Study of Stability, Viscosity, and Thermal Diffusivity of SiC-HfC Hybrid Nanofluids in 50EG-50H2O Mixture
Abstract
1. Introduction
2. Materials and Methods
2.1. NFs Preparation
2.2. Nanocomposites Characterization
2.3. NFs Characterization
3. Results
3.1. Nanocomposites
3.2. NFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EG | Ethylene glycol | |
| HfC | Hafnium Carbide | |
| HTFs | Heat transfer fluids | |
| MWCNTs | Multiwalled carbon nanotubes | |
| NFs | Nanofluids | |
| NPs | Nanoparticles | |
| PEI | Polyethyleneimine | |
| PVP | Polyvinylpyrrolidone | |
| SiC | Silicon carbide | |
| TLS | Thermal lens spectroscopy | |
| TMAH | Tetramethylammonium hydroxide | |
| vol.% | Volume percentage | |
| wt.% | Weight percentage | |
| Nomenclature | ||
| Symbol | Description | Unit |
| Refractive index dependent on the temperature | ||
| Thermal diffusivity | ||
| Intensity of the probe laser beam | ||
| Intensity of the probe laser beam at time 0 | ||
| Thermal conductivity | ||
| Thickness of the sample | ||
| Beam spot size ratio | ||
| Power excitation beam | mW | |
| Time | ||
| Characteristic thermal time constant of the formed thermal lens | cm | |
| Beam waist radio | cm | |
| Excitation beam of the sample | cm | |
| Waist of the probe | cm | |
| Distance from the probe beam waist to the sample | cm | |
| Probe beam confocal distance | cm | |
| α | Absorption coefficient | |
| ζ | Zeta potential | mV |
| |ζ| | Absolute value zeta potential | mV |
| θ | Fitting parameter associated with the phase shift of the probe beam | |
| Laser wavelength of the probe beam | nm | |
References
- Hamzat, A.K.; Omisanya, M.I.; Sahin, A.Z.; Ropo Oyetunji, O.; Abolade Olaitan, N. Application of Nanofluid in Solar Energy Harvesting Devices: A Comprehensive Review. Energy Convers. Manag. 2022, 266, 115790. [Google Scholar] [CrossRef]
- Hussain, Z.; Lee, M.; Cho, H. Thermophysical Advancements and Stability Dynamics in Nanofluids for Solar Energy Harvesting: A Comprehensive Review. Renew. Energy 2025, 248, 123052. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S.; Byun, H.-S. A Comprehensive Review on the Recent Advances in Applications of Nanofluids for Effective Utilization of Renewable Energy. Renew. Sustain. Energy Rev. 2025, 207, 114901. [Google Scholar] [CrossRef]
- Alktranee, M.; Al-Yasiri, Q.; Saeed Mohammed, K.; Al-Lami, H.; Bencs, P. Energy and Exergy Assessment of a Photovoltaic-Thermal (PVT) System Cooled by Single and Hybrid Nanofluids. Energy Convers. Manag. X 2024, 24, 100769. [Google Scholar] [CrossRef]
- Mahamude, A.S.F.; Kamarulzaman, M.K.; Harun, W.S.W.; Kadirgama, K.; Ramasamy, D.; Farhana, K.; Bakar, R.A.; Yusaf, T.; Subramanion, S.; Yousif, B. A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids. Energies 2022, 15, 1391. [Google Scholar] [CrossRef]
- Patel, J.; Soni, A.; Barai, D.P.; Bhanvase, B.A. A Minireview on Nanofluids for Automotive Applications: Current Status and Future Perspectives. Appl. Therm. Eng. 2023, 219, 119428. [Google Scholar] [CrossRef]
- Morozova, M.A.; Osipov, A.A.; Maksimovskiy, E.A.; Zaikovsky, A. V Optical Properties, Thermal Conductivity, and Viscosity of Graphene-Based Nanofluids for Solar Collectors. Nano-Struct. Nano-Objects 2024, 40, 101409. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing Thermal Conductivity of Fluids With Nanoparticles. Am. Soc. Mech. Eng. Fluids Eng. Div. FED 1995, 231, 99–105. [Google Scholar]
- Dewanjee, D.; Kundu, B. A Review of Applications of Green Nanofluids for Performance Improvement of Solar Collectors. Renew. Energy 2025, 240, 122182. [Google Scholar] [CrossRef]
- Wan, M.; Xu, B.; Shi, L.; Zhou, T.; Zheng, N.; Sun, Z. Self-Assembled Au-CQDs Nanofluids with Excellent Solar Absorption and Medium–High Temperature Stability for Solar Energy Harvesting. J. Colloid Interface Sci. 2024, 672, 765–775. [Google Scholar] [CrossRef]
- Bhat, D.K.; Kumar, S.P.; Shenoy, U.S. Design, Synthesis, and Characterization of Stable Copper Nanofluid with Enhanced Thermal Conductivity. Mater. Today Commun. 2024, 39, 109129. [Google Scholar] [CrossRef]
- Yavari, R.; Abed, A.M.; Akbari, O.A.; Marzban, A.; Baghaei, S. Numerical Study of Flow and Free Convection of Water/Silver Nanofluid in a Circular Cavity Influenced by Hot Fluid Flow. Prog. Nucl. Energy 2022, 153, 104378. [Google Scholar] [CrossRef]
- Kadhim, S.A.; Hammoodi, K.A.; Askar, A.H.; Rashid, F.L.; Abdul Wahhab, H.A. Feasibility Review of Using Copper Oxide Nanofluid to Improve Heat Transfer in the Double-Tube Heat Exchanger. Results Eng. 2024, 24, 103227. [Google Scholar] [CrossRef]
- Murtadha, T.K.; dil Hussein, A.A.; Alalwany, A.A.H.; Alrwashdeh, S.S.; Al-Falahat, A.M. Improving the Cooling Performance of Photovoltaic Panels by Using Two Passes Circulation of Titanium Dioxide Nanofluid. Case Stud. Therm. Eng. 2022, 36, 102191. [Google Scholar] [CrossRef]
- Hasan, H.A.; Togun, H.; Abed, A.M.; Mohammed, H.I.; Armaghani, T. Cooling Lithium-Ion Batteries with Silicon Dioxide -Water Nanofluid: CFD Analysis. Renew. Sustain. Energy Rev. 2025, 208, 115007. [Google Scholar] [CrossRef]
- Tuok, L.P.; Elkady, M.; Zkria, A.; Yoshitake, T.; Nour Eldemerdash, U. Evaluation of Stability and Functionality of Zinc Oxide Nanofluids for Enhanced Oil Recovery. Micro Nano Syst. Lett. 2023, 11, 12. [Google Scholar] [CrossRef]
- Toma, S.H.; Santos, J.J.; da Silva, D.G.; Huila, M.F.G.; Toma, H.E.; Araki, K. Improving Stability of Iron Oxide Nanofluids for Enhanced Oil Recovery: Exploiting Wettability Modifications in Carbonaceous Rocks. J. Pet. Sci. Eng. 2022, 212, 110311. [Google Scholar] [CrossRef]
- Ajeena, A.M.; Farkas, I.; Víg, P. A Comparative Experimental Study on Thermal Conductivity of Distilled Water-Based Mono Nanofluids with Zirconium Oxide and Silicon Carbide for Thermal Industrial Applications: Proposing a New Correlation. Int. J. Thermofluids 2023, 20, 100424. [Google Scholar] [CrossRef]
- Murtadha, T.K.; Hussein, A.A. Optimization the Performance of Photovoltaic Panels Using Aluminum-Oxide Nanofluid as Cooling Fluid at Different Concentrations and One-Pass Flow System. Results Eng. 2022, 15, 100541. [Google Scholar] [CrossRef]
- Peng, R.; Shen, J.; Tang, X.; Zhao, L.; Gao, J. Performances of a Tailored Vegetable Oil-Based Graphene Nanofluid in the MQL Internal Cooling Milling. J. Manuf. Process. 2025, 134, 814–831. [Google Scholar] [CrossRef]
- Ajeeb, W.; Oliveira, M.S.A.; Martins, N.; Murshed, S.M.S. Forced Convection Heat Transfer of Non-Newtonian MWCNTs Nanofluids in Microchannels under Laminar Flow. Int. Commun. Heat Mass Transf. 2021, 127, 105495. [Google Scholar] [CrossRef]
- Alklaibi, A.M.; Sundar, L.S.; Sousa, A.C.M. Experimental Analysis of Exergy Efficiency and Entropy Generation of Diamond/Water Nanofluids Flow in a Thermosyphon Flat Plate Solar Collector. Int. Commun. Heat Mass Transf. 2021, 120, 105057. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, A.K. Performance Evaluation of Evacuated Tube Solar Collector Using Boron Nitride Nanofluid. Sustain. Energy Technol. Assess. 2022, 53, 102466. [Google Scholar] [CrossRef]
- Chammam, W.; Farooq, U.; Sediqmal, M.; Waqas, H.; Yasmin, S.; Zulfiqar, F.; Liu, D.; Khan, S.A. Estimation of Heat Transfer Coefficient and Friction Factor with Showering of Aluminum Nitride and Alumina Water Based Hybrid Nanofluid in a Tube with Twisted Tape Insert. Sci. Rep. 2023, 13, 23071. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, P.; Raghupati, U.; Nanda Kumar, R. Design and CFD Analysis of Hair Pin Heat Exchanger Using Aluminium and Titanium Carbide Nanofluids. Mater. Today Proc. 2021, 39, 764–770. [Google Scholar] [CrossRef]
- Ezekwem, C.; Dare, A. Thermal and Electrical Conductivity of Silicon Carbide Nanofluids. Energy Sources Part A Recover. Util. Environ. Eff. 2024, 46, 11320–11338. [Google Scholar] [CrossRef]
- Mahariq, I.; khan, D.; Ghazwani, H.A.; Shah, M.A. Enhancing Heat and Mass Transfer in MHD Tetra Hybrid Nanofluid on Solar Collector Plate through Fractal Operator Analysis. Results Eng. 2024, 24, 103163. [Google Scholar] [CrossRef]
- Zahra Haeri, S.; Khiadani, M.; Ramezanzadeh, B.; Kariman, H.; Zargar, M. Photo-Thermal Conversion Properties of Hybrid NH2-MIL-125/TiN/EG Nanofluids for Solar Energy Harvesting. Appl. Therm. Eng. 2025, 258, 124607. [Google Scholar] [CrossRef]
- Ramalingam, S.; Dhairiyasamy, R.; Govindasamy, M. Assessment of Heat Transfer Characteristics and System Physiognomies Using Hybrid Nanofluids in an Automotive Radiator. Chem. Eng. Process.—Process Intensif. 2020, 150, 107886. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Luo, B. The Thermophysical Properties and Enhanced Heat Transfer Performance of SiC-MWCNTs Hybrid Nanofluids for Car Radiator System. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125968. [Google Scholar] [CrossRef]
- Li, X.; Zeng, G.; Lei, X. The Stability, Optical Properties and Solar-Thermal Conversion Performance of SiC-MWCNTs Hybrid Nanofluids for the Direct Absorption Solar Collector (DASC) Application. Sol. Energy Mater. Sol. Cells 2020, 206, 110323. [Google Scholar] [CrossRef]
- Gokul, V.; Swapna, M.S.; Raj, V.; Saritha Devi, H.V.; Sankararaman, S. Concentration-Dependent Thermal Duality of Hafnium Carbide Nanofluid for Heat Transfer Applications: A Mode Mismatched Thermal Lens Study. Int. J. Thermophys. 2021, 42, 109. [Google Scholar] [CrossRef]
- Nikkam, N.; Saleemi, M.; Haghighi, E.B.; Ghanbarpour, M.; Khodabandeh, R.; Muhammed, M.; Palm, B.; Toprak, M.S. Fabrication, Characterization and Thermophysical Property Evaluation of SiC Nanofluids for Heat Transfer Applications. Nano-Micro Lett. 2014, 6, 178–189. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Prado, J.I.; Lugo, L. Hybrid or Mono Nanofluids for Convective Heat Transfer Applications. A Critical Review of Experimental Research. Appl. Therm. Eng. 2022, 203, 117926. [Google Scholar] [CrossRef]
- Biswas, N.; Mondal, M.K.; Mandal, D.K.; Manna, N.K.; Gorla, R.S.R.; Chamkha, A.J. A Narrative Loom of Hybrid Nanofluid-Filled Wavy Walled Tilted Porous Enclosure Imposing a Partially Active Magnetic Field. Int. J. Mech. Sci. 2022, 217, 107028. [Google Scholar] [CrossRef]
- Biswas, N.; Mandal, D.K.; Manna, N.K.; Benim, A.C. Enhanced Energy and Mass Transport Dynamics in a Thermo-Magneto-Bioconvective Porous System Containing Oxytactic Bacteria and Nanoparticles: Cleaner Energy Application. Energy 2023, 263, 125775. [Google Scholar] [CrossRef]
- Ajeeb, W.; Murshed, S.M.S. Characterization of Thermophysical and Electrical Properties of SiC and BN Nanofluids. Energies 2023, 16, 3768. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Usoltseva, L.O.; Mikheev, I.V.; Proskurnin, M.A. Thermal Diffusivity of Aqueous Dispersions of Silicon Oxide Nanoparticles by Dual-Beam Thermal Lens Spectrometry. Nanomaterials 2023, 13, 1006. [Google Scholar] [CrossRef] [PubMed]
- Georges, J. Advantages and Limitations of Thermal Lens Spectrometry over Conventional Spectrophotometry for Absorbance Measurements. Talanta 1999, 48, 501–509. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Mikheev, I.V.; Proskurnin, M.A. Features of High-Precision Photothermal Analysis of Liquid Systems by Dual-Beam Thermal Lens Spectrometry. Nanomaterials 2024, 14, 1586. [Google Scholar] [CrossRef]
- Mao, M.; Lou, D.; Wang, D.; Younes, H.; Hong, H.; Chen, H.; Peterson, G.P. Ti3C2Tx MXene Nanofluids with Enhanced Thermal Conductivity. Chem. Thermodyn. Therm. Anal. 2022, 8, 100077. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasnain, S.M.M.; Pandey, S.; Tapalova, A.; Akylbekov, N.; Zairov, R. Review on Nanofluids: Preparation, Properties, Stability, and Thermal Performance Augmentation in Heat Transfer Applications. ACS Omega 2024, 9, 32328–32349. [Google Scholar] [CrossRef]
- Ceballos-Mendivil, L.G.; Tánori-Córdova, J.C.; Baldenebro-López, J.A.; Soto-Rojo, R.A.; Baldenebro-López, F.J. Synthesis and Characterization of HfC/SiC Ceramic Nanoparticles. Microsc. Microanal. 2018, 24, 1110–1111. [Google Scholar] [CrossRef]
- Younes, H.; Mao, M.; Sohel Murshed, S.M.; Lou, D.; Hong, H.; Peterson, G.P. Nanofluids: Key Parameters to Enhance Thermal Conductivity and Its Applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, A.; Alam, M.; Kumar, A.; Kumar, P.; Goyat, V. A Study of Morphology, UV Measurements and Zeta Potential of Zinc Ferrite and Al2O3 Nanofluids. Mater. Today Proc. 2022, 59, 1034–1039. [Google Scholar] [CrossRef]
- Punnakkal, V.S.; Francis, F.; Pius, M.; Santhi, A.; Anila, E.I. Thermal Diffusivity Study of One-Pot Synthesised Polypyrrole Silver Nanocomposite by Thermal Lens Method. Mater. Today Commun. 2023, 34, 105151. [Google Scholar] [CrossRef]
- Luna-Sánchez, J.L.; Jiménez-Pérez, J.L.; Carbajal-Valdez, R.; Lopez-Gamboa, G.; Pérez-González, M.; Correa-Pacheco, Z.N. Green Synthesis of Silver Nanoparticles Using Jalapeño Chili Extract and Thermal Lens Study of Acrylic Resin Nanocomposites. Thermochim. Acta 2019, 678, 178314. [Google Scholar] [CrossRef]
- Netzahual-Lopantzi, Á.; Sánchez-Ramírez, J.F.; Jiménez-Pérez, J.L.; Cornejo-Monroy, D.; López-Gamboa, G.; Correa-Pacheco, Z.N. Study of the Thermal Diffusivity of Nanofluids Containing SiO2 Decorated with Au Nanoparticles by Thermal Lens Spectroscopy. Appl. Phys. A 2019, 125, 588. [Google Scholar] [CrossRef]
- Sindhu Swapna, M.N.; Raj, V.; Cabrera, H.; Sankararaman, S.I. Thermal Lensing of Multi-Walled Carbon Nanotube Solutions as Heat Transfer Nanofluids. ACS Appl. Nano Mater. 2021, 4, 3416–3425. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, S.; Zou, J.; Wu, Z.; Li, X.; Guo, W.; Tan, S.; Wang, H.; Hao, Y.; Ruan, H. Harnessing a Silicon Carbide Nanowire Photoelectric Synaptic Device for Novel Visual Adaptation Spiking Neural Networks. Nanoscale Horiz. 2024, 9, 1813–1822. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Chi, C.-C.; Hsu, W.-K.; Ouyang, H. Synthesis of SiC/SiO2 Core–Shell Nanowires with Good Optical Properties on Ni/SiO2/Si Substrate via Ferrocene Pyrolysis at Low Temperature. Sci. Rep. 2021, 11, 233. [Google Scholar] [CrossRef]
- Rajpoot, S.; Nonavinakere Vinod, K.; Fang, T.; Xu, C. Synthesis of Hafnium Carbide (HfC) via One-Step Selective Laser Reaction Pyrolysis from Liquid Polymer Precursor. J. Am. Ceram. Soc. 2025, 108, e20650. [Google Scholar] [CrossRef]
- Lee, H.O.; Caraballa, P.H.; Bregman, A.G.; Bell, N.S.; Nicholas, J.R.; Ringgold, M.; Treadwell, L.J. Fabrication of Tantalum and Hafnium Carbide Fibers via ForcespinningTM for Ultrahigh-Temperature Applications. Adv. Mater. Sci. Eng. 2021, 2021, 6672746. [Google Scholar] [CrossRef]
- Kou, S.; Fan, S.; Ma, X.; Ma, Y.; Luan, C.; Ma, J.; Liu, C. Ablation Performance of C/HfC-SiC Composites with in-Situ HfSi2/HfC/SiC Multi-Phase Coatings under 3000 °C Oxyacetylene Torch. Corros. Sci. 2022, 200, 110218. [Google Scholar] [CrossRef]
- Li, Q.; Meng, Z.; Xiao, B.; Li, J.; Liu, K.; Yang, M.; Zhang, S.; Goto, T.; Tu, R. Mechanical, Electrical and Thermal Properties of HfC-HfB2-SiC Ternary Eutectic Composites Prepared by Arc Melting. J. Eur. Ceram. Soc. 2021, 41, 6943–6951. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Yang, Z.; Tang, X.; Yue, Y. Strong Structural Occupation Ratio Effect on Mechanical Properties of Silicon Carbide Nanowires. Sci. Rep. 2020, 10, 11386. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, W.B.; Moon, J.S.; Lee, J.; Han, S.-W.; Bodrog, Z.; Gali, A.; Lee, S.-Y.; Kim, J.-H. Strong Zero-Phonon Transition from Point Defect-Stacking Fault Complexes in Silicon Carbide Nanowires. Nano Lett. 2021, 21, 9187–9194. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wang, Y. Preparation of HfC-SiC Ultra-High-Temperature Ceramics by the Copolycondensation of HfC and SiC Precursors. J. Mater. Sci. 2022, 57, 4467–4480. [Google Scholar] [CrossRef]
- Wen, Q.; Yu, Z.; Riedel, R.; Ionescu, E. Single-Source-Precursor Synthesis and High-Temperature Evolution of a Boron-Containing SiC/HfC Ceramic Nano/Micro Composite. J. Eur. Ceram. Soc. 2021, 41, 3002–3012. [Google Scholar] [CrossRef]
- Amandine, V.; Cédric, M.; Sergio, M.; Patricia, D. An ImageJ Tool for Simplified Post-Treatment of TEM Phase Contrast Images (SPCI). Micron 2019, 121, 90–98. [Google Scholar] [CrossRef]
- Ajeena, A.M.; Farkas, I.; Víg, P. A Comprehensive Experimental Study on Thermal Conductivity of ZrO2-SiC/DW Hybrid Nanofluid for Practical Applications: Characterization, Preparation, Stability, and Developing a New Correlation. Arab. J. Chem. 2023, 16, 105346. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Khazaei, M.; Misaghi, M.; Koosheshi, M.H. Improving the Stability of Nanofluids via Surface-Modified Titanium Dioxide Nanoparticles for Wettability Alteration of Oil-Wet Carbonate Reservoirs. Mater. Res. Express 2022, 9, 035005. [Google Scholar] [CrossRef]
- Urmi, W.T.; Rahman, M.M.; Kadirgama, K.; Ramasamy, D.; Maleque, M.A. An Overview on Synthesis, Stability, Opportunities and Challenges of Nanofluids. Mater. Today Proc. 2021, 41, 30–37. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of Nanofluid: A Review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Behrozifard, A.; Goshayeshi, H.R.; Zahmatkesh, I.; Chaer, I.; Salahshour, S.; Toghraie, D. Experimental Optimization of the Performance of a Plate Heat Exchanger with Graphene Oxide/Water and Al2O3/Water Nanofluids. Case Stud. Therm. Eng. 2024, 59, 104525. [Google Scholar] [CrossRef]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 527–612. [Google Scholar]
- dos Santos, C.C.; Viali, W.R.; Viali, E.S.N.; Marques, R.F.C.; Jafelicci Junior, M. Colloidal Stability Study of Fe3O4-Based Nanofluids in Water and Ethylene Glycol. J. Therm. Anal. Calorim. 2021, 146, 509–520. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Chen, K.; Wang, M. Nano-Emulsion Prepared by High Pressure Homogenization Method as a Good Carrier for Sichuan Pepper Essential Oil: Preparation, Stability, and Bioactivity. LWT 2022, 154, 112779. [Google Scholar] [CrossRef]
- Porgar, S.; Oztop, H.F.; Salehfekr, S. A Comprehensive Review on Thermal Conductivity and Viscosity of Nanofluids and Their Application in Heat Exchangers. J. Mol. Liq. 2023, 386, 122213. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Z.; Hu, J.; Zhang, J.; Sun, Y.; Shen, Q.; Zhang, L. Study on Rheological Behavior of Micro/Nano-Silicon Carbide Particles in Ethanol by Selecting Efficient Dispersants. Materials 2020, 13, 1496. [Google Scholar] [CrossRef]
- Rehman, A.; Yaqub, S.; Ali, M.; Nazir, H.; Shahzad, N.; Shakir, S.; Liaquat, R.; Said, Z. Effect of Surfactants on the Stability and Thermophysical Properties of Al2O3+TiO2 Hybrid Nanofluids. J. Mol. Liq. 2023, 391, 123350. [Google Scholar] [CrossRef]
- Akilu, S.; Sharma, K.V.; Aklilu, T.B.; Azman, M.S.M.; Bhaskoro, P.T. Temperature Dependent Properties of Silicon Carbide Nanofluid in Binary Mixtures of Glycerol-Ethylene Glycol. Procedia Eng. 2016, 148, 774–778. [Google Scholar] [CrossRef]
- Li, X.; Zou, C.; Wang, T.; Lei, X. Rheological Behavior of Ethylene Glycol-Based SiC Nanofluids. Int. J. Heat Mass Transf. 2015, 84, 925–930. [Google Scholar] [CrossRef]
- Xu, Y.; Atrens, A.; Stokes, J.R. A Review of Nanocrystalline Cellulose Suspensions: Rheology, Liquid Crystal Ordering and Colloidal Phase Behaviour. Adv. Colloid Interface Sci. 2020, 275, 102076. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zou, C. Thermo-Physical Properties of Water and Ethylene Glycol Mixture Based SiC Nanofluids: An Experimental Investigation. Int. J. Heat Mass Transf. 2016, 101, 412–417. [Google Scholar] [CrossRef]
- Mathew, S.; Francis, F.; Joseph, S.A.; Kala, M.S. Enhanced Thermal Diffusivity of Water Based ZnO Nanoflower/RGO Nanofluid Using the Dual-Beam Thermal Lens Technique. Nano-Struct. Nano-Objects 2021, 28, 100784. [Google Scholar] [CrossRef]
- Jiménez-Pérez, J.L.; López-Gamboa, G.; Sánchez-Ramírez, J.F.; Correa-Pacheco, Z.N.; Netzahual-Lopantzi, A.; Cruz-Orea, A. Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique. Int. J. Thermophys. 2021, 42, 107. [Google Scholar] [CrossRef]
- Rajan, D.; Francis, F.; Pius, M.; Ani Joseph, S. Thermal Diffusivity Measurement of Fe2O3-Au Nanofluid Composite Using Thermal Lens Technique. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Nideep, T.K.; Ramya, M.; Nampoori, V.P.N.; Kailasnath, M. The Size Dependent Thermal Diffusivity of Water Soluble CdTe Quantum Dots Using Dual Beam Thermal Lens Spectroscopy. Phys. E Low-Dimens. Syst. Nanostructures 2020, 116, 113724. [Google Scholar] [CrossRef]
- López-Muñoz, G.A.; Balderas-López, J.A.; Ortega-Lopez, J.; Pescador-Rojas, J.A.; Salazar, J.S. Thermal Diffusivity Measurement for Urchin-like Gold Nanofluids with Different Solvents, Sizes and Concentrations/Shapes. Nanoscale Res. Lett. 2012, 7, 667. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids. Appl. Phys. Lett. 2004, 84, 4316–4318. [Google Scholar] [CrossRef]
- Joseph, M.; Anugop, B.; Vijesh, K.R.; Balan, V.; Nampoori, V.P.N.; Kailasnath, M. Morphology and Concentration-Dependent Thermal Diffusivity of Biofunctionalized Zinc Oxide Nanostructures Using Dual-Beam Thermal Lens Technique. Mater. Lett. 2022, 323, 132599. [Google Scholar] [CrossRef]
- Francis, F.; Anila, E.I.; Joseph, S.A. Dependence of Thermal Diffusivity on Nanoparticle Shape Deduced through Thermal Lens Technique Taking ZnO Nanoparticles and Nanorods as Inclusions in Homogeneous Dye Solution. Optik 2020, 219, 165210. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Jumpholkul, C.; Wongwises, S. Enhancing Thermal Behavior of SiC Nanopowder and SiC/Water Nanofluid by Using Cryogenic Treatment. Adv. Mater. Process. Technol. 2018, 4, 402–415. [Google Scholar] [CrossRef]
- Koutras, K.N.; Peppas, G.D.; Fetsis, T.T.; Tegopoulos, S.N.; Charalampakos, V.P.; Kyritsis, A.; Yiotis, A.G.; Gonos, I.F.; Pyrgioti, E.C. Dielectric and Thermal Response of TiO2 and SiC Natural Ester Based Nanofluids for Use in Power Transformers. IEEE Access 2022, 10, 79222–79236. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, C.; Wen, H.; Liu, L. Research and Optimization of Thermophysical Properties of Sic Oil-Based Nanofluids for Data Center Immersion Cooling. Int. Commun. Heat Mass Transf. 2022, 131, 105863. [Google Scholar] [CrossRef]
- Ali, F.M.; Yunus, W.M.M. Study of the Effect of Volume Fraction Concentration and Particle Materials on Thermal Conductivity and Thermal Diffusivity of Nanofluids. Jpn. J. Appl. Phys. 2011, 50, 085201. [Google Scholar] [CrossRef]
- Soltaninejad, S.; Husin, M.S.; Sadrolhosseini, A.R.; Zamiri, R.; Zakaria, A.; Moksin, M.M.; Gharibshahi, E. Thermal Diffusivity Measurement of Au Nanofluids of Very Low Concentration by Using Photoflash Technique. Measurement 2013, 46, 4321–4327. [Google Scholar] [CrossRef]











| NFs | NPs Concentration (wt. %) | 1 Day | 7 Days | 14 Days | 21 Days |
|---|---|---|---|---|---|
| SiC | 0.10 | −57.5 ± 2.875 | −30.5 ± 1.525 | −30.2 ± 1.51 | −26.3 ± 1.315 |
| 0.25 | −50.7 ± 2.535 | −33.5 ± 1.675 | −33.7 ± 1.685 | −28.9 ± 1.445 | |
| 0.50 | −46.8 ± 2.34 | −33.1 ± 1.655 | −29.1 ± 1.455 | −28.5 ± 1.425 | |
| 0.75 | −45.5 ± 2.275 | −34.4 ± 1.72 | −33.2 ± 1.66 | −30.8 ± 1.54 | |
| 1.0 | −45.4 ± 2.27 | −60.3 ± 3.015 | −55.2 ± 2.76 | −54.5 ± 2.725 | |
| 60SiC-40HfC | 0.10 | −50.2 ± 2.51 | −47.2 ± 2.36 | −34.4 ± 1.72 | −37 ± 1.85 |
| 0.25 | −39.6 ± 1.98 | −32.2 ± 1.61 | −26.3 ± 1.315 | −31.9 ± 1.595 | |
| 0.50 | −45.9 ± 2.295 | −34 ± 1.7 | −28 ± 1.4 | −27.3 ± 1.365 | |
| 0.75 | −44.8 ± 2.24 | −34.5 ± 1.725 | −30.4 ± 1.52 | −31.9 ± 1.595 | |
| 1.0 | −36.6 ± 1.83 | −34.7 ± 1.735 | −33.1 ± 1.655 | −31.8 ± 1.59 | |
| 40SiC-60HfC | 0.10 | −42.2 ± 2.11 | −41.7 ± 2.085 | −33.8 ± 1.69 | −32.5 ± 1.625 |
| 0.25 | −46.5 ± 2.325 | −44.5 ± 2.225 | −41.9 ± 2.095 | −45.6 ± 2.28 | |
| 0.50 | −40.4 ± 2.02 | −34.7 ± 1.735 | −35.4 ± 1.77 | −34.2 ± 1.71 | |
| 0.75 | −40 ± 2 | −31.7 ± 1.585 | −33.2 ± 1.66 | −34 ± 1.7 | |
| 1.0 | −30.6 ± 1.53 | −36.6 ± 1.83 | −30 ± 1.5 | −36.4 ± 1.82 | |
| HfC | 0.10 | −44.3 ± 2.215 | −48.4 ± 2.42 | −42.1 ± 2.105 | −32.8 ± 1.64 |
| 0.25 | −40.3 ± 2.015 | −49.4 ± 2.47 | −35.6 ± 1.78 | −42.4 ± 2.12 | |
| 0.50 | −43.7 ± 2.185 | −44.3 ± 2.215 | −42 ± 2.1 | −41.8 ± 2.09 | |
| 0.75 | −36.1 ± 1.805 | −46.4 ± 2.32 | −36.1 ± 1.805 | −35.6 ± 1.78 | |
| 1.0 | −39.5 ± 1.975 | −45.1 ± 2.255 | −33.8 ± 1.69 | −39.5 ± 1.975 |
| NFs | Particle Concentration (wt.%) | × 10−3 (cm2/s) | tc × 10−3 (s) | θ × 10−2 |
|---|---|---|---|---|
| Base fluid | - | 1.36 ± 0.003 | 2.93 ± 0.006 | 66.88 ± 0.03 |
| Base fluid + PVP | - | 1.41 ± 0.01 | 2.82 ± 0.02 | 64.07 ± 0.1 |
| HfC | 0.5 | 1.95 ± 0.009 | 2.05 ± 0.01 | 47.6 ± 0.05 |
| SiC | 0.5 | 1.68 ± 0.04 | 2.38 ± 0.07 | 59.6 ± 0.003 |
| 60SiC-40HfC | 0.5 | 1.89 ± 0.03 | 2.11 ± 0.05 | 23.8 ± 0.015 |
| 40SiC-60HfC | 0.5 | 2.11 ± 0.008 | 1.89 ± 0.0007 | 78.54 ± 0.058 |
| 40SiC-60HfC | 0.10 | 1.63 ± 0.006 | 2.45 ± 0.01 | 25.07 ± 0.03 |
| 40SiC-60HfC | 0.25 | 1.75 ± 0.003 | 2.28 ± 0.004 | 86.56 ± 0.04 |
| 40SiC-60HfC | 0.75 | 2.26 ± 0.01 | 1.77 ± 0.008 | 7.78 ± 0.007 |
| 40SiC-60HfC | 1.0 | 2.36 ± 0.04 | 1.69 ± 0.03 | 1.87 ± 0.005 |
| Nanofluid | NPs Concentration | Base Fluid | Thermal Diffusivity () | Reference |
|---|---|---|---|---|
| 40SiC-60HfC | 1.0 wt.% | 50EG-50H2O | This work | |
| SiC | 0.05 vol.% | 70EG-30H2O | [37] | |
| HfC | EG | [32] | ||
| BN | 0.05 vol.% | 70EG-30H2O | [37] | |
| Au | H2O | [80] | ||
| SiC | 0.004% w/w | FR3 Oil | [85] | |
| TiO2 | 0.004% w/w | FR3 Oil | [85] | |
| SiC | 10.3 vol.% | Mineral oil | [86] | |
| Al | 0.42 vol.% | Distilled H2O | [87] | |
| Al2O3 | 1.40 vol.% | Distilled H2O | [87] | |
| Au | Distilled H2O | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Maro, C.A.; Rochín-Wong, C.S.; Ceballos-Mendivil, L.G.; Jiménez-Pérez, J.L.; Gutiérrez-Fuentes, R.; Pérez-Rábago, C.A.; Tánori-Córdova, J.C. Study of Stability, Viscosity, and Thermal Diffusivity of SiC-HfC Hybrid Nanofluids in 50EG-50H2O Mixture. Fluids 2025, 10, 316. https://doi.org/10.3390/fluids10120316
García-Maro CA, Rochín-Wong CS, Ceballos-Mendivil LG, Jiménez-Pérez JL, Gutiérrez-Fuentes R, Pérez-Rábago CA, Tánori-Córdova JC. Study of Stability, Viscosity, and Thermal Diffusivity of SiC-HfC Hybrid Nanofluids in 50EG-50H2O Mixture. Fluids. 2025; 10(12):316. https://doi.org/10.3390/fluids10120316
Chicago/Turabian StyleGarcía-Maro, Caree A., Carmen S. Rochín-Wong, Laura G. Ceballos-Mendivil, José L. Jiménez-Pérez, Ruben Gutiérrez-Fuentes, Carlos A. Pérez-Rábago, and Judith C. Tánori-Córdova. 2025. "Study of Stability, Viscosity, and Thermal Diffusivity of SiC-HfC Hybrid Nanofluids in 50EG-50H2O Mixture" Fluids 10, no. 12: 316. https://doi.org/10.3390/fluids10120316
APA StyleGarcía-Maro, C. A., Rochín-Wong, C. S., Ceballos-Mendivil, L. G., Jiménez-Pérez, J. L., Gutiérrez-Fuentes, R., Pérez-Rábago, C. A., & Tánori-Córdova, J. C. (2025). Study of Stability, Viscosity, and Thermal Diffusivity of SiC-HfC Hybrid Nanofluids in 50EG-50H2O Mixture. Fluids, 10(12), 316. https://doi.org/10.3390/fluids10120316

