden with finite-size particle. Comput. Math. Appl. 2013, 65, 194–210. [Google Scholar] [CrossRef]
- Peng, C. Study of Turbulence Modulation by Finite-Size Solid Particles with the Lattice Boltzmann Method. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2018. [Google Scholar]
- Burmasheva, N.; Ershkov, S.; Prosviryakov, E.; Leshchenko, D. Exact Solutions of Navier–Stokes Equations for Quasi-Two-Dimensional Flows with Rayleigh Friction. Fluids 2023, 8, 123. [Google Scholar] [CrossRef]
- Csanady, G.T. The arrested topographic wave. J. Phys. Oceanogr. 1978, 8, 47–62. [Google Scholar] [CrossRef]
- Kuehl, J.J. An analytic solution for barotropic flow along a variable slope topography. Geophys. Res. Lett. 2014, 41, 7591–7594. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuehl, J. Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows. Fluids 2023, 8, 279. https://doi.org/10.3390/fluids8100279
Kuehl J. Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows. Fluids. 2023; 8(10):279. https://doi.org/10.3390/fluids8100279
Chicago/Turabian StyleKuehl, Joseph. 2023. "Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows" Fluids 8, no. 10: 279. https://doi.org/10.3390/fluids8100279
APA StyleKuehl, J. (2023). Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows. Fluids, 8(10), 279. https://doi.org/10.3390/fluids8100279