Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders
Abstract
:1. Introduction
Antimicrobial Activity against | Flavonoid Examples | General Mechanism of Action | References |
---|---|---|---|
Fungi | 7-hydroxy-3,4-(methylenedioxy) flavan, 6,7,4-trihydroxy-3-5-dimethoxyflavon, 5,5-dihydroxy-8,2,4-trimethoxyflavone, 5,7,4-trihydroxy-3,5-dimethoxyflavone | Induced plasma membrane disruption, inhibition of cell wall formation, mitochondrial dysfunction, inhibition of cell division, inhibition of efflux pumps, inhibition of RNA/DNA, and protein synthesis | [10,11] |
Bacteria | Apigenin, Galangin, Genkwanin, Pinocembrin, Naringin and Naringenin, Epigallocatechin gallate, Luteolin and Luteolin 7-glucoside, Quercetin, 3-O-methylquercetin, Kaempferol | Membrane disruption, biofilm formation, cell envelope synthesis inhibition, electron transport chain, and adenosine triphosphate (ATP) synthesis | [11,12] |
Viruses | Baicalein, Robustaflavon, Hinokiflavon, Demethylated gardenin A, Robinetin, Myricetin, Baicalein, 3,2-dihydroxy flavon, Rutin, Pelargonidin, Leucocyanidin, | Blocked attachment and entry of the virus into cells, interfered with various stages of viral replication processes or translation and polyprotein processing to prevent the release of the viruses to infect other cells | [11,13] |
2. Bioavailability and Toxicity of Flavonoids
3. Mechanism of Action of Flavonoids in Topical Infections
4. Why Nanoencapsulation Is Necessary for Cutaneous Flavonoid Delivery
Nanomedicine: Merits and Demerits
5. How Do Nanocarriers Work to Combat Topical Infectious Disorders
6. Nanocarriers in Their Effective Delivery against Topical Infectious Disorders
6.1. Lipid-Based Nanoparticles
6.1.1. Elastic Liposomes
6.1.2. Nanostructured Lipid Carriers
6.1.3. Solid Lipid Nanoparticles
6.1.4. Nanoemulsions
6.2. Polymer-Based Nanoparticles
6.3. Hydrogels
6.4. Nanofibers
6.5. Inorganic Nanoparticles
7. Challenges Associated with Nanoformulations
7.1. Challenges for Synthesis
7.2. Scale-Up Strategies and Current Good Manufacturing Practices (cGMPs) Processes
7.3. Challenges for Characterizations
7.4. Technology Challenges
7.5. Regulatory Approvals
7.6. Other Clinical Challenges
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aly, R. Microbial Infections of Skin and Nails; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 0963117211. [Google Scholar]
- Tabassum, N.; Hamdani, M. Plants Used to Treat Skin Diseases. Pharmacogn. Rev. 2014, 8, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V. Special Issue “Flavonoids and Their Disease Prevention and Treatment Potential”: Recent Advances and Future Perspectives. Molecules 2020, 25, 4746. [Google Scholar] [CrossRef]
- Bhatnagar, M. Novel Leads from Herbal Drugs for Neurodegenerative Diseases. In Herbal Drugs: Ethnomedicine to Modern Medicine; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Tereschuk, M.L.; Riera, M.V.Q.; Castro, G.R.; Abdala, L.R. Antimicrobial Activity of Flavonoids from Leaves of Tagetes Minuta. J. Ethnopharmacol. 1997, 56, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, T.V.; Lamikanra, A. Investigation of Cassia alata, a Plant Used in Nigeria in the Treatment of Skin Diseases. Pharm. Biol. 1981, 19, 93–96. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.C.; Zhu, J.J.; You, X.M.; Yang, X.Q.; Yin, S.W. Biocompatible Gliadin-Sericin Complex Colloidal Particles Used for Topical Delivery of the Antioxidant Phloretin. Colloids Surf. B Biointerfaces 2023, 225, 113244. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Ghadi, Z.; Vaezi, A.; Ahangarkani, F.; Ilkit, M.; Ebrahimnejad, P.; Badali, H. Potent in Vitro Activity of Curcumin and Quercetin Co-Encapsulated in Nanovesicles without Hyaluronan against Aspergillus and Candida Isolates. J. Mycol. Med. 2020, 30, 101014. [Google Scholar] [CrossRef]
- Al Aboody, M.S.; Mickymaray, S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Lalani, S.; Poh, C.L. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses 2020, 12, 184. [Google Scholar] [CrossRef]
- Turuvekere Vittala Murthy, N.; Agrahari, V.; Chauhan, H. Polyphenols against Infectious Diseases: Controlled Release Nano-Formulations. Eur. J. Pharm. Biopharm. 2021, 161, 66–79. [Google Scholar] [CrossRef]
- Costa, R.; Costa Lima, S.A.; Gameiro, P.; Reis, S. On the Development of a Cutaneous Flavonoid Delivery System: Advances and Limitations. Antioxidants 2021, 10, 1376. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Daniel-da-Silva, A.L.; Oliveira, H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. Micromachines 2022, 13, 1838. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.E.; Hurst, R.D. Polyphenolic Phytochemicals—Just Antioxidants or Much More? Cell Mol. Life Sci. 2007, 64, 2900–2916. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Murray, P.J. Cytokine Signaling Modules in Inflammatory Responses. Immunity 2008, 28, 477–487. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nair, A.B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Flohr, C.; Hay, R. Putting the Burden of Skin Diseases on the Global Map. Br. J. Dermatol. 2021, 184, 189–190. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages. Drug Des. Devel. Ther. 2020, 14, 3271–3289. [Google Scholar] [CrossRef]
- Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS Omega 2023, 8, 19145–19167. [Google Scholar] [CrossRef]
- Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [CrossRef] [PubMed]
- Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development. In Recent Advances in Novel Drug Carrier Systems; Sezer, A.D., Ed.; IntechOpen: Rijeka, Croatia, 2012; p. Ch. 5. [Google Scholar]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Ielciu, I.; Niculae, M.; Pall, E.; Barbălată, C.; Tomuţă, I.; Olah, N.K.; Burtescu, R.F.; Benedec, D.; Oniga, I.; Hanganu, D. Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022, 27, 3988. [Google Scholar] [CrossRef] [PubMed]
- Madan, S.; Nehate, C.; Barman, T.K.; Rathore, A.S.; Koul, V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies. Drug Dev. Ind. Pharm. 2019, 45, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, D.; Jin, Y.; Zhang, W.; Teng, L.; Bunt, C.; Wen, J. Deformable Liposomes by Reverse-Phase Evaporation Method for an Enhanced Skin Delivery of (+)-Catechin. Drug Dev. Ind. Pharm. 2014, 40, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Jøraholmen, M.W.; Johannessen, M.; Gravningen, K.; Puolakkainen, M.; Acharya, G.; Basnet, P.; Škalko-Basnet, N. Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020, 12, 1203. [Google Scholar] [CrossRef]
- de Barros, D.P.C.; Santos, R.; Reed, P.; Fonseca, L.P.; Oliva, A. Design of Quercetin-Loaded Natural Oil-Based Nanostructured Lipid Carriers for the Treatment of Bacterial Skin Infections. Molecules 2022, 27, 8818. [Google Scholar] [CrossRef]
- Elkhateeb, O.M.; Badawy, M.E.I.; Noreldin, A.E.; Abou-Ahmed, H.M.; El-Kammar, M.H.; Elkhenany, H.A. Comparative Evaluation of Propolis Nanostructured Lipid Carriers and Its Crude Extract for Antioxidants, Antimicrobial Activity, and Skin Regeneration Potential. BMC Complement. Med. Ther. 2022, 22, 256. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, J.; Sharma, M. Solid Lipid Nanoparticles for Topical Drug Delivery: Mechanisms, Dosage Form Perspectives, and Translational Status. Curr. Pharm. Des. 2020, 26, 3203–3217. [Google Scholar] [CrossRef] [PubMed]
- Sutthanut, K.; Lu, X.; Jay, M.; Sripanidkulchai, B. Solid Lipid Nanoparticles for Topical Administration of Kaempferia Parviflora Extracts. J. Biomed. Nanotechnol. 2009, 5, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.C.; Nunes, B.R.; De Oliveira, M.C.; Koester, L.S.; Mayorga, P.; Bassani, V.L.; Teixeira, H.F. Development of Topical Nanoemulsions Containing the Isoflavone Genistein. Pharmazie 2009, 64, 32–35. [Google Scholar] [CrossRef]
- Bidone, J.; Argenta, D.F.; Kratz, J.; Pettenuzzo, L.F.; Horn, A.P.; Koester, L.S.; Bassani, V.L.; Simões, C.M.O.; Teixeira, H.F. Antiherpes Activity and Skin/Mucosa Distribution of Flavonoids from Achyrocline Satureioides Extract Incorporated into Topical Nanoemulsions. BioMed Res. Int. 2015, 2015, 238010. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, X.; Ma, X.; Wang, Z. Preparation, Characterization, and Evaluation of Antioxidant Activity and Bioavailability of a Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Buckwheat Flavonoids. Acta Biochim. Biophys. Sin. 2021, 52, 1265–1274. [Google Scholar] [CrossRef]
- Pandit, R.S.; Gaikwad, S.C.; Agarkar, G.A.; Gade, A.K.; Rai, M. Curcumin Nanoparticles: Physico-Chemical Fabrication and Its in Vitro Efficacy against Human Pathogens. 3 Biotech 2015, 5, 991–997. [Google Scholar] [CrossRef]
- Sun, D.; Li, N.; Zhang, W.; Yang, E.; Mou, Z.; Zhao, Z.; Liu, H.; Wang, W. Quercetin-Loaded PLGA Nanoparticles: A Highly Effective Antibacterial Agent In Vitro and Anti-Infection Application In Vivo. J. Nanoparticle Res. 2016, 18, 3. [Google Scholar] [CrossRef]
- Rofeal, M.; El-Malek, F.A.; Qi, X. In Vitro Assessment of Green Polyhydroxybutyrate/Chitosan Blend Loaded with Kaempferol Nanocrystals as a Potential Dressing for Infected Wounds. Nanotechnology 2021, 32, 375102. [Google Scholar] [CrossRef]
- Mohanty, C.; Sahoo, S.K. Curcumin and Its Topical Formulations for Wound Healing Applications. Drug Discov. Today 2017, 22, 1582–1592. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, V.; Agarwal, M.; Pant, A.; Kaur, H.; Rachana; Singh, M. Controllable Transdermal Drug Delivery of Theobroma Cacao Extract Based Polymeric Hydrogel against Dermal Microbial and Oxidative Damage. Food Nutr. Sci. 2019, 10, 1212–1235. [Google Scholar] [CrossRef]
- Arachana, A.; Sri, K.V.; Madhuri, M.; Kumar, C.A. Curcumin Loaded Nano Cubosomal Hydrogel: Preparation, In Vitro Characterization and Antibacterial Activity. Chem. Sci. Trans. 2015, 4, 75–80. [Google Scholar] [CrossRef]
- Soleymani, S.; Zargaran, A.; Farzaei, M.H.; Iranpanah, A.; Heydarpour, F.; Najafi, F.; Rahimi, R. The Effect of a Hydrogel Made by Nigella sativa L. on Acne Vulgaris: A Randomized Double-Blind Clinical Trial. Phyther. Res. 2020, 34, 3052–3062. [Google Scholar] [CrossRef]
- Park, S.N.; Lee, M.H.; Kim, S.J.; Yu, E.R. Preparation of Quercetin and Rutin-Loaded Ceramide Liposomes and Drug-Releasing Effect in Liposome-in-Hydrogel Complex System. Biochem. Biophys. Res. Commun. 2013, 435, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Shin, H.S.; Park, S.N. A Novel PH-Responsive Hydrogel Based on Carboxymethyl Cellulose/2-Hydroxyethyl Acrylate for Transdermal Delivery of Naringenin. Carbohydr. Polym. 2018, 200, 341–352. [Google Scholar] [CrossRef]
- Leena, M.M.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Nanofibers in Food Applications. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 634–650. ISBN 9780128157824. [Google Scholar]
- Kost, B.; Svyntkivska, M.; Brzeziński, M.; Makowski, T.; Piorkowska, E.; Rajkowska, K.; Kunicka-Styczyńska, A.; Biela, T. PLA/β-CD-Based Fibres Loaded with Quercetin as Potential Antibacterial Dressing Materials. Colloids Surf. B Biointerfaces 2020, 190, 110949. [Google Scholar] [CrossRef]
- Ao, F.; Shen, W.; Ge, X.; Wang, L.; Ning, Y.; Ren, H.; Fan, G.; Huang, M. Effects of the Crystallinity on Quercetin Loaded the Eudragit L-100 Electrospun Nanofibers. Colloids Surf. B Biointerfaces 2020, 195, 111264. [Google Scholar] [CrossRef]
- Shababdoust, A.; Zandi, M.; Ehsani, M.; Shokrollahi, P.; Foudazi, R. Controlled Curcumin Release from Nanofibers Based on Amphiphilic-Block Segmented Polyurethanes. Int. J. Pharm. 2020, 575, 118947. [Google Scholar] [CrossRef]
- Zeyohanness, S.S.; Abd Hamid, H.; Zulkifli, F.H. Poly(Vinyl Alcohol) Electrospun Nanofibers Containing Antimicrobial Rhodomyrtus Tomentosa Extract. J. Bioact. Compat. Polym. 2018, 33, 585–596. [Google Scholar] [CrossRef]
- Sutjarittangtham, K.; Sanpa, S.; Tunkasiri, T.; Chantawannakul, P.; Intatha, U.; Eitssayeam, S. Bactericidal Effects of Propolis/Polylactic Acid (PLA) Nanofibres Obtained via Electrospinning. J. Apic. Res. 2014, 53, 109–115. [Google Scholar] [CrossRef]
- Paul, M.; Londhe, V.Y. Pongamia Pinnata Seed Extract-Mediated Green Synthesis of Silver Nanoparticles: Preparation, Formulation and Evaluation of Bactericidal and Wound Healing Potential. Appl. Organomet. Chem. 2019, 33, e4624. [Google Scholar] [CrossRef]
- Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and Their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 15867. [Google Scholar] [CrossRef]
- Nasar, M.Q.; Khalil, A.T.; Ali, M.; Shah, M.; Ayaz, M.; Shinwari, Z.K. Phytochemical Analysis, Ephedra Procera C. A. Mey. Mediated Green Synthesis of Silver Nanoparticles, Their Cytotoxic and Antimicrobial Potentials. Medicina 2019, 55, 369. [Google Scholar] [CrossRef]
- Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, Antimicrobial and Cytotoxic Activities of Gold Nanoparticles Capped with Quercetin. Saudi Pharm. J. 2019, 27, 968–974. [Google Scholar] [CrossRef]
- Vashisth, P.; Nikhil, K.; Pemmaraju, S.C.; Pruthi, P.A.; Mallick, V.; Singh, H.; Patel, A.; Mishra, N.C.; Singh, R.P.; Pruthi, V. Antibiofilm Activity of Quercetin-Encapsulated Cytocompatible Nanofibers against Candida albicans. J. Bioact. Compat. Polym. 2013, 28, 652–665. [Google Scholar] [CrossRef]
- Moradkhannejhad, L.; Abdouss, M.; Nikfarjam, N.; Mazinani, S.; Heydari, V. Electrospinning of Zein/Propolis Nanofibers; Antimicrobial Properties and Morphology Investigation. J. Mater. Sci. Mater. Med. 2018, 29, 1–10. [Google Scholar] [CrossRef]
- Motealleh, B.; Zahedi, P.; Rezaeian, I.; Moghimi, M.; Abdolghaffari, A.H.; Zarandi, M.A. Morphology, Drug Release, Antibacterial, Cell Proliferation, and Histology Studies of Chamomile-Loaded Wound Dressing Mats Based on Electrospun Nanofibrous Poly(ε-Caprolactone)/Polystyrene Blends. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2014, 102, 977–987. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Zaman, S.; Perveen, A.; Jahan, R.A.; Islam, M.F.; Arafat, M.T. Controlled Release of Curcumin from Electrospun Fiber Mats with Antibacterial Activity. J. Drug Deliv. Sci. Technol. 2020, 55, 101386. [Google Scholar] [CrossRef]
- Chirayath, R.B.; Viswanathan, A.; Jayakumar, R.; Biswas, R.; Vijayachandran, L.S. Development of Mangifera indica Leaf Extract Incorporated Carbopol Hydrogel and Its Antibacterial Efficacy against Staphylococcus aureus. Colloids Surf. B Biointerfaces 2019, 178, 377–384. [Google Scholar] [CrossRef]
- Tunit, P.; Thammarat, P.; Okonogi, S.; Chittasupho, C. Hydrogel Containing Borassus flabellifer L. Male Flower Extract for Antioxidant, Antimicrobial, and Anti-Inflammatory Activity. Gels 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, A.A.; Tuncay Tanrıverdi, S.; Aydın Köse, F.; Kart, D.; Eroğlu, İ.; Özer, Ö. Propolis Loaded Liposomes: Evaluation of Antimicrobial and Antioxidant Activities. J. Liposome Res. 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Gharib, A.; Faezizadeh, Z.; Godarzee, M. Therapeutic Efficacy of Epigallocatechin Gallate-Loaded Nanoliposomes against Burn Wound Infection by Methicillin-Resistant Staphylococcus aureus. Skin Pharmacol. Physiol. 2013, 26, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Lee, J.S.; Park, K.D.; Ching, Y.C.; Nguyen, X.T.; Phan, V.H.G.; Thi, T.T.H. Green Silver Nanoparticles Formed by Phyllanthus Urinaria, Pouzolzia Zeylanica, and Scoparia Dulcis Leaf Extracts and the Antifungal Activity. Nanomaterials 2020, 10, 542. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef]
- Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-Propolis Nanoparticle Formulation Demonstrates Anti-Bacterial Activity against Enterococcus faecalis Biofilms. PLoS ONE 2017, 12, e0174888. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, L.; Riaz Rajoka, M.S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; et al. Fungal Silver Nanoparticles: Synthesis, Application and Challenges. Crit. Rev. Biotechnol. 2018, 38, 817–835. [Google Scholar] [CrossRef]
- Ahmad, A.; Ullah, S.; Syed, F.; Tahir, K.; Khan, A.U.; Yuan, Q. Biogenic metal nanoparticles as a potential class of antileishmanial agents: Mechanisms and molecular targets. Nanomedicine 2020, 15, 809–828. [Google Scholar] [CrossRef]
- Mandal, A.; Clegg, J.R.; Anselmo, A.C.; Mitragotri, S. Hydrogels in the Clinic. Bioeng. Transl. Med. 2020, 5, e10158. [Google Scholar] [CrossRef]
- Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-Based Nanodevices as Drug Carriers. Curr. Pharm. Des. 2016, 22, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Gomez Palacios, L.R.; Bracamonte, A.G. Development of nano and microdevices for the next generation of biotechnology, wearables, and miniaturized instrumentation. RSC Adv. 2022, 12, 12806–12822. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, D.; Sun, D.; Gu, J. Current Status of in Vivo Bioanalysis of Nano Drug Delivery Systems. J. Pharm. Anal. 2020, 10, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Chandrasekaran, R. Biogenic Nanoparticles: A Comprehensive Perspective in Synthesis, Characterization, Application and Its Challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Francesko, A.; Petkova, P.; Tzanov, T. Hydrogel Dressings for Advanced Wound Management. Curr. Med. Chem. 2019, 25, 5782–5797. [Google Scholar] [CrossRef] [PubMed]
Type of Nano-Formulation | Flavonoid/Source of Flavonoid Used (Extract Used) | Method of Preparation | Size | Targeted Topical Infection | References |
---|---|---|---|---|---|
Nanofiber | Quercetin | Electrospinning | 550 ± 113 | Candida albicans | [60] |
Propolis | Electrospinning | 419 nm | S. aureus, Staphylococcus epidermidis and Candida albicans | [61] | |
Propolis | Electrospinning | 150–400 nm | S. aureus, S. epidermidis, Proteus mirabilis and E. coli | [55] | |
Camomilla reticutita (L) | D-optimal design | 175 nm | S. aureus, Candida albicans | [62] | |
Curcumin | Electrospinning | 113 ± 31 nm | S. aureus, E. coli | [63] | |
Hydrogel | Mangifera indica leaf extract | Dispersion method | - | S. aureus | [64] |
Borassus flabellifer L. | Dispersion method | - | Cutibacterium acnes | [65] | |
Nigella sativa L. | Dispersion method | - | Acne vulgaris | [47] | |
Liposomes | (+)-catechin | Reverse-phase evaporation | 551.1 ± 53.4 | P. aeruginosa, E. coli | [32] |
Propolis | Modified ethanol injection method | 450.8 ± 40.87 nm | S. aureus, E. faecalis, P. aeruginosa, E. coli | [66] | |
Epigallocatechin gallate | Extrusion method | 93.2 ± 80.22 nm | Wound infection by S. aureus | [67] | |
Curcumin | - | 147 ± 6 nm | S. aureus, S. epidermidis, Enterococcus faecalis, Bacillus cereus, B. subtilis | [5] | |
Zinc oxide nanoparticles | Salvia officinalis L. | Green synthesis | 26.14 nm | C. albicans | [68] |
Silver nanoparticle | Pongamia pinnata | Green synthesis | 20 to 60 nm | S aureus, Escherichia coli, Bacillus subtilis And Pseudomonas aeruginosa | [56] |
Pouzolzia zeylanica | Green synthesis | 5–49 nm | A. niger, A. flavus, and F. oxysporum | [69] | |
Gold nanoparticles | Salix alba L. | Green synthesis | 50–80 nm | S. aureus, A. solani and A. niger | [70] |
Polymeric nanoparticle | Curcumin | Desolvation method | 110 nm | P. aeruginosa, S. aureus | [41] |
Quercetin | Water/oil/water (w/o/w) emulsion–solvent evaporation method | 100–150 nm | E. coli, M. tetragenus | [42] | |
Propolis | Ionic gelation method with modification | 247.1 nm to 512.3 nm | Enterococcus faecalis | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwivedi, K.; Mandal, A.K.; Afzal, O.; Altamimi, A.S.A.; Sahoo, A.; Alossaimi, M.A.; Almalki, W.H.; Alzahrani, A.; Barkat, M.A.; Almeleebia, T.M.; et al. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels 2023, 9, 671. https://doi.org/10.3390/gels9080671
Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, et al. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels. 2023; 9(8):671. https://doi.org/10.3390/gels9080671
Chicago/Turabian StyleDwivedi, Khusbu, Ashok Kumar Mandal, Obaid Afzal, Abdulmalik Saleh Alfawaz Altamimi, Ankit Sahoo, Manal A. Alossaimi, Waleed H. Almalki, Abdulaziz Alzahrani, Md. Abul Barkat, Tahani M. Almeleebia, and et al. 2023. "Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders" Gels 9, no. 8: 671. https://doi.org/10.3390/gels9080671
APA StyleDwivedi, K., Mandal, A. K., Afzal, O., Altamimi, A. S. A., Sahoo, A., Alossaimi, M. A., Almalki, W. H., Alzahrani, A., Barkat, M. A., Almeleebia, T. M., Mir Najib Ullah, S. N., & Rahman, M. (2023). Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels, 9(8), 671. https://doi.org/10.3390/gels9080671