High-Fidelity 2-Way FSI Simulation of a Wind Turbine Using Fully Structured Multiblock Meshes in OpenFoam for Accurate Aero-Elastic Analysis
Abstract
:1. Introduction
2. Governing Equations
2.1. Unsteady Reynolds-Averaged Navier-Stokes Flow Model (URANS)
2.2. Structural Model
2.3. Arbitrary Langragian Eulerian (ALE) Method
3. OpenFOAM Structure
- Solids4Foam/src/solids4FoamModels/physicsModel/physicsModel.C
- Solids4Foam/src/solids4FoamModels/fluidModels/fluidModel/fluidModel.C
- Solids4Foam/src/solids4FoamModels/solidModels/solidModel/solidModel.C
4. Simulation Models and Mesh Generation
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pazheri, F.R.; Othman, M.; Malik, N. A review on global renewable electricity scenario. Renew. Sustain. Energy Rev. 2014, 31, 835–845. [Google Scholar] [CrossRef]
- US Energy Information Administration. International Energy Outlook 2019 with Projections to 2050; U.S. Department of Energy: Washington, DC, USA, 2019.
- Galvani, P.A.; Sun, F.; Turkoglu, K. Aerodynamic Modeling of NREL 5-MW Wind Turbine for Nonlinear Control System Design: A Case Study Based on Real-Time Nonlinear Receding Horizon Control. Aerospace 2016, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Lago, L.I.; Ponta, F.L.; Otero, A.D. Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade. Renew. Energy 2013, 59, 13–22. [Google Scholar] [CrossRef]
- Liu, Y. A Coupled CFD/Multibody Dynamics Analysis Tool for Offshore Wind Turbines with Aeroelastic Blades. Am. Soc. Mech. Eng. 2017, 57786, V010T09A038. [Google Scholar]
- Manenti, S.; Ruol, P. Fluid-Structure Interaction in Design of Offshore Wind Turbines: SPH Modeling of Basic Aspects. In Proceedings of the International Workshop Handling Exception in Structural, Engineering, Rome, Italy, 13–14 November 2008; pp. 13–14. [Google Scholar]
- Santo, G.; Peeters, M.; Van Paepegem, W.; DeGroote, J. Fluid-Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine. Energies 2020, 13, 509. [Google Scholar] [CrossRef] [Green Version]
- Boujleben, A.; Ibrahimbegovic, A.; Lefrançois, E. An efficient computational model for fluid-structure interaction in application to large overall motion of wind turbine with flexible blades. Appl. Math. Model. 2020, 77, 392–407. [Google Scholar] [CrossRef]
- Peralta, G.; Kunisch, K. Analysis and finite element discretization for optimal control of a linear fluid–structure interaction problem with delay. Ima J. Numer. Anal. 2020, 40, 140–206. [Google Scholar] [CrossRef]
- Trifunović, S.; Wang, Y.-G. Existence of a weak solution to the fluid-structure interaction problem in 3D. J. Differ. Equ. 2020, 268, 1495–1531. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.M.; Kiani, A. Multi-Disciplinary Analysis of a Strip Stabilizer using Body-Fluid-Structure Interaction Simulation and Design of Experiments (DOE). J. Appl. Fluid Mech. 2020, 13, 261–273. [Google Scholar]
- Sathe, S.; Benney, R.; Charles, R.; Doucette, E.; Miletti, J.; Senga, M.; Stein, K.; Tezduyar, T. Fluid–structure interaction modeling of complex parachute designs with the space-time finite element techniques. Comput. Fluids 2007, 36, 127–135. [Google Scholar] [CrossRef]
- Hewitt, S.; Margetts, L.; Revell, A.; Pankaj, P.; Levrero-Florencio, F. OpenFPCI: A parallel fluid–structure interaction framework. Comput. Phys. Commun. 2019, 244, 469–482. [Google Scholar] [CrossRef]
- Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. 2020. Available online: https://aip.scitation.org/doi/abs/10.1063/1.168744 (accessed on 9 April 2022).
- Cardiff, P.; Karac, A.; De Jaeger, P.; Jasak, H.; Nagy, J.; Ivankovic, A.; Tukovi, Z. An Open-Source Finite Volume Toolbox for Solid Mechanics and Fluid-Solid Interaction Simulations. August 2018. Available online: http://arxiv.org/abs/1808.10736 (accessed on 2 February 2022).
- Bungartz, H.-J.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B. preCICE—A fully parallel library for multi-physics surface coupling. Comput. Fluids 2016, 141, 250–258. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, X. Computational Fluid-Structure Interaction; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer International Publishing: Cham, Switzerland, 2016; Volume 113. [Google Scholar]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model, F. Adv. Mater. Res. 2003, 4, 625–632. [Google Scholar]
- Tang, T. Implementation of Solid Body Stress Analysis in OpenFOAM. 2012. Available online: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2012/TianTang/OSCFD_Report_TianTang_peerReviewed.pdf (accessed on 2 February 2022).
- Gamnitzer, P.; Wall, W.A. An ALE-Chimera method for large deformation fluid structure interaction. In Proceedings of the European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Delft, The Netherlands, 5–8 June 2006; TU Delft: Delft, The Netherlands, 2006; pp. 1–14. [Google Scholar]
- Hirt, C.W.; Amsden, A.A.; Cook, J.L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 1974, 14, 227–253. [Google Scholar] [CrossRef]
- Mangani, L.; Buchmayr, M.; Darwish, M.; Moukalled, F. A fully coupled OpenFOAM® solver for transient incompressible turbulent flows in ALE formulation. Numer. Heat Transfer Part B Fundam. 2017, 71, 313–326. [Google Scholar] [CrossRef]
- Jasak, H.; Tukovic, Z. Automatic Mesh Motion for the Unstructured Finite Volume Method. Trans. FAMENA 2006, 2, 1–21. [Google Scholar]
- Kassiotis, C. Which strategy to move the mesh in the Computational Fluid Dynamic code OpenFOAM. Elements 2008, 1–14. [Google Scholar]
- Hand, M.; Simms, D.; Fingersh, L.; Jager, D.; Cotrell, J.; Schreck, S.; Larwood, S. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns. 2001. Available online: http://www.osti.gov/bridge (accessed on 2 February 2022).
- Hsu, M.-C.; Akkerman, I.; Bazilevs, Y. Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment. Wind Energy 2014, 17, 461–481. [Google Scholar] [CrossRef]
- Dose, B.; Rahimi, H.; Herráez, I.; Stoevesandt, B.; Peinke, J. Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD. Renew. Energy 2018, 129, 591–605. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of A 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Laboratory: Golden, CO, USA, February 2009.
- Yu, D.O.; Kwon, O.J. Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method. Renew. Energy 2014, 70, 184–196. [Google Scholar] [CrossRef]
- Chow, R.; van Dam, C.P. Verification of computational simulations of the NREL 5 MW rotor with a focus on inboard flow separation. Wind Energy 2012, 15, 967–981. [Google Scholar] [CrossRef]
- Lee, K.; Huque, Z.; Kommalapati, R.; Han, S.-E. Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis. Renew. Energy 2017, 113, 512–531. [Google Scholar] [CrossRef]
# | Cell Number | Error, % | CPU Time (h) |
---|---|---|---|
1 | 15,240,561 | 0.83 | 916.2 |
2 | 9,075,433 | 3.77 | 508.5 |
3 | 5,508,002 | 12.42 | 283.8 |
4 | 2,442,870 | 19.07 | 104.1 |
Density (kg/m3) | Young’s Modulus, E | Poison’s Ratio, ν |
---|---|---|
1035 | 1.56 × 1010 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhangaskanov, D.; Batay, S.; Kamalov, B.; Zhao, Y.; Su, X.; Ng, E.Y.K. High-Fidelity 2-Way FSI Simulation of a Wind Turbine Using Fully Structured Multiblock Meshes in OpenFoam for Accurate Aero-Elastic Analysis. Fluids 2022, 7, 169. https://doi.org/10.3390/fluids7050169
Zhangaskanov D, Batay S, Kamalov B, Zhao Y, Su X, Ng EYK. High-Fidelity 2-Way FSI Simulation of a Wind Turbine Using Fully Structured Multiblock Meshes in OpenFoam for Accurate Aero-Elastic Analysis. Fluids. 2022; 7(5):169. https://doi.org/10.3390/fluids7050169
Chicago/Turabian StyleZhangaskanov, Dinmukhamed, Sagidolla Batay, Bagdaulet Kamalov, Yong Zhao, Xiaohui Su, and Eddie Yin Kwee Ng. 2022. "High-Fidelity 2-Way FSI Simulation of a Wind Turbine Using Fully Structured Multiblock Meshes in OpenFoam for Accurate Aero-Elastic Analysis" Fluids 7, no. 5: 169. https://doi.org/10.3390/fluids7050169
APA StyleZhangaskanov, D., Batay, S., Kamalov, B., Zhao, Y., Su, X., & Ng, E. Y. K. (2022). High-Fidelity 2-Way FSI Simulation of a Wind Turbine Using Fully Structured Multiblock Meshes in OpenFoam for Accurate Aero-Elastic Analysis. Fluids, 7(5), 169. https://doi.org/10.3390/fluids7050169