Micro-Hydropower Generation Using an Archimedes Screw: Parametric Performance Analysis with CFD
Abstract
1. Introduction
2. Materials and Methods
2.1. Geometric Design Parameter for ASG
2.2. CFD Simulation
2.2.1. Conceptual Model
2.2.2. Mesh Configuration
2.2.3. Simulation Scheme
2.2.4. Efficiency and Mechanical Power Estimation
3. Results and Discussion
3.1. Boundary Conditions
3.2. Mesh Independence and Quality Analysis
3.3. Torque, Mechanical Power, and Hydraulic Efficiency Estimation
3.3.1. Torque Analysis
3.3.2. Mechanical Power Estimation
3.3.3. Hydraulic Efficiency Estimation
3.3.4. Validation
3.4. Hydrodynamic Analysis
3.4.1. Blade Pressure Analysis
3.4.2. Blade Number and Turbulence Relationship
3.4.3. Blades and Velocity Relationship
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
CFD | Computational Fluid Dynamics |
IITCA | Inter-American Institute of Technology and Water Sciences |
UAEMéx | Autonomous University of the State of Mexico |
SECIHTI | Secretaría de Ciencia, Humanidades, Tecnología e Innovación |
ASG | Archimedes Screw Generator |
Notation | Description | Units |
Outer diameter of the ASG | m | |
Inner diameter of the ASG | m | |
Blade pitch of the ASG | m | |
Number of blades in the ASG | --- | |
Length of the ASG | m | |
Inclination angle of the ASG | ° | |
s | Slope of the inlet channel | m/m |
G | Gap between the channel and the ASG | m |
Diameter ratio | --- | |
Pitch ratio | --- | |
Roughness coefficient | --- | |
Hydraulic radius | m | |
Inlet flow velocity of the ASG | m/s | |
Inlet flow rate of the ASG | L/s | |
A | Cross-sectional area of the inlet channel | m2 |
Axes of the coordinate system | m | |
directions | m/s | |
Fluid density | kg/m3 | |
Kinematic viscosity of the fluid | m2/s | |
Turbulent kinetic energy | m2/s2 | |
Specific dissipation rate | s−1 | |
Turbulent eddy viscosity | kg/(ms) | |
Blending functions | --- | |
Strain-rate invariant | s−1 | |
Distance to the nearest wall | m | |
Production limiter | m2/s3 | |
i-th component of the mean flow velocity | m/s | |
Constants of the turbulent model | --- | |
Mechanical power of the ASG | W | |
Angular velocity of the ASG | rad/s | |
Torque | Nm | |
Wetted cross-sectional area of the screw | m2 | |
Centroid of the wetted cross-section area of the screw | m | |
Blade inclination angle | ° | |
Hydraulic power | W | |
Acceleration due to gravity | m/s2 | |
Net water head | m | |
ASG efficiency | --- |
References
- International Energy Agency. World Energy Outlook 2023; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/world-energy-outlook-2023?language=es (accessed on 20 January 2025).
- Castillo, T.; García, F.; Mosquera, L.; Rivadeneira, T.; Segura, K.; Segura, K.; Yujato, M.; Guerra, L.; Ramos, F. Panorama Energético de América Latina y El Caribe 2023; Organización Latinoamericana de Energía (OLADE): Quito, Ecuador, 2023. [Google Scholar]
- Paish, O. Micro-hydropower: Status and prospects. Proc. Inst. Mech. Eng. Part A J. Power Energy 2002, 216, 31–40. [Google Scholar] [CrossRef]
- Berga, L. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review. Engineering 2016, 2, 313–318. [Google Scholar] [CrossRef]
- Dellinger, G.; Terfous, A.; Garambois, P.-A.; Ghenaim, A. Experimental investigation and performance analysis of Archimedes screw generator. J. Hydraul. Res. 2016, 54, 197–209. [Google Scholar] [CrossRef]
- Stergiopoulou, A.; Kalkanni, E. Investigating the hydrodynamic behaviour of innovative Archimedes screw generators. Energy 2013, 17, 498–504. [Google Scholar]
- United Nations Industrial Development Organization. Micro Hydraulic Power Unit (Spiral Type Pico-Hydro Unit “PicoPica10”, “PicoPica500”); UNIDO: Tokyo, Japan, 2020. Available online: https://shre.ink/SaUx (accessed on 5 August 2025).
- YoosefDoost, A. Archimedes Screw Generators and Hydropower Plants: A Design Guideline and Analytical Models. Ph.D. Thesis, The University of Guelph, Guelph, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Müller, G.; Senior, J. Simplified theory of Archimedean screws. J. Hydraul. Res. 2009, 47, 666–669. [Google Scholar] [CrossRef]
- Waters, S.; Aggidis, G.A. Over 2000 years in review: Revival of the Archimedes Screw from Pump to Turbine. Renew. Sustain. Energy Rev. 2015, 51, 497–505. [Google Scholar] [CrossRef]
- Nuernbergk, D.M.; Rorres, C. Analytical Model for Water Inflow of an Archimedes Screw Used in Hydropower Generation. J. Hydraul. Eng. 2013, 139, 213–220. [Google Scholar] [CrossRef]
- YoosefDoost, A.; Lubitz, W.D. Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures. Sustainability 2020, 12, 7352. [Google Scholar] [CrossRef]
- Williamson, S.; Stark, B.; Booker, J. Low head pico hydro turbine selection using a multi-criteria analysis. Renew. Energy 2014, 61, 43–50. [Google Scholar] [CrossRef]
- Simmons, S.; Dellinger, G.; Lubitz, W.D. Effects of Parameter Scaling on Archimedes Screw Generator Performance. Energies 2023, 16, 7331. [Google Scholar] [CrossRef]
- Okot, D.K. Review of small hydropower technology. Renew. Sustain. Energy Rev. 2013, 26, 515–520. [Google Scholar] [CrossRef]
- Simmons, S.C.; Lubitz, W.D. Archimedes screw generators for sustainable micro-hydropower production. Int. J. Energy Res. 2021, 45, 17480–17501. [Google Scholar] [CrossRef]
- Durrani, A.M.; Mujahid, O.; Uzair, M. Micro Hydro Power Plant using Sewage Water of Hayatabad Peshawar. In Proceedings of the 2019 15th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019. [Google Scholar] [CrossRef]
- Kozyn, A.; Ash, S.; Lubitz, W.D. Assessment of Archimedes Screw Power Generation Potential in Ontario. In Proceedings of the 4th Climate Change Technology Conference, Montreal, QC, Canada, 25–27 May 2015; pp. 1–11. Available online: https://es.scribd.com/document/370889932/1570095585 (accessed on 5 October 2025).
- YoosefDoost, A.; Lubitz, W. Design Guideline for Hydropower Plants Using One or Multiple Archimedes Screws. Processes 2021, 9, 2128. [Google Scholar] [CrossRef]
- Shahverdi, K. Modeling for prediction of design parameters for micro-hydro Archimedean screw turbines. Sustain. Energy Technol. Assess. 2021, 47, 101554. [Google Scholar] [CrossRef]
- Simmons, S.; Elliott, C.; Ford, M.; Clayton, A.; Lubitz, W.D. Archimedes Screw Generator Powerplant Assessment and Field Measurement Campaign. Energy Sustain. Dev. 2021, 65, 144–161. [Google Scholar] [CrossRef]
- Simmons, S.; Lubitz, W. Archimedes Screw Generators for Sustainable Energy Development. In Proceedings of the IEEE Canada International Humanitarian Technology Conference (IHTC), Toronto, ON, Canada, 21–22 July 2017; pp. 144–148. [Google Scholar] [CrossRef]
- Suh, S.H.; Kim, K.Y.; Kim, B.H.; Kim, Y.T.; Kim, T.G.; Roh, H.W.; Yoo, Y.I.; Park, N.H.; Park, J.M.; Shin, C.S. Theory and Applications of Hydraulic Turbines; Dong Myeong Publishers: Seoul, Republic of Korea, 2014. [Google Scholar]
- Havn, T.B.; Sæther, S.A.; Thorstad, E.B.; Teichert, M.A.K.; Heermann, L.; Diserud, O.H.; Borcherding, J.; Tambets, M.; Økland, F. Downstream Migration of Atlantic Salmon Smolts Past a Low Head Hydropower Station Equipped with Archimedes Screw and Francis Turbines. Ecol. Eng. 2017, 105, 262–275. [Google Scholar] [CrossRef]
- Piper, A.T.; Rosewarne, P.J.; Wright, R.M.; Kemp, P.S. The Impact of an Archimedes Screw Hydropower Turbine on Fish Migration in a Lowland River. Ecol. Eng. 2018, 118, 31–42. [Google Scholar] [CrossRef]
- Kibel, P. Fish Monitoring and Live Fish Trials. Archimedes Screw Turbine, River Dart. Phase 1 Report: Live Fish Trials, Smolts, Leading Edge Assessment, Disorientation Study, Outflow Monitoring; Moretonhampstead: Devon, UK, 2007. [Google Scholar]
- Kibel, P.; Pike, R.; Coe, T. Archimedes Screw Turbine Fisheries Assessment. Phase II: Eels and Kelts; Moretonhampstead: Devon, UK, 2008. [Google Scholar]
- Kibel, P.; Pike, R.; Coe, T. The Archimedes Screw Turbine: Assessment of Three Leading Edge Profiles; Fishtek Consulting Ltd.: Moretonhampstead, UK, 2009. [Google Scholar]
- Pauwels, I.S.; Baeyens, R.; Toming, G.; Schneider, M.; Buysse, D.; Coeck, J.; Tuhtan, J.A. Multi-Species Assessment of Injury, Mortality, and Physical Conditions During Downstream Passage Through a Large Archimedes Hydrodynamic Screw (Albert Canal, Belgium). Sustainability 2020, 12, 8722. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; Belletti, B.; Berga Cano, M.I.; Bizzi, S.; Bussettini, M.; del Tánago, M.; Grabowski, R.; Habersack, H.; Klösch, M.; et al. Final Report on Methods, Models, Tools to Assess the Hydromorphology of Rivers. 2015. Available online: https://reformrivers.eu/ (accessed on 8 May 2025).
- Shahverdi, K.; Loni, R.; Ghobadian, B.; Gohari, S.; Marofi, S.; Bellos, E. Numerical Optimization Study of Archimedes Screw Turbine (AST): A case study. Renew. Energy 2020, 145, 2130–2143. [Google Scholar] [CrossRef]
- Nagel, G. Archimedean Screw Pump Handbook; RITZ-Pumpenfabrik: Schwäbisch Gmünd, Germany, 1968. [Google Scholar]
- YoosefDoost, A.; Lubitz, W.D. Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry. Energies 2021, 14, 7812. [Google Scholar] [CrossRef]
- Lashofer, A.; Hawle, W.; Kampel, I.; Kaltenberger, F.; Pelikan, B.; State of technology and design guidelines for the Archimedes screw turbine. Hydro 2012–Innovative Approaches to Global Challenges, Bilbao. 2012. Available online: https://www.researchgate.net/publication/281347248_State_of_technology_and_design_guidelines_for_the_Archimedes_screw_turbine (accessed on 10 December 2024).
- Dellinger, G.; Simmons, S.; Lubitz, W.D.; Garambois, P.-A.; Dellinger, N. Effect of slope and number of blades on Archimedes screw generator power output. Renew. Energy 2019, 136, 896–908. [Google Scholar] [CrossRef]
- Straalsund, J.L.; Harding, S.F.; Nuernbergk, D.M.; Rorres, C. Experimental Evaluation of Advanced Archimedes Hydrodynamic Screw Geometries. J. Hydraul. Eng. 2018, 144, 04018052. [Google Scholar] [CrossRef]
- Lyons, M.; Lubitz, W.D. Non-dimensional Characterization of Power-Generating Archimedes Screws. In Sustaining Tomorrow; Proceedings of Sustaining Tomorrow 2020 Symposium and Industry Summit 39–51; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Lisicki, M.; Lubitz, W.; Taylor, G.W. Optimal Design and Operation of Archimedes Screw Turbines Using Bayesian Optimization. Appl. Energy 2016, 183, 1404–1417. [Google Scholar] [CrossRef]
- Lyons, M. Lab Testing and Modeling of Archimedes Screw Turbines. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2014. [Google Scholar]
- Songin, K. Experimental Analysis of Archimedes Screw Turbines. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2017. [Google Scholar]
- Dragomirescu, A. Design Considerations for an Archimedean Screw Hydro Turbine. IOP Conf. Ser.Earth Environ. Sci. 2021, 664, 012034. [Google Scholar] [CrossRef]
- Shahverdi, K.; Loni, R.; Maestre, J.M.; Najafi, G. CFD Numerical Simulation of Archimedes Screw Turbine with Power Output Analysis. Ocean. Eng. 2021, 231, 108718. [Google Scholar] [CrossRef]
- Lubitz, W.D.; Lyons, M.; Simmons, S. Performance Model of Archimedes Screw Hydro Turbines with Variable Fill Level. J. Hydraul. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Erinofiardi; Nuramal, A.; Bismantolo, P.; Date, A.; Akbarzadeh, A.; Mainil, A.K.; Suryono, A.F. Experimental Study of Screw Turbine Performance based on Different Angle of Inclination. Energy Procedia 2017, 110, 8–13. [Google Scholar] [CrossRef]
- YoosefDoost, A.; Lubitz, W. Development of an equation for the volume of flow passing through an Archimedes screw turbine. In Sustaining Tomorrow; Springer: Cham, Switzerland, 2021; pp. 17–37. [Google Scholar] [CrossRef]
- Rosly, Z.; Jamaludin, U.; Azahari, S.; Nik Mutasim, A.; Oumer, N.; Rao, T. Parametric study on efficiency of Archimedes screw turbine. ARPN J. Eng. Aplied Sci. 2016, 11, 10904–10908. [Google Scholar]
- Maulana, M.I.; Syuhada, A.; Almas, F. Computational Fluid Dynamic Predictions on Effects of Screw Number on Performance of Single Blade Archimedes Screw Turbine. E3S Web Conf. 2018, 67, 04027. [Google Scholar] [CrossRef]
- Maulana, M.I.; Syuhada, A.; Nawawi, M. Blade number impact on pressure and performance of archimedes screw turbine using CFD. AIP Conf. Proc. 2018, 1931, 030037. [Google Scholar] [CrossRef]
- Khan, A.; Khattak, A.; Ulasyar, A.; Imran, K.; Munir, M.A. Investigation of Archimedes Screw Turbine for Optimal Power Output by Varying Number of Blades. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Edirisinghe, D.S.; Yang, H.-S.; Kim, M.-S.; Kim, B.-H.; Gunawardane, S.P.; Lee, Y.-H. Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle. Energies 2021, 14, 3307. [Google Scholar] [CrossRef]
- Abbas, Z.; Waqas, M.; Khan, S.S.; Khatoon, R.; Larkin, S.; Zhao, L. Numerical and experimental investigation of an Archimedes screw turbine for open channel water flow application. Energy Sci. Eng. 2024, 12, 1317–1336. [Google Scholar] [CrossRef]
- Lamesgin, H.B.; Ali, A.N. Optimization of screw turbine design parameters to improve the power output and efficiency of micro-hydropower generation. Cogent Eng. 2024, 11, 2327906. [Google Scholar] [CrossRef]
- Espinosa Vila, F.X. CFD Simulations of an Archimedes Screw. Bachelor’s Thesis, Polytechnic University of Catalonia, Barcelona, Spain, 2019. Available online: https://upcommons.upc.edu/bitstream/handle/2117/178475/TFG%20-%20Espinosa%20Vila,%20Francesc%20Xavier.pdf (accessed on 10 December 2024).
- Guilherme Alves dos Reis, M.; Carvalho, S. Hydraulic power optimization of the archimedes turbine using numerical simulation. In Proceedings of the 25th International Congress of Mechanical Engineering, ABCM, Uberlandia, Brazil, 20–25 October 2019. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.; Chaoqun, L. Computational Fluid Dynamics: A Practical Approach; Butterworth-Heinemann: Strand, London, 2018. [Google Scholar]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. In Turbulence, Heat and Mass Transfer 4, Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer; Hanjalić, K., Nagano, Y., Tummers, M., Eds.; Begell House: Antalya, Turkey, 2003; pp. 625–632. [Google Scholar]
- Zamora-Juárez, M.A.; Guerra-Cobián, V.H.; Ortiz, C.R.F.; López-Rebollar, B.M.; Fierro, A.L.F.; Flores, J.L.B. Performance of modified gravitational water vortex turbine through CFD for hydro power generation on micro-scale. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 545. [Google Scholar] [CrossRef]
- Harrison, M.; Batten, W.; Myers, L.; Bahaj, A. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Alberto Mejía, J.C. Diseño de una turbina hidráulica basada en el tornillo de Arquímedes. Bachelor’s Thesis, Universidad de El Salvador, San Salvador, El Salvador, 2011. Available online: https://hdl.handle.net/20.500.14492/17495 (accessed on 10 December 2024).
- ANSYS Inc. ANSYS Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
Type | Advantages |
---|---|
Technical |
|
Economic |
|
Social |
|
Environmental |
|
Geometric Parameter or Relationship | Nomenclature | Recommended Value of the Geometric Parameter or Relationship | Reference |
---|---|---|---|
Diameter ratio | From 0.4 to 0.6 | [32] | |
From 0.45 to 0.55 | [33] | ||
0.532 | [14] | ||
0.5 | [20,34,35] | ||
Pitch ratio | 1 | [14,32,33,35,36] | |
1.2 when β < 30°, 1 when β = 30° and 0.8 when β > 30° | [34] | ||
Length ratio | 3.84 | [14] | |
Inclination angle | 20° to 25° | [16] | |
20° to 35° | [12,20] | ||
22° | [34] | ||
18° to 36° | [37] |
Geometric Characteristic | Dimension or Shape |
---|---|
0.494 m | |
0.247 m | |
Pitch (S) | 0.494 m |
Length (L) | 2 m |
) | 0.003 m |
Channel geometry | circular |
Channel diameter | 0.50 m |
Geometric Characteristic | Dimension |
---|---|
Inclination angle | 20°, 24° and 28° |
Number of blades | 1, 2 and 3 |
Factors | Levels of Analysis |
---|---|
ASG inclination | 20°, 24° and 28° |
Number of blades | 1, 2 and 3 |
Inlet flow rate (L/s) | 16.54, 24.54, 32.98, 41.10 and 47.98 |
Flow Depth (cm) | Velocity (m/s) | Flow Rate (L/s) |
---|---|---|
20 | 0.226 | 16.54 |
25 | 0.250 | 24.54 |
30 | 0.268 | 32.98 |
35 | 0.280 | 41.10 |
40 | 0.285 | 47.98 |
Characteristics of the ASG | Element Size | Average Orthogonal Quality | Number of Elements | Simulation Time |
---|---|---|---|---|
25 mm | 0.76 | 416,469 | 30 min | |
20 mm | 0.78 | 625,306 | 45 min | |
15 mm | 0.79 | 1,254,499 | 1 h 15 min | |
12 mm | 0.79 | 2,342,542 | 1 h 50 min | |
10 mm | 0.79 | 3,970,235 | 6 h | |
25 mm | 0.75 | 567,248 | 24 min | |
20 mm | 0.77 | 743,356 | 30 min | |
15 mm | 0.78 | 1,318,988 | 55 min | |
12 mm | 0.79 | 2,352,757 | 1 h 37 min | |
10 mm | 0.79 | 3,914,504 | 8 h | |
25 mm | 0.75 | 712,914 | 50 min | |
20 mm | 0.76 | 848,227 | 1 h | |
15 mm | 0.77 | 1,352,373 | 1 h 30 min | |
12 mm | 0.78 | 2,298,113 | 3 h | |
10 mm | 0.79 | 3,756,286 | 6 h |
1-Blade | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 7.92 | 11.60 | 15.40 | 17.80 | 20.56 |
24° | 7.70 | 11.66 | 15.10 | 17.64 | 20.20 |
28° | 7.49 | 11.29 | 14.90 | 17.65 | 20.08 |
2-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 14.94 | 22.07 | 29.23 | 33.65 | 36.58 |
24° | 14.94 | 21.97 | 28.76 | 33.23 | 36.14 |
28° | 14.98 | 21.68 | 28.29 | 33.07 | 35.53 |
3-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 22.59 | 33.66 | 43.31 | 49.87 | 52.06 |
24° | 21.13 | 33.37 | 42.83 | 49.51 | 52.16 |
28° | 20.97 | 32.87 | 42.11 | 48.69 | 51.62 |
Water Inlet Height (cm) | Flow Rate (L/s) | Inclination | ||
---|---|---|---|---|
20° | 24° | 28° | ||
20 | 16.5 | 3.42 | 3.26 | 3.06 |
25 | 24.5 | 3.48 | 3.29 | 3.13 |
30 | 32.9 | 3.49 | 3.18 | 2.99 |
35 | 40.9 | 3.01 | 2.52 | 2.34 |
40 | 47.9 | 2.37 | 2.25 | 2.13 |
1-Blade | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 27.07 | 40.37 | 53.69 | 54.47 | 48.82 |
24° | 25.08 | 38.30 | 48.04 | 44.42 | 45.54 |
28° | 37.75 | 35.27 | 44.51 | 41.31 | 42.85 |
2-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 51.05 | 76.85 | 101.90 | 102.97 | 86.85 |
24° | 48.66 | 72.20 | 91.47 | 83.70 | 81.45 |
28° | 45.87 | 67.76 | 84.52 | 77.40 | 75.81 |
3-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 77.20 | 117.18 | 151.00 | 152.60 | 123.61 |
24° | 68.79 | 109.65 | 136.23 | 124.69 | 117.57 |
28° | 64.22 | 102.73 | 125.80 | 113.98 | 110.15 |
1-Blade | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 24% | 25% | 24% | 20% | 15% |
24° | 19% | 20% | 18% | 14% | 12% |
28° | 15% | 16% | 14% | 11% | 10% |
2-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 46% | 47% | 45% | 37% | 27% |
24° | 37% | 37% | 34% | 26% | 21% |
28° | 30% | 30% | 27% | 20% | 17% |
3-Blades | |||||
Inclination | Flow (Q) | ||||
16.5 L/s | 24.5 L/s | 32.9 L/s | 40.9 L/s | 47.9 L/s | |
20° | 70% | 71% | 66% | 55% | 38% |
24° | 52% | 56% | 50% | 38% | 31% |
28° | 42% | 46% | 40% | 30% | 25% |
Response Variables | Response Variable Values | Independent Variables | ||
---|---|---|---|---|
Number of Blades | Inclination Angle | Flow Rate (L/s) | ||
Torque | 52.06 N-m | 3 | 20° | 47.9 |
Mechanical power | 151 W | 3 | 20° | 32.9 |
Efficiency | 71% | 3 | 20° | 24.5 |
Parameter | Value |
---|---|
Slope (β) | 24.9° |
Outer diameter () | 0.146 m |
Inner diameter () | 0.0803 m |
Pitch | 0.146 m |
Number of flights | 3 |
Screw length () | 0.584 m |
Gap width () | 0.762 mm |
Rotation speed () | 10 rad/s |
Flow rate () | 1.13 L/s |
Head () | 0.25 m |
Model | Mechanical Power | Absolute Error | Relative Error |
---|---|---|---|
Numerical simulation | 2.54 W | --- | --- |
Model data by Lubitz et al. [43] | 2.50 W | 0.04 W | 1.6% |
Experimental data by Lubitz et al. [43] | 2.20 W | 0.34 W | 15.4% |
Blades | Total Pressure (Pa) | Static Pressure (Pa) | Dynamic Pressure (Pa) |
---|---|---|---|
1 | 320 | 234 | 86 |
2 | 328 | 241 | 87 |
3 | 340 | 253 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohedano-Castillo, M.F.; Díaz-Delgado, C.; López-Rebollar, B.M.; Salinas-Tapia, H.; Posadas-Bejarano, A.; Rojas Valdez, D. Micro-Hydropower Generation Using an Archimedes Screw: Parametric Performance Analysis with CFD. Fluids 2025, 10, 264. https://doi.org/10.3390/fluids10100264
Mohedano-Castillo MF, Díaz-Delgado C, López-Rebollar BM, Salinas-Tapia H, Posadas-Bejarano A, Rojas Valdez D. Micro-Hydropower Generation Using an Archimedes Screw: Parametric Performance Analysis with CFD. Fluids. 2025; 10(10):264. https://doi.org/10.3390/fluids10100264
Chicago/Turabian StyleMohedano-Castillo, Martha Fernanda, Carlos Díaz-Delgado, Boris Miguel López-Rebollar, Humberto Salinas-Tapia, Abad Posadas-Bejarano, and David Rojas Valdez. 2025. "Micro-Hydropower Generation Using an Archimedes Screw: Parametric Performance Analysis with CFD" Fluids 10, no. 10: 264. https://doi.org/10.3390/fluids10100264
APA StyleMohedano-Castillo, M. F., Díaz-Delgado, C., López-Rebollar, B. M., Salinas-Tapia, H., Posadas-Bejarano, A., & Rojas Valdez, D. (2025). Micro-Hydropower Generation Using an Archimedes Screw: Parametric Performance Analysis with CFD. Fluids, 10(10), 264. https://doi.org/10.3390/fluids10100264