Cellular Automata Modeling of Silica Aerogel Condensation Kinetics
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Cellular Automata Studies
4.2. Experimental
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Borovin, E.; Callone, E.; Ribot, F.; Diré, S. Mechanism and kinetics of oligosilsesquioxane growth in the in situ water production sol-gel route: Dependence on water availability. Eur. J. Inorg. Chem. 2016, 2016, 2166–2174. [Google Scholar] [CrossRef]
- Lee, A.S.; Choi, S.S.; Baek, K.Y.; Hwang, S.S. Hydrolysis kinetics of a sol-gel equilibrium yielding ladder-like polysilsesquioxanes. Inorg. Chem. Commun. 2016, 73, 7–11. [Google Scholar] [CrossRef]
- Endo, H.; Takeda, N.; Unno, M. Synthesis and properties of phenylsilsesquioxanes with ladder and double-decker structures. Organometallics 2014, 33, 4148–4151. [Google Scholar] [CrossRef]
- Kessler, D.; Löwe, H.; Theato, P. Synthesis of defined poly(silsesquioxane)s: Fast polycondensation of trialkoxysilanes in a continuous-flow microreactor. Macromol. Chem. Phys. 2009, 210, 7. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Zhang, W.; Yan, H.; Wang, Y.; Li, M.; Liu, Q. Rapid synthesis and characterization of ambient pressure dried monolithic silica aerogels in ethanol/water co-solvent system. J. Non-Cryst. Solids 2019, 503, 214–223. [Google Scholar] [CrossRef]
- Maximiano, P.; Duares, L.; Simoes, P. Overview of Multiscale Molecular Modeling and Simulation of Silica Aerogels. Ind. Eng. Chem. Res. 2019, 58, 18905. [Google Scholar] [CrossRef]
- Patil, S.P.; Parale, V.G.; Park, H.-H.; Markert, B. Mechanical modeling and simulation of aerogels: A review. Ceram. Int. 2020; in press. [Google Scholar] [CrossRef]
- Rivas Murillo, J.S.; Bachlechner, M.E.; Campo, F.A.; Barbero, E.J. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J. Non-Cryst. Solids 2010, 356, 1325–1331. [Google Scholar] [CrossRef]
- Patil, S.P.; Rege, A.; Itskov, M.; Markert, B. Mechanics of Nanostructured Porous Silica Aerogel Resulting from Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121, 5660–5668. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-S.; Roberts, A.P.; Prévost, J.-H.; Jullien, R.; Scherer, G.W. Mechanical structure-property relationship of aerogels. J. Non-Cryst. Solids 2000, 277, 127–141. [Google Scholar] [CrossRef]
- Ma, H.-S.; Prévost, J.-H.; Jullien, R.; Scherer, G.W. Computer simulation of mechanical structure-property. J. Non-Cryst. Solids 2001, 285, 216–221. [Google Scholar] [CrossRef]
- Gelb, L.D. Simulating Silica Aerogels with a Coarse-Grained Flexible Model and Langevin Dynamics. J. Phys. Chem. C 2007, 111, 15792–15802. [Google Scholar] [CrossRef]
- Ferreiro-Rangel, C.A.; Gelb, L.D. Investigation of the bulk modulus of silica aerogel using molecular dynamics simulations of a coarse-grained model. J. Phys. Chem. B 2013, 117, 7095–7105. [Google Scholar] [CrossRef]
- Ferreiro-Rangel, C.A.; Gelb, L.D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. J. Phys. Chem. B 2015, 119, 8640–8650. [Google Scholar] [CrossRef] [PubMed]
- Morthomas, J.; Gonçalves, W.; Perez, M.; Foray, G.; Martin, C.L.; Chantrenne, P. A novel method to predict the thermal conductivity of nanoporous materials from atomistic simulations. J. Non-Cryst. Solids 2019, 516, 89–98. [Google Scholar] [CrossRef]
- Menshutina, N.; Lebedev, I.; Lebedev, E.; Paraskevopoulou, P.; Chriti, D.; Mitrofanov, I. A cellular automata approach for the modeling of a polyamide and carbon aerogel structure and its properties. Gels 2020, 6, 35. [Google Scholar] [CrossRef]
- Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 1983, 51, 1119. [Google Scholar] [CrossRef]
- Kolb, M.; Botet, R.; Jullien, R. Scaling of kinetically growing clusters. Phys. Rev. Lett. 1983, 51, 1123. [Google Scholar] [CrossRef]
- Hasmy, A.; Anglaret, E.; Foret, M.; Pelous, J.; Jullien, R. Small-angle neutron scattering investigation of long-range correlations in silica aerogels: Simulations and experiments. Phys. Rev. B 1994, 50, 6006–6016. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-S.; Prévost, J.-H.; Scherer, G.W. Elasticity of DLCA model gels with loops. Int. J. Solids Struct. 2002, 39, 4605–4614. [Google Scholar] [CrossRef]
- Borzęcka, N.H.; Nowak, B.; Gac, J.M.; Głaz, T.; Bojarska, M. Kinetics of MTMS-based aerogel formation by the sol-gel method—Experimental results and theoretical description. J. Non-Cryst. Solids 2020, 547, 120310. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Trinh, T.T.; van Santen, R.A.; Jansen, A.P.J. Mechanism of the Initial Stage of Silicate Oligomerization. J. Am. Chem. Soc. 2011, 133, 6613. [Google Scholar] [CrossRef] [PubMed]
- Depla, A.; Lesthaeghe, D.; van Erp, T.S.; Aerts, A.; Houthoofd, K.; Fan, F.; Li, C.; Van Speybroeck, V.; Waroquier, M.; Kirschock, C.E.A.; et al. 29SiNMR and UV-Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Sol-Gel Chemistry. J. Phys. Chem. C 2011, 115, 3562. [Google Scholar] [CrossRef]
- Abdusalamabov, R.; Itskov, M.; Milow, B.; Reichenauer, G.; Rege, A. Investigation of the fractal properties of aerogels by diffusion-limited aggregation models. In Proceedings of the 8th GACM Colloquium on Computational Mechanics: For Young Scientists From Academia and Industry, Kassel, Germany, 28–30 August 2019. [Google Scholar] [CrossRef]
- Nakanishi, K.; Kanamori, K. Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 2005, 15, 3776–3786. [Google Scholar] [CrossRef]
Secondary Particles Concentration (%) | A Parameter | n Parameter | R2 |
---|---|---|---|
1 | 3901.8 | −0.56 | 0.94 |
5 | 761.8 | −0.61 | 0.95 |
12.5 | 90.1 | −0.77 | 1 |
Sample Nr | Molar Ratio | Conc. NH4OH [mol/dm3] | Gel. Time [s] | S.dev [s] | ||||
---|---|---|---|---|---|---|---|---|
MTMS | MeOH | H2O | Oxalic Acid | NH4OH | ||||
1 | 1 | 7.36 | 14.87 | 1.34 | 0.13 | 0.19 | 913.67 | 129.62 |
2 | 1 | 7.36 | 14.93 | 1.34 | 0.07 | 0.09 | 2445.00 | 141.07 |
3 | 1 | 7.36 | 16.52 | 1.49 | 0.15 | 0.20 | 737.67 | 329.82 |
4 | 1 | 7.36 | 18.17 | 1.64 | 0.16 | 0.21 | 540.67 | 147.78 |
5 | 1 | 7.36 | 19.78 | 1.79 | 0.22 | 0.28 | 634.67 | 49.00 |
6 | 1 | 7.36 | 19.82 | 1.79 | 0.18 | 0.22 | 366.00 | 214.00 |
7 | 1 | 7.36 | 19.86 | 1.79 | 0.13 | 0.17 | 966.67 | 15.00 |
8 | 1 | 7.36 | 19.91 | 1.79 | 0.09 | 0.11 | 1411.67 | 128.00 |
9 | 1 | 7.36 | 21.47 | 1.94 | 0.19 | 0.23 | 328.00 | 129.90 |
10 | 1 | 7.36 | 23.08 | 2.09 | 0.26 | 0.30 | 324.00 | 7.94 |
11 | 1 | 7.36 | 23.12 | 2.09 | 0.21 | 0.24 | 301.67 | 158.66 |
12 | 1 | 7.36 | 23.17 | 2.09 | 0.16 | 0.18 | 640.00 | 17.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzęcka, N.H.; Nowak, B.; Pakuła, R.; Przewodzki, R.; Gac, J.M. Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels 2021, 7, 50. https://doi.org/10.3390/gels7020050
Borzęcka NH, Nowak B, Pakuła R, Przewodzki R, Gac JM. Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels. 2021; 7(2):50. https://doi.org/10.3390/gels7020050
Chicago/Turabian StyleBorzęcka, Nina H., Bartosz Nowak, Rafał Pakuła, Robert Przewodzki, and Jakub M. Gac. 2021. "Cellular Automata Modeling of Silica Aerogel Condensation Kinetics" Gels 7, no. 2: 50. https://doi.org/10.3390/gels7020050
APA StyleBorzęcka, N. H., Nowak, B., Pakuła, R., Przewodzki, R., & Gac, J. M. (2021). Cellular Automata Modeling of Silica Aerogel Condensation Kinetics. Gels, 7(2), 50. https://doi.org/10.3390/gels7020050