Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication and Characterization of the Magnetorheological Fluids
3. Results
3.1. Magnetorheologic Behaviour
3.2. Influence of the Surfactant Type
3.3. Influence of the Dispersion of the Magnetic Nanoparticles
3.4. Influence of the Concentration of Oleic Acid (Surfactant) Used
4. Discussion and Conclusions
- Oleic acid (OA) works better than aluminium stearate (AlSt) as a surfactant for FeCo nanoparticles.
- Ultrasound stirring (12 h) followed by mechanical stirring (+12 h; -US fluids) shows a better reversibility behaviour of the fabricated MRFs, most probably due to a better dispersion of FeCo nanoparticles within the fluid than when only the mechanical stirring (24 h; -MS fluids) procedure is used.
- Increasing the concentration of the surfactant oleic acid up to 113.96 mg AO/1 g FeCo NPs (-4OA) gives as a result of an MRF with excellent reversible behaviour, up to 92,7% after applying a 616.7 kA/m magnetic field and subsequent demagnetizing process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, J.; Jolly, M.R. MR fluid, foam and elastomer devices. Mechatronics 2000, 10, 555–569. [Google Scholar] [CrossRef]
- Goncalves, F. A Review of the State of the Art in Magnetorheological Fluid Technologies—Part I: MR fluid and MR fluid models. Shock Vib. Dig. 2006, 38, 203–219. [Google Scholar] [CrossRef]
- de Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetoreological fluids: A review. Soft Matter 2011, 7, 3701–3710. [Google Scholar] [CrossRef]
- Jolly, M.R.; Carlson, J.D.; Muñoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996, 5, 607–614. [Google Scholar] [CrossRef]
- Berasategi, J.; Gomez, A.; Bou-Ali, M.M.; Gutiérrez, J.; Barandiarán, J.M.; Beketov, I.V.; Safronov, A.P.; Kurlyandskaya, G.V. Fe nanoparticles produced by electric explosion of wire for new generation of magneto-rheological fluids. Smart Mater. Struct. 2018, 27, 045011. [Google Scholar] [CrossRef]
- Ginder, J.M. Behaviour of magnetorheological fluids. MRS Bull 1998, 23, 26–29. [Google Scholar] [CrossRef]
- Bossis, G.; Volkova, O.; Lacis, S.; Meunier, A. Magnetorheology: Fluids, Structures and Rheology in Ferrofluids; Odenbach, S., Ed.; Springer: Bremen, Germany, 2002; p. 202. [Google Scholar]
- de Vicente, J.; López-López, M.T.; González-Caballero, F.; Durán, J.D.G. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J. Rheol. 2003, 47, 1093–1109. [Google Scholar] [CrossRef]
- Bell, R.C.; Karli, J.O.; Vavreck, A.N.; Zimmerman, D.T.; Ngatu, G.T.; Wereley, N.M. Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Mater. Struct. 2008, 17, 015028. [Google Scholar] [CrossRef]
- Kuzhir, P.; López-López, M.T.; Bossis, G. Magnetorheology of fiber suspensions. II. Theory. J. Rheol. 2009, 53, 127–151. [Google Scholar] [CrossRef] [Green Version]
- Vadillo, V.; Gómez, A.; Berasategui, J.; Gutiérrez, J.; Insausti, M.; Gil De Muro, I.; Garitaonandia, J.S.; Arbe, A.; Iturrospe, A.; Bou-Ali, M.M.; et al. High magnetization FeCo nanoparticles for magnetorheological fluids with enhanced response. Soft Matter 2020, 17, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Noma, J.; Abe, H.; Kikuchi, T.; Furusho, J.; Naito, M. Magnetorheology of colloidal dispersion containing Fe nanoparticles synthesized bythearc-plasma method. J. Magn. Magn. Mater. 2010, 322, 1868–1871. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, X.; Huang, H.; Qi, M. Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability. J. Magn. Magn. Mater. 2019, 491, 165556. [Google Scholar] [CrossRef]
- Weiss, K.D.; Nixon, D.A.; Carlson, J.D.; Margida, J.R. Thixotopic Magnetorheological Materials. U.S. Patent 5,645,752, 7 July 1997. [Google Scholar]
- Luo, X.; Liu, S. Preparation and chemical stability of iron-nitride-coated iron microparticles. J. Magn. Magn. Mater. 2007, 308, L1–L4. [Google Scholar] [CrossRef]
- Genç, S.; Phulé, P.P. Rheological properties of magnetorheological fluids. Smart Mater. Struct. 2002, 11, 140–146. [Google Scholar] [CrossRef]
- Kandapallil, B.; Colborn, R.E.; Bonitatibus, P.J.; Johnson, F. Synthesis of high magnetization Fe and FeCo nanoparticles by high temperature chemical reduction. J. Magn. Magn. Mater. 2015, 378, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Klencsár, Z.; Németh, P.; Sándor, Z.; Horváth, T.; Sajo, I.E.; Mészáros, S.; Mantilla, J.; Coaquira, J.A.H.; Garg, V.K.; Kuzmann, E.; et al. Structure and magnetism of Fe-Co alloy nanoparticles. J. Alloys Compd. 2016, 674, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Aydar, G.; Evrensel, C.A.; Gordaninejad, F.; Fuchs, A. A low force magneto-rheological (MR) fluid damper: Design, fabrication and characterization. Smart Mater. Struct. 2007, 18, 1155–1160. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. Measurement of the Dynamic Viscosity of Newtonian Fluids with Rotational Viscometers; DIN 53018; Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 1976. [Google Scholar]
- Rabinowitsch, B. The viscosity and elasticity of sols. Z. Phys. Chem. 1929, 1, 26–145. [Google Scholar]
- Soskey, P.R.; Winter, H.H. Large Step Shear Strain Experiments with Parallel-Disk Rotational Rheometers. J. Rheol. 1984, 28, 625–645. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook; Vincentz Network: Hannover, Germany, 2002. [Google Scholar]
- Scott Blair, G.W.; Hening, J.C.; Wagstaff, A. The Flow of Cream through Narrow Glass Tubes. J. Phys. Chem. 1939, 43, 853–864. [Google Scholar] [CrossRef]
- Zhang, D.; Karki, A.B.; Rutman, D.; Young, D.P.; Wang, A.; Cocke, D.; Ho, T.H.; Guo, Z. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer. 2009, 50, 4189–4198. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhou, F.; Lu, Z.; Ma, Y.; Li, X.; Tong, Y.; Dong, X. Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excel-lent sedimentation stability for magnetorheological fluid. J. Ind. Eng. Chem. 2019, 70, 439–446. [Google Scholar] [CrossRef]
Changing Parameter | Nominal Sample |
---|---|
Surfactant | FeCo-MRF-OA-MS |
type | FeCo-MRF-AlSt-MS |
Mixturing | FeCo-MRF-OA-MS |
process | FeCo-MRF-OA-US |
Surfactant | FeCo-MRF-OA-MS |
concentration | FeCo-MRF-2OA-MS |
FeCo-MRF-4OA-MS | |
FeCo-MRF-OA-US | |
FeCo-MRF-2OA-US | |
FeCo-MRF-4OA-US |
Nominal Sample | K (Pa.sn) | n | |||
---|---|---|---|---|---|
616.7 kA/m | 0 kA/m | 616.7 kA/m | 0 kA/m | 616.7 kA/m | |
FeCo-MRF-OA-MS | 2479 | 0.58 | 363 | 0.91 | 0.43 |
FeCo-MRF-AlSt-MS | 2230 | 2.13 | 436 | 0.82 | 0.43 |
FeCo-MRF-OA-MS | 2479 | 0.58 | 363 | 0.91 | 0.43 |
FeCo-MRF-OA-US | 2472 | 0.79 | 439 | 0.90 | 0.42 |
FeCo-MRF-OA-MS | 2479 | 0.58 | 363 | 0.91 | 0.43 |
FeCo-MRF-2OA-MS | 2504 | 0.63 | 359 | 0.92 | 0.45 |
FeCo-MRF-4OA-MS | 2571 | 0.76 | 371 | 0.89 | 0.44 |
FeCo-MRF-OA-US | 2472 | 0.79 | 439 | 0.90 | 0.42 |
FeCo-MRF-2OA-US | 2189 | 0.66 | 282 | 0.94 | 0.49 |
FeCo-MRF-4OA-US | 2353 | 0.94 | 632 | 0.90 | 0.37 |
Sample | (at 0 kA/m) | (at 0 kA/m, after 616.7 kA/m + Demagnetization) | Reversibility (%) |
---|---|---|---|
FeCo-MRF-OA-MS | 198.3 | 154.4 | 77.8 |
FeCo-MRF-AlSt-MS | 442.8 | 236.8 | 53.5 |
Sample | (at 0 kA/m) | (at 0 kA/m, after 616.7 kA/m + Demagnetization) | Reversibility (%) |
---|---|---|---|
FeCo-MRF-OA-MS | 198.3 | 154.4 | 77.8 |
FeCo-MRF-OA-US | 251.8 | 225.2 | 89.4 |
Sample | Reversibility (%) | ||
---|---|---|---|
FeCo-MRF-OA-MS | 198.3 | 154.4 | 77.8 |
FeCo-MRF-2OA-MS | 228.2 | 174.3 | 76.4 |
FeCo-MRF-4OA-MS | 231.5 | 186.1 | 80.4 |
Sample | Reversibility (%) | ||
---|---|---|---|
FeCo-MRF-OA-US | 251.8 | 225.2 | 89.4 |
FeCo-MRF-2OA-US | 267.2 | 219.9 | 82.3 |
FeCo-MRF-4OA-US | 307.7 | 285.2 | 92.7 |
Particle Composition | Particle Concentration (%vol.) | Carrier Liquid | Magnetic Field (kA/m) | |
---|---|---|---|---|
FeCo (this work) | 10 | mineral oil | 616.7 | 2353 |
FeCo [11] | 10 | mineral oil | 616.7 | 2729 |
Fe [12] (arc plasma) | 15 | silicon oil | 238 | 5500 |
Fe [13] (DC arc) | 40 | silicon oil | 434 | 4200 |
CoFe2O4 1 [27] | 8.24 | silicon oil | 250 | 4800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, J.; Vadillo, V.; Gómez, A.; Berasategi, J.; Insausti, M.; Gil de Muro, I.; Bou-Ali, M.M. Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles. Fluids 2021, 6, 132. https://doi.org/10.3390/fluids6030132
Gutiérrez J, Vadillo V, Gómez A, Berasategi J, Insausti M, Gil de Muro I, Bou-Ali MM. Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles. Fluids. 2021; 6(3):132. https://doi.org/10.3390/fluids6030132
Chicago/Turabian StyleGutiérrez, Jon, Virginia Vadillo, Ainara Gómez, Joanes Berasategi, Maite Insausti, Izaskun Gil de Muro, and M. Mounir Bou-Ali. 2021. "Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles" Fluids 6, no. 3: 132. https://doi.org/10.3390/fluids6030132
APA StyleGutiérrez, J., Vadillo, V., Gómez, A., Berasategi, J., Insausti, M., Gil de Muro, I., & Bou-Ali, M. M. (2021). Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles. Fluids, 6(3), 132. https://doi.org/10.3390/fluids6030132