Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM
Abstract
1. Introduction
2. Research Methods
2.1. Geometric Modeling and Meshing
2.2. Mesh-Independence Verification
2.3. Model Validation
2.4. Numerical Simulation
- VOF model
- 2.
- RSM
- 3.
- DPM
- 4.
- Oka erosion model
3. Simulation Results and Analysis
3.1. Analysis of the Dynamic Evolution Process of Air Columns
3.2. Velocity Field Analysis
3.3. Pressure Field Analysis
3.4. Particle Motion Analysis
3.5. Erosion Analysis of Different Particle Sizes
3.6. Erosion Analysis of Each Wall
3.6.1. Roof Section Erosion
3.6.2. Infeed Section Erosion
3.6.3. Column Section Erosion
3.6.4. Overflow Pipe Erosion
3.6.5. Cone Section Erosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Wu, J.; Yang, J. Optimization of involute feed hydrocyclone for enhanced mud removal: Synergistic analysis of flow dynamics and separation efficiency. Miner. Eng. 2025, 229, 109376. [Google Scholar] [CrossRef]
- Tsamoutsoglou, K.; Kechagias, A.; Katzourakis, V.E.; Chrysikopoulos, C.V.; Gikas, P. Investigation and efficiency estimation of a hydrocyclone for the treatment of primary municipal wastewater. J. Environ. Manag. 2025, 380, 125134. [Google Scholar] [CrossRef]
- Potgieter, M.; Pauck, W.J.; Johakimu, J.; Sithole, B.B. Using hydrocyclone fractionation to improve chemical pulp quality. S. Afr. J. Chem. Eng. 2021, 36, 74–79. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, S. Study on the separation mechanism of coal and gangue particles during coal slime classification in a hydrocyclone. Powder Technol. 2023, 424, 118566. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, F.; Han, R.; Li, Z.; Zhu, Z.; Qu, J.; Wang, H.; Zhou, A. Resources recovery from coal gasification residue by combined hydrocyclone and vibrating screen and characterization of separated products. Process Saf. Environ. Prot. 2024, 184, 1272–1281. [Google Scholar] [CrossRef]
- Dianyu, E.; Hu, H.; Ye, Q.; Tan, C.; Cui, J.; Zhou, Z.; Zou, R.; Yu, A.; Kuang, S. Multi-objective optimization of hydrocyclones inlet configurations for improving separation performance. Powder Technol. 2025, 456, 120772. [Google Scholar] [CrossRef]
- Oats, W.J.; Ozdemir, O.; Nguyen, A.V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng. 2010, 23, 413–419. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J. Application of hydrocyclone in Coal Preparation Plant. Shandong Coal Sci. Technol. 2015, 8, 183–184+187. [Google Scholar]
- Zhang, L.; Shi, Y.; Kang, X. Operation effect of hydrocyclone in coal preparation plant. Clean Coal Technol. 2021, 27, 110–113. [Google Scholar]
- Medvedovski, E. Advanced ceramics and coatings for wear and corrosion related applications in modern high-efficient coal production and processing: A technical review. Ceram. Int. 2024, 50, 19447–19487. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, T.; Xu, Y.; Liu, S.; An, J.; He, Y.; Xiao, X. Effect of Solid Particles on the Erosion Wear Characteristics of Hydrocyclone. Fluid Mach. 2019, 47, 50–55+6. [Google Scholar]
- Zhao, L.; Zhu, B.; Zhang, Y. Analysis of abrasion in biconical hydrocyclone based on discrete phase modeling. Chem. Eng. Mach. 2007, 34, 317–320+336. [Google Scholar] [CrossRef]
- Liu, P.; Song, Y.; Jiang, L.; Yang, X.; Zhang, Y.; Li, X.; Zhang, R. Numerical study on the wall wear of hydrocyclones and experimental verification. Adv. Powder Technol. 2023, 34, 104243. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, Z.; Wang, S.; Li, C.; Qi, X.; Ling, H. Experiment of hydrocyclone under different inlet velocity and its wear analysis of wall and particle. Powder Technol. 2022, 405, 117541. [Google Scholar] [CrossRef]
- Azimian, M.; Bart, H.-J. Numerical analysis of hydroabrasion in a hydrocyclone. Pet. Sci. 2016, 13, 304–319. [Google Scholar] [CrossRef]
- Oka, Y.I.; Okamura, K.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Oka, Y.I.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 2005, 259, 102–109. [Google Scholar] [CrossRef]
- Sedrez, T.A.; Decker, R.K.; da Silva, M.K.; Noriler, D.; Meier, H.F. Experiments and CFD-based erosion modeling for gas-solids flow in cyclones. Powder Technol. 2017, 311, 120–131. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, J.; Gao, F.; Zhang, P.; Chen, G. Effects of cone local erosion on the flow field and performance of cyclone separators. J. Chem. Eng. Chin. Univ. 2023, 37, 717–728. [Google Scholar]
- Dianyu, E.; Fan, H.; Su, Z.; Xu, G.; Zou, R.; Yu, A.; Kuang, S. Numerical study of the multiphase flows and separation performance of hydrocyclone with tapered cross-section inlet. Powder Technol. 2023, 416, 118208. [Google Scholar]
- Dianyu, E.; Xu, G.; Fan, H.; Cui, J.; Tan, C.; Zhang, Y.; Zou, R.; Kuang, S.; Yu, A. Numerical investigation of hydrocyclone inlet configurations for improving separation performance. Powder Technol. 2024, 434, 119384. [Google Scholar] [CrossRef]
- Ye, Q.; Kuang, S.; Duan, P.; Zou, R.; Yu, A. Fast prediction and control of air core in hydrocyclone by machine learning to stabilize operations. J. Environ. Chem. Eng. 2024, 12, 111699. [Google Scholar] [CrossRef]
- Neesse, T.; Dueck, J. Air core formation in the hydrocyclone. Miner. Eng. 2007, 20, 349–354. [Google Scholar] [CrossRef]
- Doby, M.J.; Nowakowski, A.F.; Yiu, I.; Dyakowski, T. Understanding air core formation in hydrocyclones by studying pressure distribution as a function of viscosity. Int. J. Miner. Process. 2008, 86, 18–25. [Google Scholar] [CrossRef]
- Gupta, R.; Kaulaskar, M.D.; Kumar, V.; Sripriya, R.; Meikap, B.; Chakraborty, S. Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone. Chem. Eng. J. 2008, 144, 153–166. [Google Scholar] [CrossRef]
- Cui, B.-Y.; Wei, D.-Z.; Gao, S.-L.; Liu, W.-G.; Feng, Y.-Q. Numerical and experimental studies of flow field in hydrocyclone with air core. Trans. Nonferrous Met. Soc. China 2014, 24, 2642–2649. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, L. Study on the Effect of Air Column on the Classification Performance of Hydrocyclone. Nonferrous Met. Miner. Process. Sect. 2023, 55–62. [Google Scholar] [CrossRef]
- Yu, F.; Chen, B.; Liu, Q. Study on the elimination of cyclone air column to improve classification efficiency. China Powder Sci. Technol. 1999, 5, 43–44. [Google Scholar]
- Vieira, R.E.; Mansouri, A.; McLaury, B.S.; Shirazi, S.A. Experimental and computational study of erosion in elbows due to sand particles in air flow. Powder Technol. 2016, 288, 339–353. [Google Scholar] [CrossRef]
- Kumar, M.; Reddy, R.; Banerjee, R.; Mangadoddy, N. Effect of particle concentration on turbulent modulation inside hydrocyclone using coupled MPPIC-VOF method. Sep. Purif. Technol. 2021, 266, 118206. [Google Scholar] [CrossRef]
- Pukkella, A.K.; Vega-Garcia, D.; Hadler, K.; Cilliers, J. The influence of surface-wall roughness on hydrocyclone performance. Sep. Purif. Technol. 2025, 360, 131109. [Google Scholar] [CrossRef]
- Xiong, Z.; Xu, J.; Liu, C. Interaction effects of inlet velocity and apex diameter on the separation performance of two-stage cone hydrocyclones. Powder Technol. 2023, 422, 118446. [Google Scholar] [CrossRef]
- Li, F.; Li, P.; Wang, Y.; Guo, D.; Yang, H.; Han, H.; Liang, R. Numerical analysis and experimental research on the influence of column structure on the classification performance of hydrocyclone. Alex. Eng. J. 2025, 120, 271–286. [Google Scholar] [CrossRef]
- Kant, K.; Pitchumani, R. Analysis and mitigation of erosion wear of transfer ducts in a falling particle CSP system. Wear 2025, 562–563, 205619. [Google Scholar] [CrossRef]
- Peng, D.; Dong, S.; Wang, Z.; Wang, D.; Chen, Y.; Zhang, L. Characterization of the Solid Particle Erosion of the Sealing Surface Materials of a Ball Valve. Metals 2021, 11, 263. [Google Scholar] [CrossRef]
- Amadi, A.; Mohyaldinn, M.; Ridha, S. Sand particle induced erosion in oil and gas screens: A review of influencing factors and wear dynamics. Powder Technol. 2024, 436, 119528. [Google Scholar] [CrossRef]
- Song, C.; Pei, B.; Jiang, M.; Wang, B.; Xu, D.; Chen, Y. Numerical analysis of forces exerted on particles in cyclone separators. Powder Technol. 2016, 294, 437–448. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Jiang, F.; Dong, K.; Jiang, Y.; Wang, B. Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technol. 2017, 322, 471–489. [Google Scholar] [CrossRef]
- Li, K.; Li, X.-B. Analysis and Application of Heavy Medium Cyclone’s Abrasion Mechanism. Coal Mine Mach. 2011, 32, 111–113. [Google Scholar]
- Li, T.; Zhang, Y.; Hernández-Jiménez, F. Investigation of particle–wall interaction in a pseudo-2D fluidized bed using CFD-DEM simulations. Particuology 2016, 25, 10–22. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, H.; Yu, T.; Zhu, Z. Numerical study of solid–liquid two-phase flow and erosion in ball valves with different openings. Adv. Powder Technol. 2022, 33, 103542. [Google Scholar] [CrossRef]
- Passandideh-Fard, M.; Roohi, E. Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique. Int. J. Comput. Fluid Dyn. 2008, 22, 97–114. [Google Scholar] [CrossRef]
- Delgadillo, J.A.; Rajamani, R.K. Computational fluid dynamics prediction of the air-core in hydrocyclones. Int. J. Comput. Fluid Dyn. 2009, 23, 189–197. [Google Scholar] [CrossRef]
- Maurya, R.S.; Sundararajan, T.; Das, S.K. Development of a PLIC-VOF method for the dynamic simulation of entry region flow in a laminar falling film. Int. J. Comput. Fluid Dyn. 2009, 23, 391–400. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Liu, H. Numerical study on gas–liquid separation of two-phase swirling flow based on the Eulerian-Eulerian approach and RSM turbulence model. Ann. Nucl. Energy 2025, 217, 111334. [Google Scholar] [CrossRef]
- Kumar, A.; Bharti, R.P. Assessment of RANS-based turbulence models for isothermal confined swirling flow in a realistic can-type gas turbine combustor application. J. Comput. Sci. 2024, 81, 102362. [Google Scholar] [CrossRef]
Structure | Unit | Parameters |
---|---|---|
Inlet Size | a × b (mm) | 40 × 50 |
Hydrocyclone Diameter | D (mm) | 150 |
Column Height | H (mm) | 188 |
Overflow Diameter | d1 (mm) | 44 |
Overflow Insertion Depth | h (mm) | 158 |
Overflow Wall Thickness | ε (mm) | 25 |
Underflow Diameter | d2 (mm) | 12 |
Angle of Cone | θ (°) | 20 |
No. | Orthogonal Quality | Mesh | Percentage, % | No. | Orthogonal Quality | Mesh | Percentage, % |
---|---|---|---|---|---|---|---|
1 | 0.95–1.0 | 208,565 | 86.087 | 9 | 0.55–0.6 | 124 | 0.051 |
2 | 0.9–0.95 | 19,040 | 7.859 | 10 | 0.5–0.55 | 174 | 0.072 |
3 | 0.85–0.9 | 9015 | 3.721 | 11 | 0.45–0.5 | 116 | 0.048 |
4 | 0.8–0.85 | 2679 | 1.106 | 12 | 0.4–0.45 | 72 | 0.030 |
5 | 0.75–0.8 | 1294 | 0.534 | 13 | 0.35–0.4 | 100 | 0.041 |
6 | 0.7–0.75 | 438 | 0.181 | 14 | 0.3–0.35 | 60 | 0.025 |
7 | 0.65–0.7 | 330 | 0.136 | 15 | 0.25–0.3 | 60 | 0.025 |
8 | 0.6–0.65 | 206 | 0.085 | ||||
Total = 233,185, Min = 0.255, Max = 0.1 |
VGAS (m/s) | Sand Size (μm) | Sand Rate (Kg/Day) | Erosion Rate (mm/Year) | Max Erosion Location (°) | |
---|---|---|---|---|---|
Experimental [29] | 23 | 300 | 227 | 80.3 | 47 |
Simulation | 23 | 300 | 227 | 83.6 | 47 |
Particle size (μm) | 15 | 30 | 60 | 100 | 150 | 200 |
Volume fraction (%) | 10 | 20 | 30 | 25 | 10 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zheng, G.; Li, S. Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM. Fluids 2025, 10, 266. https://doi.org/10.3390/fluids10100266
Wu Z, Zheng G, Li S. Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM. Fluids. 2025; 10(10):266. https://doi.org/10.3390/fluids10100266
Chicago/Turabian StyleWu, Ziyang, Gangfeng Zheng, and Shuntang Li. 2025. "Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM" Fluids 10, no. 10: 266. https://doi.org/10.3390/fluids10100266
APA StyleWu, Z., Zheng, G., & Li, S. (2025). Prediction of Erosion of a Hydrocyclone Inner Wall Based on CFD-DPM. Fluids, 10(10), 266. https://doi.org/10.3390/fluids10100266