# On the Applicability of Linear, Axisymmetric Dynamics in Intensifying and Mature Tropical Cyclones

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Forced Axisymmetric Convective Ring Model Revisited

## 3. Forcing the 3DVPAS Model

## 4. Results

## 5. 3DVPAS Dynamics, Sawyer–Eliassen Balance Dynamics, and Their Possible Extensions

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Rozoff, C.M.; Nolan, D.S.; Kossin, J.P.; Zhang, F.; Fang, J. The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci.
**2012**, 69, 2621–2643. [Google Scholar] [CrossRef] - Stern, D.P.; Vigh, J.L.; Nolan, D.S.; Zhang, F. Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci.
**2015**, 72, 1283–1306. [Google Scholar] [CrossRef] - Willoughby, H.E. Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci.
**1990**, 47, 242–264. [Google Scholar] [CrossRef] - Willoughby, H.E. Mature Structure and Evolution; WMO/TD- No 693; Elsberry, R.L., Ed.; World Meteorological Organization: Geneva, Switzerland, 1995; p. 289. [Google Scholar]
- Vogl, S.; Smith, R.K. Limitations of a linear model for the hurricane boundary layer. Q. J. R. Meteorol. Soc.
**2009**, 135, 839–850. [Google Scholar] [CrossRef] - Smith, R.K.; Montgomery, M.T. Towards clarity on tropical cyclone intensification. J. Atmos. Sci.
**2015**, 72. [Google Scholar] [CrossRef] - Abarca, S.F.; Montgomery, M.T.; McWilliams, J.C. The azimuthally-averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst.
**2015**, 7, 1207–1219. [Google Scholar] [CrossRef] - Smith, R.K.; Montgomery, M.T. Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc.
**2010**, 136, 1665–1670. [Google Scholar] [CrossRef] [Green Version] - Montgomery, M.T.; Smith, R.K. Paradigms for tropical cyclone intensification. Aust. Meteorol. Oceanogr. J.
**2014**, 64, 37–66. [Google Scholar] [CrossRef] - Rotunno, R. Secondary circulations in rotating-flow boundary layers. Aust. Meteorol. Oceanogr. J.
**2014**, 64, 27–35. [Google Scholar] [CrossRef] - Persing, J.; Montgomery, M.T.; McWilliams, J.; Smith, R.K. Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys.
**2013**, 13, 12299–12341. [Google Scholar] [CrossRef] - Nolan, D.S.; Montgomery, M.T. Three-dimensional, nonhydrostatic perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci.
**2002**, 59, 2989–3020. [Google Scholar] [CrossRef] - Rotunno, R. The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech.
**2013**, 45, 59–84. [Google Scholar] [CrossRef] - Nolan, D.S. Three dimensional instabilities in tornado like vortices with secondary circulations. J. Fluid Mech.
**2012**, 711, 61–100. [Google Scholar] [CrossRef] - Moon, Y.; Nolan, D.S. Do gravity waves transport angular momentum away from tropical cyclones? J. Atmos. Sci.
**2010**, 67, 117–135. [Google Scholar] [CrossRef] - Hodyss, D.; Nolan, D.S. The Rossby-Inertia-Buoyancy instability in baroclinic vortices. Phys. Fluids
**2008**, 20, 096602. [Google Scholar] [CrossRef] - Nolan, D.S.; Grasso, L.D. Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci.
**2003**, 60, 2717–2745. [Google Scholar] [CrossRef] - Hodyss, D.; Nolan, D.S. Linear anelastic equations for atmospheric vortices. J. Atmos. Sci.
**2007**, 64, 2947–2959. [Google Scholar] [CrossRef] - Nolan, D.S.; Moon, Y.; Stern, D.P. Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci.
**2007**, 64, 3377–3405. [Google Scholar] [CrossRef] - Pasch, R.J.; Kimberlain, T.B. National Hurricane Center, NOAA, 2011. Available online: http://www.nhc.noaa.gov/data/tcr/AL112010_Igor.pdf (accessed on 30 November 2017).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF version 2. NCAR Tech. Note
**2005**. [Google Scholar] [CrossRef] - Davis, C.; Wang, W.; Chen, S.S.; Chen, Y.; Corbosiero, K.; DeMaria, M.; Dudhia, J.; Holland, G.; Klemp, J.; Michalakes, J.; et al. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Weather Forecast.
**2008**, 119, 1826–1841. [Google Scholar] [CrossRef] - Davis, C.; Wang, W.; Dudhia, J.; Torn, R. Does increased horizontal resolution improve hurricane wind forecasts? Weather Forecast.
**2010**, 119, 1826–1841. [Google Scholar] [CrossRef] - Noh, Y.; Cheon, W.G.; Hong, S.Y.; Raasch, S. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound. Layer Meteorol.
**2003**, 107, 421–427. [Google Scholar] [CrossRef] - Hong, S.Y.; Pan, H.L. Nocturnal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev.
**1996**, 124, 2322–2339. [Google Scholar] [CrossRef] - Braun, S.A.; Tao, W.K. Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Weather Rev.
**2000**, 128, 3941–3961. [Google Scholar] [CrossRef] - Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc.
**1995**, 81, 639–640. [Google Scholar] [CrossRef] - Carlson, T.N.; Boland, F.E. Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteorol. Climatol.
**1978**, 17, 998–1013. [Google Scholar] [CrossRef] - Holton, J.R. An Introduction to Dynamic Meteorology; Elsevier Academic Press: Burlington, MA, USA, 2004; p. 535. [Google Scholar]
- Smith, R.K. Accurate determination of a balanced axisymmetric vortex. Tellus
**2006**, 58, 98–103. [Google Scholar] [CrossRef] - Smith, R.K.; Kilroy, G.; Montgomery, M.T. Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci.
**2015**, 72, 1783–1804. [Google Scholar] [CrossRef] - Hoskins, B.J. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc.
**1975**, 100, 480–482. [Google Scholar] [CrossRef] - Shapiro, L.J.; Montgomery, M.T. A three-dimensional balance theory for rapidly-rotating vortices. J. Atmos. Sci.
**1993**, 50, 3322–3335. [Google Scholar] [CrossRef] - Kuo, H.L. Axisymmetric flows in the boundary layer of a maintained vortex. J. Atmos. Sci.
**1971**, 28, 20–41. [Google Scholar] [CrossRef] - Kuo, H.L. Vortex boundary layer under quadratic surface stress. Bound. Layer Meteorol.
**1982**, 22, 151–169. [Google Scholar] [CrossRef]

**Figure 1.**Maximum azimuthally averaged tangential wind velocity and minimum sea level pressure (hourly, dashed lines) in the inner core of the Weather Research and Forecasting (WRF) integration for Hurricane Igor (2010), and corresponding National Hurricane Center Best-Track information (6 hourly, solid lines).

**Figure 2.**Calculated basic-state circular vortex and corresponding forcing terms as output from the WRF model at hour 27 in the simulation of the intensification of Hurricane Igor (2010). This basic state and these forcing terms (held constant) are used in the integration of the linear 3DVPAS model. Shown are the azimuthally-averaged (

**a**) basic-state tangential velocity V at hour 27 (contour interval 5 m ${\mathrm{s}}^{-1}$); (

**b**) basic-state potential temperature $\mathsf{\Theta}$ at hour 27 (contour interval 5 K); (

**c**) diabatic heating-rate forcing $\dot{Q}$ at hour 27 (thick contour interval is 10 K ${\mathrm{h}}^{-1}$, thin curve contour interval is 5 K ${\mathrm{h}}^{-1}$); and (

**d**) tangential momentum forcing ${F}_{\lambda}$ at hour 27 (contour interval 2 m ${\mathrm{s}}^{-1}$ ${\mathrm{h}}^{-1}$, solid positive, dashed negative).

**Figure 3.**Output from the linear 3DVPAS model at 8 h integration time. Shown in a radius-height coordinate system are (

**a**) tangential velocity disturbance ${v}_{0}$ (contour interval every 5 m ${\mathrm{s}}^{-1}$; dashed negative, solid positive); (

**b**) radial velocity disturbance ${u}_{0}$ (contour interval 2 m ${\mathrm{s}}^{-1}$; dashed negative, solid positive); (

**c**) vertical velocity disturbance ${w}_{0}$ (positive contour interval 0.5 m ${\mathrm{s}}^{-1}$, solid; negative contour interval 0.1 m ${\mathrm{s}}^{-1}$, dashed).

**Figure 4.**Linear tendency terms diagnosed from the 3DVPAS model and corresponding nonlinear tendency terms evaluated using the linear solutions at $t=0.4$ h integration time. Shown in a radius-height coordinate system are (

**a**) linear terms from the disturbance tangential velocity equation; (

**b**) nonlinear terms in the disturbance tangential velocity equation (Equation (8)) evaluated using the linear solutions; (

**c**) linear terms in disturbance radial velocity equation; (

**d**) nonlinear terms in disturbance radial velocity equation (Equation (7)) computed using linear solutions. Contour interval for all panels is 5 m ${\mathrm{s}}^{-1}$ ${\mathrm{h}}^{-1}$, solid positive and dashed negative.

**Figure 5.**Linear and nonlinear tendency terms diagnosed from the 3DVPAS model at $t=1.2$ h integration time. The nonlinear tendency terms are evaluated using the linear solutions. Shown in a radius-height coordinate system are (

**a**) sum of linear terms from the disturbance tangential velocity equation; (

**b**) sum of nonlinear terms in the disturbance tangential velocity equation (Equation (8)) evaluated using the linear solutions; (

**c**) sum of linear terms in disturbance radial velocity equation; (

**d**) sum of nonlinear terms in disturbance radial velocity equation (Equation (7)) computed using linear solutions. Contour interval for all panels is 2 m ${\mathrm{s}}^{-1}$ ${\mathrm{h}}^{-1}$; solid positive and dashed negative.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Montgomery, M.T.; Smith, R.K.
On the Applicability of Linear, Axisymmetric Dynamics in Intensifying and Mature Tropical Cyclones. *Fluids* **2017**, *2*, 69.
https://doi.org/10.3390/fluids2040069

**AMA Style**

Montgomery MT, Smith RK.
On the Applicability of Linear, Axisymmetric Dynamics in Intensifying and Mature Tropical Cyclones. *Fluids*. 2017; 2(4):69.
https://doi.org/10.3390/fluids2040069

**Chicago/Turabian Style**

Montgomery, Michael T., and Roger K. Smith.
2017. "On the Applicability of Linear, Axisymmetric Dynamics in Intensifying and Mature Tropical Cyclones" *Fluids* 2, no. 4: 69.
https://doi.org/10.3390/fluids2040069