Unveiling the Potential of Cavitation Erosion-Induced Heavy Crude Oil Upgrading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of Study
2.2. Ultrasonic Treatment Set-Up
2.3. Analysis of Cavitation Erosion
3. Results and Discussion
3.1. Acoustic Spectra
3.2. Cavitation Erosion Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pernik, A.D.; Roy, N.A. Fizicheskiy Enciklopedicheskiy Slovar’; Vvedenskiy, V.A., Vul, B.M., Eds.; Soviet Encyclopedia: Moscow, Russia, 1962; Volume 2. [Google Scholar]
- Shapiro, V.E. Proch’nost na razriv zhidkosti, provodyashey tok. High Temp. 1975, 13, 979–983. [Google Scholar]
- Bogach, A.A.; Utkin, A.V. Prochnost Vodi pti impulsnom rastyazhenii. J. Appl. Mech. Tech. Phys. 2000, 41, 198–205. [Google Scholar]
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed]
- Nurullaev, V.H. Conditions formation of cavitational zones and its action on physical and chemical characteristics crude oils. Transp. Storage Oil Prod. Hydrocarb. 2017, 1, 38–42. [Google Scholar]
- Rozina, E.A. Cavitational regime of sonocapillary effect. Acoust. Bull. 2003, 6, 48–59. [Google Scholar] [CrossRef]
- Mikhailova, N.V.; Smirnov, I.V.; Sharipova, A.; Slesarenko, V. Calculation of a Sonocapillary Effect Dependence on an Ultrasonic Frequency Based on a Threshold Cavitation Criterion. Probl. Strength Plast. 2020, 82, 64–74. [Google Scholar] [CrossRef]
- Mikhailova, N.V.; Smirnov, I.V. Analytical Modelling of the Influence of Temperature and Capillary Diameter on the Sonocapillary Effect for Liquids with Different Density. In Proceedings of the XXXII International Conference of Young Scientists and Students “Topical Problems of Mechanical Engineering”, Moscow, Russia, 7–10 November 2021; pp. 306–311. [Google Scholar]
- Kuppa, R.; Moholkar, V.S. Physical Features of Ultrasound-Enhanced Heterogeneous Permanganate Oxidation. Ultrason. Sonochemistry 2010, 17, 123–131. [Google Scholar] [CrossRef]
- Mieles-Gómez, L.; Lastra-Ripoll, S.E.; Torregroza-Fuentes, E.; Quintana, S.E.; García-Zapateiro, L.A. Rheological and Microstructural Properties of Oil-in-Water Emulsion Gels Containing Natural Plant Extracts Stabilized with Carboxymethyl Cellulose/Mango (Mangiferaindica) Starch. Fluids 2021, 6, 312. [Google Scholar] [CrossRef]
- Eskin, D.G.; Tzanakis, I. High-Frequency Vibration and Ultrasonic Processing. In Processing of Metallic Alloys under External Fields; Springer: Berlin/Heidelberg, Germany, 2018; pp. 153–193. [Google Scholar]
- Zhu, L.; Yang, Z.; Xin, B.; Wang, S.; Meng, G.; Ning, J.; Xue, P. Microstructure and Mechanical Properties of Parts Formed by Ultrasonic Vibration-Assisted Laser Cladding of Inconel 718. Surf. Coat. Technol. 2021, 410, 126964. [Google Scholar] [CrossRef]
- Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochemistry 2004, 11, 47–55. [Google Scholar] [CrossRef]
- Osterland, S.; Günther, L.; Weber, J. Experiments and Computational Fluid Dynamics on Vapor and Gas Cavitation for Oil Hydraulics. Chem. Eng. Technol. 2022, 46, 147–157. [Google Scholar] [CrossRef]
- Iga, Y.; Okajima, J.; Takahashi, S.; Ibata, Y. Occurrence characteristics of gaseous cavitation in oil shear flow. Phys. Fluids 2022, 34, 023313. [Google Scholar] [CrossRef]
- Iliechev, V.I.; Lesunovskiy, V.P. O spectrah shuma pri gidrodinamicheskoy cavitacii. Akust. Zhurnal 1963, 9, 32–36. [Google Scholar]
- Zhu, J.; Wu, G.; Duan, X.; Li, X.; Tang, X. Numerical studies on applications of cavitation models in water hammer-induced cavitating flows in pipelines. Phys. Fluids 2023, 35, 095129. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Bergant, A.; Kodura, A.; Kubrak, M.; Malesińska, A.; Bury, P.; Stosiak, M. Modeling Transient Pipe Flow in Plastic Pipes with Modified Discrete Bubble Cavitation Model. Energies 2021, 14, 6756. [Google Scholar] [CrossRef]
- Jansson, M.; Andersson, M.; Karlsson, M. High-Speed Imaging of Water Hammer Cavitation in Oil–Hydraulic Pipe Flow. Fluids 2022, 7, 102. [Google Scholar] [CrossRef]
- Su, W.-T.; Zhao, W.; Binama, M.; Zhao, Y.; Huang, J.-Y.; Chen, X.-R. Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant. Sustainability 2022, 14, 3263. [Google Scholar] [CrossRef]
- Podnar, A.; Hočevar, M.; Novak, L.; Dular, M. Analysis of Bulb Turbine Hydrofoil Cavitation. Appl. Sci. 2021, 11, 2639. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Xu, X.; Qiu, Z.; Dong, B. A Review of Pump Cavitation Fault Detection Methods Based on Different Signals. Processes 2023, 11, 2007. [Google Scholar] [CrossRef]
- Karagiovanidis, M.; Pantazi, X.E.; Papamichail, D.; Fragos, V. Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors. Agriculture 2023, 13, 1544. [Google Scholar] [CrossRef]
- Ren, P.; Wang, B.; Zhang, W.; Xie, Z. Influence of Bubbles Causing Cavitation on Spool Oscillation of a Direct Drive Servovalve. Micromachines 2021, 12, 717. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, D.M.; Chiavola, O.; Frattini, E.; Palmieri, F. A Novel Approach for Hydraulic Valve Experimental Assessment Under Cavitating Condition. Int. J. Fluid Power 2022, 23, 183–204. [Google Scholar] [CrossRef]
- Marfin, E.A.; Gataullin, R.N.; Abdrashitov, A.A. Acoustic Stimulation of Oil Production by a Downhole Emitter Based on a Jet-Driven Helmholtz Oscillator. J. Pet. Sci. Eng. 2022, 215, 110705. [Google Scholar] [CrossRef]
- Abramov, V.O.; Abramova, A.V.; Bayazitov, V.M.; Mullakaev, M.S.; Marnosov, A.V.; Ildiyakov, A.V. Acoustic and Sonochemical Methods for Altering the Viscosity of Oil during Recovery and Pipeline Transportation. Ultrason. Sonochemistry 2017, 35, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Mullakaev, R.M.; Mullakaev, M.S. Ultrasound in the Processes of Treatment of Oil-Contamined Waste: Overview. Ecol. Ind. Russ. 2021, 25, 53–59. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, G.; Ge, J.; Liao, K.; He, Y.; Wang, X.; Li, H. Study on Dual-Frequency Ultrasounds Assisted Surfactant Extraction of Oil Sands. Fuel Process. Technol. 2017, 167, 146–152. [Google Scholar] [CrossRef]
- Tyncherov, K.T.; Mukhametshin, V.S.; Paderin, M.G.; Selivanova, M.V.; Shokurov, I.V.; Almukhametova, E.M. Thermoacoustic Inductor for Heavy Oil Extraction. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042111. [Google Scholar] [CrossRef]
- Otumudia, E.; Hamidi, H.; Jadhawar, P.; Wu, K. The Utilization of Ultrasound for Improving Oil Recovery and Formation Damage Remediation in Petroleum Reservoirs: Review of Most Recent Researches. Energies 2022, 15, 4906. [Google Scholar] [CrossRef]
- Hamidi, H.; Haddad, A.S.; Otumudia, E.W.; Rafati, R.; Mohammadian, E.; Azdarpour, A.; Pilcher, W.G.; Fuehrmann, P.W.; Sosa, L.R.; Cota, N.; et al. Recent Applications of Ultrasonic Waves in Improved Oil Recovery: A Review of Techniques and Results. Ultrasonics 2021, 110, 106288. [Google Scholar] [CrossRef]
- Otumudia, E.; Hamidi, H.; Jadhawar, P.; Wu, K. Effects of Reservoir Rock Pore Geometries and Ultrasonic Parameters on the Removal of Asphaltene Deposition under Ultrasonic Waves. Ultrason. Sonochemistry 2022, 83, 105949. [Google Scholar] [CrossRef]
- Abbasov, M.M. Nontraditional Methods of Influence On Hydrocarbon Raw Material For The Intensification Of The Processes Of Its Processing. AutoGas Fill. Complex Altern. Fuel 2015, 11, 20–28. [Google Scholar]
- Zolotukhin, V.A. New technology for processing of heavy oil black and oil residues. Khimicheskoe Neftegazov. Mashinostroenie 2004, 10, 8–11. [Google Scholar]
- Kurochkin, A.K.; Kurochkin, A.V. ”VISBREAKING-THERMACAT ®”—The basic process of the modern oil refineries for high level oil processing. Expo. Oil Gas 2008, 3, 47–53. [Google Scholar]
- Prosin, M.V.; Potapov, A.N.; Ivanova, A.S.; Polishchuk, E.S. Rotor-Pulsation Machine for Extracting in Solid—Liquid System. Proc. Univ. Appl. Chem. Biotechnol. 2014, 10, 70–75. [Google Scholar]
- Promtov, M.A.; Avseev, A.S. Impul’snye tekhnologii pererabotki nefti i nefteproduktov. Neftepererab. Neft. 2007, 6, 22–24. [Google Scholar]
- Shamseddini, A.; Mowla, D.; Esmaeilzadeh, F. Continuous Treatment of Petroleum Products in a Tailor-Made Flow-through Sonoreactor. J. Pet. Sci. Eng. 2019, 173, 1149–1162. [Google Scholar] [CrossRef]
- Gildo, P.J.; Dugos, N.; Roces, S.; Wan, M.-W. Optimized Ultrasound-Assisted Oxidative Desulfurization Process of Simulated Fuels over Activated Carbon-Supported Phosphotungstic Acid. MATEC Web Conf. 2018, 156, 03045. [Google Scholar] [CrossRef]
- Desai, K.; Dharaskar, S.; Pandya, J.; Shinde, S.; Gupta, T. Trihexyl Tetradecyl Phosphonium Bromide as an Effective Catalyst/Extractant in Ultrasound-Assisted Extractive/Oxidative Desulfurization. Environ. Sci. Pollut. Res. 2022, 29, 49770–49783. [Google Scholar] [CrossRef]
- Jalali, M.R.; Sobati, M.A. Intensification of Oxidative Desulfurization of Gas Oil by Ultrasound Irradiation: Optimization Using Box–Behnken Design (BBD). Appl. Therm. Eng. 2017, 111, 1158–1170. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Kiaei, Z.; Sobati, M.A. Oxidative Desulfurization of Simulated Light Fuel Oil and Untreated Kerosene. Fuel Process. Technol. 2009, 90, 435–445. [Google Scholar] [CrossRef]
- Kairbekov, Z.K.; Anisimov, A.V.; Myltykbaeva, Z.K.; Kanseitova, D.K.; Rakhmanov, E.V.; Seisembekova, A.B. Sonocatalytic Oxidative Desulfurization of Oil from the Zhanazhol Oilfield. Mosc. Univ. Chem. Bull. 2017, 72, 29–33. [Google Scholar] [CrossRef]
- Margeta, D.; Sertić-Bionda, K.; Foglar, L. Ultrasound Assisted Oxidative Desulfurization of Model Diesel Fuel. Appl. Acoust. 2016, 103, 202–206. [Google Scholar] [CrossRef]
- Pedrotti, M.F.; Enders, M.S.P.; Pereira, L.S.F.; Mesko, M.F.; Flores, E.M.M.; Bizzi, C.A. Intensification of Ultrasonic-Assisted Crude Oil Demulsification Based on Acoustic Field Distribution Data. Ultrason. Sonochemistry 2018, 40, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, H.G.; Mosavian, M.T.H.; Kadkhodaee, R. Demulsification of Gas Oil/Water Emulsion via High-Intensity Ultrasonic Standing Wave. J. Dispers. Sci. Technol. 2013, 34, 483–489. [Google Scholar] [CrossRef]
- Xu, X.; Cao, D.; Liu, J.; Gao, J.; Wang, X. Research on Ultrasound-Assisted Demulsification/Dehydration for Crude Oil. Ultrason. Sonochemistry 2019, 57, 185–192. [Google Scholar] [CrossRef]
- Luo, X.; Gong, H.; Cao, J.; Yin, H.; Yan, Y.; He, L. Enhanced Separation of Water-in-Oil Emulsions Using Ultrasonic Standing Waves. Chem. Eng. Sci. 2019, 203, 285–292. [Google Scholar] [CrossRef]
- Hamidi, H.; Mohammadian, E.; Asadullah, M.; Azdarpour, A.; Rafati, R. Effect of Ultrasound Radiation Duration on Emulsification and Demulsification of Paraffin Oil and Surfactant Solution/Brine Using Hele-Shaw Models. Ultrason. Sonochemistry 2015, 26, 428–436. [Google Scholar] [CrossRef]
- Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S.; Flores, E.M.M. Effect of Ultrasonic Frequency on Separation of Water from Heavy Crude Oil Emulsion Using Ultrasonic Baths. Ultrason. Sonochemistry 2017, 35, 541–546. [Google Scholar] [CrossRef]
- Shorin, V.A.; Myasnikova, S.A. Improving Properties of Bitumen Emulsion with Ultrasound Treatment. Bull. Vologda State Univ. Ser. Tech. Sci. 2021, 2, 77–79. [Google Scholar]
- Mullakaev, M.S.; Mullakaev, R.M. Sonochemical Technology for Transportation of High Viscous. In Proceedings of the XII International Conference “Oil and Gas Chemixtry”, Tomsk, Russia, 26–30 September 2022; pp. 144–145. [Google Scholar]
- Zhou, L.; Wang, Z. A Comparison Study on the Removal of Paraffin Wax Deposition Plug by Ultrasound Treatment, Chemical Demulsifier and Combination of Ultrasound and Chemical Demulsifier. Pet. Sci. Technol. 2020, 38, 690–697. [Google Scholar] [CrossRef]
- Lauterborn, W.; Bolle, H. Experimental Investigations of Cavitation-Bubble Collapse in the Neighbourhood of a Solid Boundary. J. Fluid Mech. 1975, 72, 391. [Google Scholar] [CrossRef]
- Plesset, M.S.; Chapman, R.B. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary. J. Fluid Mech. 1971, 47, 283–290. [Google Scholar] [CrossRef]
- Bogachev, I.N. Kavitacionnoe Razrushenie I Cavitacionnostoikie Splavi; Metallurgia: Moscow, Russia, 1972. [Google Scholar]
- Korobov, Y.; Alwan, H.; Makarov, A.; Kukareko, V.; Sirosh, V.; Filippov, M.; Estemirova, S. Comparative Study of Cavitation Erosion Resistance of Austenitic Steels with Different Levels of Metastability. Met. Work. Mater. Sci. 2022, 24, 61–72. [Google Scholar] [CrossRef]
- Rodionov, V.P.; Ukolov, A.I. The Laws of Cavitation Erosion of Construction Materials. Her. Dagestan State Tech. Unive. Tech. Sci. 2017, 44, 39–47. [Google Scholar] [CrossRef]
- Silva, C.A. da Corrosion in Multiphase-Flow Pipelines: The Impact on the Oil and Gas Industry. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2023. [Google Scholar]
- Osterland, S.; Müller, L.; Weber, J. Influence of Air Dissolved in Hydraulic Oil on Cavitation Erosion. Int. J. Fluid Power 2021, 22, 373–392. [Google Scholar] [CrossRef]
- Rao, B.C.S.; Buckley, D.H. Erosion of Aluminum 6061-T6 under Cavitation Attack in Mineral Oil and Water. Wear 1985, 105, 171–182. [Google Scholar] [CrossRef]
- Skvortsov, S. Techniques of Ultrasound Cavitation Control. Sci. Educ. Bauman MSTU 2015, 15, 83–100. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Jia, W.; Yang, F.; Ban, J.; Qui, B. Modeling transient cavitating flow in large drop crude oil pipelines. J. Pet. Sci. Eng. 2023, 220, 111241. [Google Scholar] [CrossRef]
- Zheng, Z.; Ou, G.; Jin, H. Numerical-Experimental Study on the Erosion-Cavitation Wear of Coal Oil Slurry Valve. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, Volume 3A: Design and Analysis, Waikoloa, HI, USA, 16–20 July 2017. [Google Scholar] [CrossRef]
- Ajinomoh, C.S.; Momoh, O.R.; Maku, J.J. Hydrodynamic Cavitation as Oil Pretreatment Prior to Distillation. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 31 July–2 August 2023. [Google Scholar] [CrossRef]
- He, X.; Liu, H.; Jiang, W.; Zheng, W.; Zhang, H.; Lv, K.; Chen, H. Experimental study and numerical simulation of heavy oil viscosity reduction device based on jet cavitation. Pet. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Z.; Liu, X.; Liu, L.; Peng, J. Studies on viscosity reduction and structural change of crude oil treated with acoustic cavitation. Fuel 2020, 263, 116638. [Google Scholar] [CrossRef]
- Silva, C.A.; Varela, L.B.; Kolawole, F.O.; Tschiptschin, A.P.; Panossian, Z. Multiphase-flow-induced corrosion and cavitation-erosion damages of API 5L X80 and API 5DP grade S steels. Wear 2020, 452–453, 203282. [Google Scholar] [CrossRef]
- Bolleter, U.; Schwarz, D.; Carney, B.; Gordon, E.A. Solution to Cavitation Induced Vibration Problems in Crude Oil Pipeline Pumps. In Proceedings of the Eight International Pump Users Symposium, College Station, TX, USA; 1991; pp. 21–27. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.; Zhai, Y.; Zhang, Q. Experimental Study on the Mesoscale Causes of the Influence of Viscosity on Material Erosion in a Cavitation Field. Ultrason. Sonochemistry 2019, 59, 104699. [Google Scholar] [CrossRef]
- Brujan, E.A. Cavitation bubble dynamics in non-newtonian fluids. Polym. Eng. Sci. 2010, 49, 419–431. [Google Scholar] [CrossRef]
- Kuryakov, V.N. Influence of Ultrasonic Treatment on Kinetic of Asphaltene Aggregation in Toluene/Heptane Mixture. J. Phys. Conf. Ser. 2021, 1942, 012035. [Google Scholar] [CrossRef]
- Volkova, G.I.; Morozova, A.V. Strukturnie preobrasovaniya asphaltenov bituma posle ultrazvukovoi obrabotki. Khimiya Tverd. Topl. 2022, 2, 51–55. [Google Scholar] [CrossRef]
- Dengaev, A.V.; Kayumov, A.A.; Getalov, A.A.; Aliev, F.A.; Baimukhametov, G.F.; Sargin, B.V.; Maksimenko, A.F.; Vakhin, A.V. Chemical Viscosity Reduction of Heavy Oil by Multi-Frequency Ultrasonic Waves with the Main Harmonics of 20–60 KHz. Fluids 2023, 8, 136. [Google Scholar] [CrossRef]
- Kotukhov, A.V.; Efremov, D.V.; Bannikova, I.A.; Bayandin, Y.V.; Uvarov, S.V.; Naimark, O.B.; Zharko, N.A.; Dezhkunov, N.V. Study of cavitation noise without subharmonics. Thecnical Phys. Lett. 2023, 49, 39. [Google Scholar] [CrossRef]
Sonication Time, min | 1 | 3 | 5 | 10 | |
---|---|---|---|---|---|
Ashal’cha | 60 W | - | - | 3.4 | 7.9 |
90 W | - | 4.5 | 7.3 | 5.1 | |
North Komsomol | 60 W | - | 1.3 | 1.1 | 5.9 |
90 W | 5.2 | 4.6 | 5.8 | 4.8 | |
Water | 30 W | 2.4 | 2 | 3.5 | 2 |
60 W | 1.5 | 4.1 | 2.6 | - | |
90 W | 4.1 | 3.2 | 4.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baimukhametov, G.F.; Kayumov, A.A.; Dengaev, A.V.; Maksimenko, A.F.; Marakov, D.A.; Shishulin, V.A.; Drozdov, I.M.; Samuylova, L.V.; Getalov, A.A.; Aliev, F.A.; et al. Unveiling the Potential of Cavitation Erosion-Induced Heavy Crude Oil Upgrading. Fluids 2023, 8, 274. https://doi.org/10.3390/fluids8100274
Baimukhametov GF, Kayumov AA, Dengaev AV, Maksimenko AF, Marakov DA, Shishulin VA, Drozdov IM, Samuylova LV, Getalov AA, Aliev FA, et al. Unveiling the Potential of Cavitation Erosion-Induced Heavy Crude Oil Upgrading. Fluids. 2023; 8(10):274. https://doi.org/10.3390/fluids8100274
Chicago/Turabian StyleBaimukhametov, Gadel F., Aydar A. Kayumov, Aleksey V. Dengaev, Alexander F. Maksimenko, Denis A. Marakov, Vladimir A. Shishulin, Ilya M. Drozdov, Larisa V. Samuylova, Andrey A. Getalov, Firdavs A. Aliev, and et al. 2023. "Unveiling the Potential of Cavitation Erosion-Induced Heavy Crude Oil Upgrading" Fluids 8, no. 10: 274. https://doi.org/10.3390/fluids8100274
APA StyleBaimukhametov, G. F., Kayumov, A. A., Dengaev, A. V., Maksimenko, A. F., Marakov, D. A., Shishulin, V. A., Drozdov, I. M., Samuylova, L. V., Getalov, A. A., Aliev, F. A., & Vakhin, A. V. (2023). Unveiling the Potential of Cavitation Erosion-Induced Heavy Crude Oil Upgrading. Fluids, 8(10), 274. https://doi.org/10.3390/fluids8100274