Study on the Spreading Dynamics of Droplet Pairs near Walls
Abstract
1. Introduction
2. Mathematical Model and Numerical Method
Governing Equations
3. Model Validation
3.1. Computational Zone
3.2. Grid Size Independence
3.3. Computational Model Validation
4. Results
4.1. Influence of Surface Wettability on Droplet Impact Dynamics
4.2. Effect of Weber Number on Droplet Impact Dynamics
4.3. Effect of Droplet Volume Ratio on Droplet Impact Dynamics
4.4. Mathematical Analyses on Droplet Impact Dynamics
5. Conclusions
- (1)
- Under constant volume ratio and Weber number, droplet impact dynamics are highly sensitive to surface wettability. Hydrophilic surfaces (θ = 60°) promote maximum spreading and coalescence, while superhydrophobic surfaces (θ = 160°) induce complete rebound due to weak solid–liquid adhesion. Increased wettability reduces contact area and droplet height, with rebound occurring within 10 ms for θ = 160°, demonstrating wettability’s critical role in droplet retraction and energy dissipation.
- (2)
- Under constant volume ratio and moderate wettability, the Weber number (We) significantly influences droplet impact dynamics: higher We value accelerate coalescence, delay spreading coefficient onset, and enhance maximum spreading due to increased kinetic energy, resulting in more flattened disk-like configurations with larger contact areas.
- (3)
- The volume ratio critically governs droplet impact dynamics: higher ratios enhance upper droplet momentum, accelerating coalescence and retraction while reducing spreading length due to rebound tendency, whereas lower ratios promote wall-aligned spreading with greater contact area, as the stationary droplet dominates momentum transfer.
- (4)
- A mathematical model is developed, demonstrating close agreement between numerical simulations and theoretical predictions. Analysis under logarithmic coordinates reveals that the contact angle exerts a significant influence on spreading length, while a constant contact angle condition yields a slight monotonic increase in spreading length with the Weber number.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lohse, D. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 2022, 54, 349–382. [Google Scholar] [CrossRef]
- Wijshoff, H. Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 2018, 36, 20–27. [Google Scholar] [CrossRef]
- Shi, H.; Kleinstreuer, C. Simulation and analysis of high-speed droplet spray dynamics. J. Fluids Eng. 2007, 129, 621–633. [Google Scholar] [CrossRef]
- Sharma, N.; Bachalo, W.D.; Agarwal, A.K. Spray droplet size distribution and droplet velocity measurements in a firing optical engine. Phys. Fluids 2020, 32, 023304. [Google Scholar] [CrossRef]
- Edwards, B.F.; Wilder, J.W.; Scime, E.E. Dynamics of falling raindrops. Eur. J. Phys. 2001, 22, 113. [Google Scholar] [CrossRef]
- Sultana, K.R.; Pope, K.; Lam, L.S.; Muzychka, Y.S. Phase change and droplet dynamics for a free falling water droplet. Int. J. Heat Mass Transf. 2017, 115, 461–470. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Graham, P.J.; Farhangi, M.M.; Dolatabadi, A. Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys. Fluids 2012, 24, 112105. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Lee, C.; Jadidi, M. An introduction of droplet impact dynamics to engineering students. Fluids 2020, 5, 107. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef]
- Tang, C.; Qin, M.; Weng, X.; Zhang, X.; Zhang, P.; Li, J.; Huang, Z. Dynamics of droplet impact on solid surface with different roughness. Int. J. Multiph. Flow 2017, 96, 56–69. [Google Scholar] [CrossRef]
- Chen, X.; Du, A.; Liang, K.; Li, Z.; Zhang, M.; Yang, C.; Wang, X. Interaction between droplet impact and surface roughness considering the effect of vibration. Int. J. Heat Mass Transf. 2024, 220, 125018. [Google Scholar] [CrossRef]
- Xia, L.; Chen, F.; Yang, Z.; Liu, T.; Tian, Y.; Zhang, D. Droplet impact dynamics on superhydrophobic surfaces with convex hemispherical shapes. Int. J. Mech. Sci. 2024, 264, 108824. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Liu, X.; Wu, X.; Song, Q.; Min, J.; Ji, B.; Wang, S.; Zhao, J. Droplet impact dynamics on different wettable surfaces at moderate Weber numbers. Colloids Surf. A Physicochem. Eng. Asp. 2024, 695, 134250. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, X.; Yang, G.; Weigand, B. Simulation and analytical modeling of high-speed droplet impact onto a surface. Phys. Fluids 2024, 36, 012137. [Google Scholar] [CrossRef]
- Wei, B.J.; Liu, Z.; Shi, S.H.; Gao, S.R.; Wang, Y.F.; Yang, Y.R.; Wang, X.D. Droplet impact outcomes: Effect of wettability and Weber number. Phys. Fluids 2024, 36, 077144. [Google Scholar] [CrossRef]
- Ishikawa, T.; Yamada, Y.; Isobe, K.; Horibe, A. Droplet Impact Behavior on Convex Surfaces with a Circumferential Wettability Difference. Langmuir 2025, 41, 7640–7647. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shi, X.; Liu, J.; Jing, D. Regulation of droplet dynamic behavior after droplet impact on superhydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133211. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Sun, L.; Zhang, J.; Pang, B.; Zhang, K.; Chen, L. Droplet impact dynamics on a flexible superhydrophobic cantilever wire mesh. Surf. Interfaces 2024, 44, 103736. [Google Scholar] [CrossRef]
- Li, D.; Shang, Y.; Wang, X.; Zhang, J. Dynamic behavior of droplet impacting on a moving surface. Exp. Therm. Fluid Sci. 2024, 153, 111126. [Google Scholar] [CrossRef]
- Shi, K.; Huang, J.; Duan, X. An analytical framework for predicting the total freezing delay time of water droplet impact on hydrophobic solid surfaces. Int. J. Therm. Sci. 2024, 196, 108726. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, M.; Huang, Y.; Yu, M.; Liu, C.; Guo, J.; Zheng, Y. Droplet impact on a rapidly spinning superhydrophobic surface: Shortened contact time and reduced collision force. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132741. [Google Scholar] [CrossRef]
- Sheikholeslam Noori, M.; Shams Taleghani, A. Numerical investigation of two-phase flow control based on the coalescence under variation of gravity conditions. Eur. Phys. J. Plus 2024, 139, 1–13. [Google Scholar] [CrossRef]
- Shams Taleghani, A.; Sheikholeslam Noori, M. Numerical investigation of coalescence phenomena, affected by surface acoustic waves. Eur. Phys. J. Plus 2022, 137, 975. [Google Scholar] [CrossRef]
- Taitelbaum, H. Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces. Fluids 2025, 10, 170. [Google Scholar] [CrossRef]
- Ye, Q.; Tiedje, O.; Shen, B.; Domnick, J. Impact of Viscous Droplets on Dry and Wet Substrates for Spray Painting Processes. Fluids 2025, 10, 131. [Google Scholar] [CrossRef]
- Shah, R.; Mohan, R.V. Computational Modeling of Droplet-Based Printing Using Multiphase Volume of Fluid (VOF) Method: Prediction of Flow, Spread Behavior, and Printability. Fluids 2025, 10, 123. [Google Scholar] [CrossRef]
- Mohammad Karim, A. Droplet Contact Line Dynamics after Impact on Solid Surface: Future Perspectives in Healthcare and Medicine. Fluids 2024, 9, 223. [Google Scholar] [CrossRef]
- Lima, B.S.; Sommerfeld, M.; de Souza, F.J. Physical and numerical experimentation of water droplet collision on a wall: A comparison between PLIC and HRIC schemes for the VOF transport equation with high-speed imaging. Fluids 2024, 9, 117. [Google Scholar] [CrossRef]
- Singh, N.; Narsimhan, V. Effect of Droplet Viscosity Ratio and Surfactant Adsorption on the Coalescence of Droplets with Interfacial Viscosity. Fluids 2024, 9, 48. [Google Scholar] [CrossRef]
- Stober, J.L.; Santini, M.; Schulte, K. Influence of Weber number on crown morphology during an oblique droplet impact on a thin wall film. Fluids 2023, 8, 301. [Google Scholar] [CrossRef]
- Noori, M.S.; Taleghani, A.S.; Rahni, M.T. Surface acoustic waves as control actuator for drop removal from solid surface. Fluid Dyn. Res. 2021, 53, 045503. [Google Scholar] [CrossRef]
- Wakefield, J.; Tilger, C.F.; Oehlschlaeger, M.A. The interaction of falling and sessile drops on a hydrophobic surface. Exp. Therm. Fluid Sci. 2016, 79, 36–43. [Google Scholar] [CrossRef]
- Moita, A.S.; Moreira, A.L.N. The deformation of single droplets impacting onto a flat surface. SAE Trans. 2002, 111, 1477–1489. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, J.; Liu, X.; Tian, L. Study on the Spreading Dynamics of Droplet Pairs near Walls. Fluids 2025, 10, 252. https://doi.org/10.3390/fluids10100252
Li J, Yang J, Liu X, Tian L. Study on the Spreading Dynamics of Droplet Pairs near Walls. Fluids. 2025; 10(10):252. https://doi.org/10.3390/fluids10100252
Chicago/Turabian StyleLi, Jing, Junhu Yang, Xiaobin Liu, and Lei Tian. 2025. "Study on the Spreading Dynamics of Droplet Pairs near Walls" Fluids 10, no. 10: 252. https://doi.org/10.3390/fluids10100252
APA StyleLi, J., Yang, J., Liu, X., & Tian, L. (2025). Study on the Spreading Dynamics of Droplet Pairs near Walls. Fluids, 10(10), 252. https://doi.org/10.3390/fluids10100252