Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Droplet Volume, Vibration Frequency, and Transducer Frequency Response
3.2. Material Properties
3.3. Surface Roughness
3.4. Non-Dimensional Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 10, 20, 30, 50, 70 | 24.0 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 25.2 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 26.0 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 27.4 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 28.2 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 28.8 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 29.4 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 31.4 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 31.8 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 32.2 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 32.6 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 33.2 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 34.0 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 34.8 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 36.0 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 37.6 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 38.8 | 1 |
Deionized Water | 10, 20, 30, 50, 70 | 41.0 | 1 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
3:5 Water/Glycerol | 10, 30, 50 | 24.0 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 24.8 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 25.6 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 26.0 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 26.6 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 27.0 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 27.4 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 28.0 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 28.8 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 29.4 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 29.8 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 30.4 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 30.8 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 31.2 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 32.0 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 32.6 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 33.2 | 1 |
3:5 Water/Glycerol | 10, 30, 50 | 34.0 | 1 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Ethylene Glycol | 10, 20, 30, 50, 70 | 24.6 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 26.8 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 29.0 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 29.4 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 29.6 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 29.8 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 30.0 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 30.4 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 31.2 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 33.2 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 35.6 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 38.8 | 1 |
Ethylene Glycol | 10, 20, 30, 50, 70 | 41.0 | 1 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Propylene Glycol | 10, 20, 30, 50, 70 | 24.8 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 27.2 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 28.6 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 29.0 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 29.4 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 29.8 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 30.2 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 30.6 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 31.2 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 33.4 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 36.2 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 38.8 | 1 |
Propylene Glycol | 10, 20, 30, 50, 70 | 42.0 | 1 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 2, 4, 6, 8, 10 | 24.2 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 26.8 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 27.4 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 28.0 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 28.6 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 29.0 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 29.4 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 29.8 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 30.2 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 30.6 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 31.0 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 31.6 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 32.2 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 35.4 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 38.6 | 1 |
Deionized Water | 2, 4, 6, 8, 10 | 42.0 | 1 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 10, 20, 30, 50, 70 | 24.4 | 2 |
Deionized Water | 10, 20, 50, 70 | 25.8 | 2 |
Deionized Water | 20, 30, 70 | 27.0 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 28.2 | 2 |
Deionized Water | 20, 30, 50, 70 | 29.0 | 2 |
Deionized Water | 10, 30, 50, 70 | 29.8 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 30.6 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 32.0 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 33.0 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 33.8 | 2 |
Deionized Water | 20, 30, 50, 70 | 34.6 | 2 |
Deionized Water | 10, 30, 50, 70 | 36.0 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 37.2 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 38.4 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 39.6 | 2 |
Deionized Water | 10, 20, 30, 50, 70 | 40.6 | 2 |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 10, 20, 30, 50, 70 | 24.8 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 26.2 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 27.4 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 28.2 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 28.6 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.2 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.8 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 30.4 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 31.0 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 31.6 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 32.2 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 32.8 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 34.4 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 36.8 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 39.0 | 1 (320 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 41.6 | 1 (320 grit) |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 10, 20, 30, 50, 70 | 25.2 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 26.6 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 27.2 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 27.8 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 28.4 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.0 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.6 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 30.2 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 30.8 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 31.4 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 32.0 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 32.8 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 35.2 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 37.6 | 1 (150 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 40.4 | 1 (150 grit) |
Liquid | Droplet Volume [µL] | Frequency [kHz] | PZT |
---|---|---|---|
Deionized Water | 10, 20, 30, 50, 70 | 25.2 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 25.8 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 26.4 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 27.0 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 27.6 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 28.2 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 28.6 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.2 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 29.8 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 30.4 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 32.0 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 33.8 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 36.0 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 38.6 | 1 (80 grit) |
Deionized Water | 10, 20, 30, 50, 70 | 41.0 | 1 (80 grit) |
References
- Destgeer, G.; Jung, J.H.; Park, J.; Ahmed, H.; Sung, H.J. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Anal. Chem. 2017, 89, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Chaudhury, M.K.; De Gennes, P.-G. Vibration-Actuated Drop Motion on Surfaces for Batch Microfluidic Processes. Langmuir 2005, 21, 4240–4248. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Whitehill, J.D.; Neild, A. Low-volume filling of microplate wells using vibration. Anal. Biochem. 2012, 425, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Capecci, D.E.; Schlafly, M.; Crane, N.B. Robust bidirectional continuous electrowetting based on metal–semiconductor (M–S) diodes. Microfluid. Nanofluidics 2016, 20, 122. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent Studies on Super-Hydrophobic Films. Mon. Chem. Chem. Mon. 2001, 132, 31–41. [Google Scholar] [CrossRef]
- Rosen, M.J. Wetting and Its Modification by Surfactants. In Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 243–276. [Google Scholar]
- Frieder, M.; Jean-Christophe, B. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17, R705. [Google Scholar]
- Whitehill, J.; Neild, A.; Ng, T.W.; Martyn, S.; Chong, J. Droplet spreading using low frequency vibration. Appl. Phys. Lett. 2011, 98, 133503. [Google Scholar] [CrossRef]
- Andrieu, C.; Sykes, C.; Brochard, F. Average Spreading Parameter on Heterogeneous Surfaces. Langmuir 1994, 10, 2077–2080. [Google Scholar] [CrossRef]
- Whitehill, J.D.; Neild, A.; Stokes, M.H. Forced spreading behavior of droplets undergoing low frequency vibration. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 144–152. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Erlich, M. Resonance Cassie−Wenzel Wetting Transition for Horizontally Vibrated Drops Deposited on a Rough Surface. Langmuir 2007, 23, 12217–12221. [Google Scholar] [CrossRef]
- Manor, O.; Pismen, L.M. Effect of high-frequency in-plane substrate vibration on a three-phase contact angle. Phys. Fluids 2015, 27, 062101. [Google Scholar] [CrossRef]
- Mettu, S.; Chaudhury, M.K. Motion of Liquid Drops on Surfaces Induced by Asymmetric Vibration: Role of Contact Angle Hysteresis. Langmuir 2011, 27, 10327–10333. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Chaudhury, A.; Chaudhury, M.K. Lateral vibration of a water drop and its motion on a vibrating surface. Eur. Phys. J. E 2006, 21, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Celestini, F.; Kofman, R. Vibration of submillimeter-size supported droplets. Phys. Rev. E 2006, 73, 041602. [Google Scholar] [CrossRef] [Green Version]
- Vukasinovic, B.; Smith, M.K.; Glezer, A. Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 2007, 587, 395–423. [Google Scholar] [CrossRef]
- Eslamian, M.; Zabihi, F. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices. Nanoscale Res. Lett. 2015, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.S.; Farmer, D.J.; Kelly, J. Contact Angle Dependence of the Resonant Frequency of Sessile Water Droplets. Langmuir 2011, 27, 9367–9371. [Google Scholar] [CrossRef]
- Rahimzadeh, A.; Khan, T.; Eslamian, M. Experiments and modeling of nonlinear frequency response of oscillations of a sessile droplet subjected to horizontal vibrations. Eur. Phys. J. E 2019, 42, 125. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Erlich, M. Cassie−Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie−Wenzel Wetting Transition a 2D or 1D Affair? Langmuir 2007, 23, 6501–6503. [Google Scholar] [CrossRef]
- Galleguillos-Silva, R.; Vargas-Hernández, Y.; Gaete-Garretón, L. Wettability of a surface subjected to high frequency mechanical vibrations. Ultrason. Sonochem. 2017, 35, 134–141. [Google Scholar] [CrossRef]
- Rahimzadeh, A.; Ahmadian-Yazdi, M.-R.; Eslamian, M. Experimental study on the characteristics of capillary surface waves on a liquid film on an ultrasonically vibrated substrate. Fluid Dyn. Res. 2018, 50, 065510. [Google Scholar] [CrossRef]
- Trapuzzano, M.A.; Crane, N.B.; Guldiken, R.; Tejada-Martínez, A. Forced Wetting of Liquids Using Ultrasonic Surface Vibration. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018; Volume 1. [Google Scholar]
- Trapuzzano, M.; Crane, N.B.; Guldiken, R.; Tejada-Martínez, A. Wetting metamorphosis of hydrophobic fluoropolymer coatings submerged in water and ultrasonically vibrated. J. Coat. Technol. Res. 2019. [Google Scholar] [CrossRef]
- Trujillo-Pino, A.; Krissian, K.; Alemán-Flores, M.; Santana-Cedrés, D. Accurate subpixel edge location based on partial area effect. Image Vis. Comput. 2013, 31, 72–90. [Google Scholar] [CrossRef]
- Trujillo-Pino, A. Accurate Subpixel Edge Location. Detection of Subpixel Edges with Very High Precision in Grey Level Images. Available online: https://ww2.mathworks.cn/matlabcentral/fileexchange/48908-accurate-subpixel-edge-location?s_tid=FX_rc1_behav (accessed on 28 January 2020).
- Gal, O. Fit_Ellipse. Find the Best Fit for an Ellipse Using a Given Set of Points (a Closed Contour). Available online: https://ww2.mathworks.cn/matlabcentral/fileexchange/3215-fit_ellipse (accessed on 28 January 2020).
- Andersen, N.K. Drop Shape Analysis. Fit Contact Angle by Double Ellipses or Polynomials. Available online: https://ww2.mathworks.cn/matlabcentral/fileexchange/57919-drop-shape-analysis-fit-contact-angle-by-double-ellipses-or-polynomials?requestedDomain=en (accessed on 28 January 2020).
- PubChem Database. Propylene Glycol, CID = 1030. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1030 (accessed on 28 January 2020).
- PubChem Database. Water, CID = 962. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/962 (accessed on 28 January 2020).
- PubChem Database. 1,2-Ethanediol, CID = 174. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_2-Ethanediol (accessed on 28 January 2020).
- Cheng, N.-S. Formula for the Viscosity of a Glycerol−Water Mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Volk, A.; Kähler, C.J. Density model for aqueous glycerol solutions. Exp. Fluids 2018, 59, 75. [Google Scholar] [CrossRef] [Green Version]
- Calculate Density and Viscosity of Glycerol/Water Mixtures. Available online: http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html (accessed on 28 January 2020).
- Pagliaro, M.; Rossi, M. Glycerol: Properties and Production; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218. [Google Scholar] [CrossRef]
- Lopez-Walle, B.; Gauthier, M.; Chaillet, N. Principle of a Submerged Freeze Gripper for Microassembly. IEEE Trans. Robot. 2008, 24, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Trapuzzano, M.A. Controlled Wetting Using Ultrasonic Vibration. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2019. [Google Scholar]
- Munson, B.R.; Rothmayer, A.P.; Okiishi, T.H. Fundamentals of Fluid Mechanics, 7th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- De Gennes, P.G.F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar]
Liquid | Density (ρ) [kg/m3] | Surface Tension (σ) [N/m] | Dyn. Viscosity (μ) [Pa∗s] |
---|---|---|---|
Deionized Water | 996 | 0.072 | 0.0009 |
3:5 Water/Glycerol | 1172 | 0.067 | 0.0152 |
Ethylene Glycol | 1115 | 0.048 | 0.0161 |
Propylene Glycol | 1036 | 0.040 | 0.0581 |
Liquid (volume) [µL] | Spreading Slope (std. dev.) [(m/s2)−1] × 10−6 | Spreading Acceleration (std. dev.) [m/s2] |
---|---|---|
Deionized Water (70) | 6.0 (3.3) | 18,445 (8425) |
Deionized Water (50) | 4.9 (1.3) | 18,358 (6217) |
Deionized Water (30) | 4.0 (0.7) | 17,262 (7635) |
Deionized Water (20) | 5.0 (2.0) | 18,542 (8763) |
Deionized Water (10) | 5.6 (1.7) | 20,487 (4609) |
Deionized Water (8) | 5.8 (0.9) | 23,272 (840) |
Deionized Water (6) | 4.5 (2.1) | 22,920 (5996) |
Deionized Water (4) | 4.5 (1.5) | 29,382 (628) |
Deionized Water (2) | – | – |
Liquid (volume) [µL] | Spreading Slope (std. dev.) [(m/s2)−1] × 10−6 | Spreading Acceleration (std. dev.) [m/s2] |
---|---|---|
Deionized Water (6–70) | 4.9 (2.2) | 18,208 (7616) |
3:5 Water/Glycerol (10–50) | 5.7 (1.8) | 14,041 (3017) |
Ethylene Glycol (10–70) | 8.4 (3.3) | 16,801 (3406) |
Propylene Glycol (10–70) | 4.8 (1.4) | 22,677 (7605) |
Surface | Ra (std. dev.), Rq (std. dev.) [µm] | Spreading Slope (std. dev.) [(m/s2)−1] × 10−6 | Spreading Acceleration (std. dev.) [m/s2] |
---|---|---|---|
Smooth | 0.02 (0.01), 0.03 (0.01) | 4.9 (2.2) | 18,208 (7616) |
320 grit | 0.58 (0.04), 0.75 (0.04) | 10.8 (6.2) | 18,994 (15,696) |
150 grit | 1.39 (0.15), 1.74 (0.30) | 12.7 (8.1) | 9819 (17,135) |
80 grit | 2.46 (0.37), 3.37 (0.01) | 24.1 (21.6) | 13,110 (9818) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trapuzzano, M.; Tejada-Martínez, A.; Guldiken, R.; Crane, N. Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration. Fluids 2020, 5, 18. https://doi.org/10.3390/fluids5010018
Trapuzzano M, Tejada-Martínez A, Guldiken R, Crane N. Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration. Fluids. 2020; 5(1):18. https://doi.org/10.3390/fluids5010018
Chicago/Turabian StyleTrapuzzano, Matthew, Andrés Tejada-Martínez, Rasim Guldiken, and Nathan Crane. 2020. "Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration" Fluids 5, no. 1: 18. https://doi.org/10.3390/fluids5010018
APA StyleTrapuzzano, M., Tejada-Martínez, A., Guldiken, R., & Crane, N. (2020). Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration. Fluids, 5(1), 18. https://doi.org/10.3390/fluids5010018