A Novel Thermosensitive Curcumin-Loaded Hydrogel That Modulates Macrophage M1/M2 Polarization for Osteoarthritis Therapy
Abstract
1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. Synthesis and Characterization
2.1.2. Cur@HBC Exerts the Best Performance in Attenuating OA Development in Mice
2.1.3. Cur@HBC Treatment Preserves Joint Structure and Improves Motor Function in ACLT-Induced Osteoarthritis
2.1.4. Curcumin Alleviates Chondrocytes Apoptosis and Inflammation and Improves Functional Outcome
2.1.5. Curcumin Modulates Macrophage Polarization
2.2. Discussion
3. Conclusions
4. Materials and Methods
4.1. Preparation and Characterization
4.2. Drug Release
4.3. Rheological Characterization
4.4. Cell Culture
4.5. Cell Cytotoxicity
4.6. Cell Apoptosis
4.7. Cell Proliferation
4.8. Inflammatory Factor Tested by ELISA
4.9. Macrophage Polarization
4.10. Animal Model
4.11. Behavioral Assessment
4.12. Micro-CT Analysis
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OA | Osteoarthritis |
| HBC | Hydroxybutyl chitosan |
| BAPC | Bayesian Age–Period–Cohort |
| YLD | Years lived with disability |
| GBD | Global Burden of Disease |
| NSAIDs | Non-steroidal anti-inflammatory drugs |
| ROS | Reactive oxygen species |
| TCM | Traditional Chinese medicine |
| MOFs | Metal–organic frameworks |
| SA | Sodium alginate |
| FBS | Fetal bovine serum |
| ROI | Region of interest |
References
- Ren, J.L.; Yang, J.; Hu, W. The global burden of osteoarthritis knee: A secondary data analysis of a population-based study. Clin. Rheumatol. 2025, 44, 1769–1810. [Google Scholar] [CrossRef]
- Lv, Y.M.; Sui, L.; Lv, H.; Zheng, J.C.; Feng, H.C.; Jing, F.J. Burden of knee osteoarthritis in China and globally from 1992 to 2021, and projections to 2030: A systematic analysis from the Global Burden of Disease Study 2021. Front. Public Health 2025, 13, 1543180. [Google Scholar] [CrossRef]
- Kwon, S.B.; Ku, Y.; Han, H.S.; Lee, M.C.; Kim, H.C.; Ro, D.H. A machine learning-based diagnostic model associated with knee osteoarthritis severity. Sci. Rep. 2020, 10, 15743. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.L.; Chen, Q.; Jiang, T.; Zhang, Y.Q.; Zhang, W.Y.; Doherty, M.; Xie, J.Q.; Liu, K.; Li, J.T.; Wei, J.; et al. Global burden of early-onset osteoarthritis, 1990–2019: Results from the Global Burden of Disease Study 2019. Ann. Rheum. Dis. 2024, 83, 915–925. [Google Scholar] [CrossRef]
- Diekman, B.O.; Loeser, R.F. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthr. Cartil. 2024, 32, 365–371. [Google Scholar] [CrossRef]
- Bhutada, S.; Hoyle, A.; Piuzzi, N.S.; Apte, S.S. Degradomics defines proteolysis information flow from human knee osteoarthritis cartilage to matched synovial fluid and the contributions of secreted proteases ADAMTS5, MMP13 and CMA1 to articular cartilage breakdown. Osteoarthr. Cartil. 2025, 33, 116–127. [Google Scholar] [CrossRef]
- Danalache, M.; Umrath, F.; Riester, R.; Schwitalle, M.; Guilak, F.; Hofmann, U. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling. Acta Biomater. 2024, 181, 297–307. [Google Scholar] [CrossRef]
- Richard, M.J.; Driban, J.B.; McAlindon, T.E. Pharmaceutical treatment of osteoarthritis. Osteoarthr. Cartil. 2023, 31, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.L.; Miller, R.E. Molecular pathogenesis of OA pain: Past, present, and future. Osteoarthr. Cartil. 2024, 32, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Merkely, G.; Chisari, E.; Lattermann, C. Do nonsteroidal anti-inflammatory drugs have a deleterious effect on cartilage repair? A systematic review. Cartilage 2021, 13, S326–S341. [Google Scholar] [CrossRef]
- Gregori, D.; Giacovelli, G.; Minto, C.; Barbetta, B.; Gualtieri, F.; Azzolina, D.; Vaghi, P.; Rovati, L.C. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: A systematic review and meta-analysis. Jama 2018, 320, 2564–2579. [Google Scholar] [CrossRef]
- Liao, T.Y.; Ding, L.; Wu, P.; Zhang, L.; Li, X.C.; Xu, B.; Zhang, H.S.; Ma, Z.Y.; Xioa, Y.C.; Wang, P.M. Chrysin attenuates the NLRP3 inflammasome cascade to reduce synovitis and pain in KOA rats. Drug Des. Dev. Ther. 2020, 14, 3015–3027. [Google Scholar] [CrossRef]
- Kou, L.F.; Huang, H.R.; Tang, Y.Y.; Sun, M.; Li, Y.T.; Wu, J.N.; Zheng, S.M.; Zhao, X.Y.; Chen, D.S.; Luo, Z.C.; et al. Opsonized nanoparticles target and regulate macrophage polarization for osteoarthritis therapy: A trapping strategy. J. Control. Release 2022, 347, 237–255. [Google Scholar] [CrossRef]
- Shakeri, F.; Bibak, B.; Safdari, M.R.; Keshavarzi, Z.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Cellular and molecular mechanisms of curcumin in thyroid gland disorders. Curr. Med. Chem. 2022, 29, 2878–2890. [Google Scholar] [CrossRef]
- Li, J.X.; Yan, Y.C.; Chen, Y.Z.; Fang, Q.L.; Hussain, M.I.; Wang, L.N. Flexible curcumin-loaded Zn-MOF hydrogel for long-term drug release and antibacterial activities. Int. J. Mol. Sci. 2023, 24, 11439. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res. 2023, 37, 1462–1487. [Google Scholar] [CrossRef] [PubMed]
- Swallow, J.; Seidler, K.; Barrow, M. The mechanistic role of curcumin on matrix metalloproteinases in osteoarthritis. Fitoterapia 2024, 174, 105870. [Google Scholar] [CrossRef]
- Bideshki, M.V.; Ghadim, N.J.; Radkhah, N.; Behzadi, M.; Asemani, S.; Jamilian, P.; Zarezadeh, M. The efficacy of curcumin in relieving osteoarthritis: A meta-analysis of meta-analyses. Phytother. Res. 2024, 38, 2875–2891. [Google Scholar] [CrossRef]
- Zeng, L.T.; Yang, T.J.; Yang, K.L.; Yu, G.P.; Li, J.; Xiang, W.; Chen, H. Efficacy and safety of curcumin and curcuma longa extract in the treatment of arthritis: A systematic review and meta-analysis of randomized controlled trial. Front. Immunol. 2022, 13, 891822. [Google Scholar] [CrossRef]
- Panknin, T.M.; Howe, C.L.; Hauer, M.; Bucchireddigari, B.; Rossi, A.M.; Funk, J.L. Curcumin supplementation and human disease: A scoping review of clinical trials. Int. J. Mol. Sci. 2023, 24, 4476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Y.; Jia, W.; Zhang, R.; Wang, X.; Zhang, L. Improving curcumin bioavailability: Targeted delivery of curcumin and loading systems in intestinal inflammation. Food Res. Int. 2024, 196, 115079. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Hou, Y.K.; Chen, M.W.; Yu, X.Z.; Chen, S.Y.; Yue, Y.R.; Guo, X.T.; Chen, J.X.; Zhou, Q. A pH-responsive metal-organic framework for the co-delivery of HIF-2α siRNA and curcumin for enhanced therapy of osteoarthritis. J. Nanobiotechnol 2023, 21, 18. [Google Scholar] [CrossRef]
- Xu, C.; Zhai, Z.J.; Ying, H.; Lu, L.; Zhang, J.; Zeng, Y.M. Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protective effects on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis. J. Nanobiotechnol 2022, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; EI-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; EI-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef]
- Jin, Z.Z.; Chang, B.H.; Wei, Y.L.; Yang, Y.; Zhang, H.; Liu, J.B.; Piao, L.H.; Bai, L.H. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed. Pharmacother. 2022, 151, 113092. [Google Scholar] [CrossRef]
- Qiu, B.; Xu, X.F.; Yi, P.; Hao, Y.R. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. J. Cell. Mol. Med. 2020, 24, 10855–10865. [Google Scholar] [CrossRef]
- Saber, M.M.; Mahmoud, M.M.; Amin, H.M.; Essam, R.M. Therapeutic effects of combining curcumin and swimming in osteoarthritis using a rat model. Biomed. Pharmacother. 2023, 166, 115309. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.Y.; Liu, X.T.; Sun, Y.X.; Dong, X.; Liu, L.; Gu, H.L. Curcumin-alleviated osteoarthritic progression in rats fed a high-fat diet by inhibiting apoptosis and activating autophagy via modulation of MicroRNA-34a. J. Inflamm. Res. 2021, 14, 2317–2331. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.X.; Zhou, W.J.; He, S.; Wang, W.Y.; Huang, H.Y.; Yi, L.B.; Zhang, R.; Chen, J.L.; Zan, X.; You, C.; et al. Intranasal delivery of curcumin nanoparticles improves neuroinflammation and neurological deficits in mice with intracerebral hemorrhage. Small Methods 2024, 8, 2400304. [Google Scholar] [CrossRef]
- Lin, X.J.; Tsao, C.T.; Kyomoto, M.; Zhang, M.Q. Injectable natural polymer hydrogels for treatment of knee osteoarthritis. Adv. Healthc. Mater. 2022, 11, 2101479. [Google Scholar] [CrossRef]
- Guo, J.C.; Yang, Y.J.; Xiang, Y.; Zhang, S.F.; Guo, X.Y. Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis. J. Biomater. Appl. 2024, 39, 96–116. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, Y.; Zhao, Y.L. Beyond drug delivery: Metal–organic framework-derived nanosystems for bone regeneration under complicated pathological microenvironments. Acc. Mater. Res. 2024, 5, 1532–1543. [Google Scholar] [CrossRef]
- Yin, B.H.; Ni, J.G.; Witherel, C.E.; Yang, M.; Burdick, J.A.; Wen, C.Y.; Wong, S.H.D. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics. Theranostics 2022, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.H.; Lin, Y.P.; Zhu, C.C.; Chen, Y.P.; Lin, R.M.; Lin, H.C.; Liu, D.H.; Guan, D.G.; Yu, B.; Wang, J.; et al. Zwitterion-Lubricated Hydrogel Microspheres Encapsulated with Metformin Ameliorate Age-Associated Osteoarthritis. Adv. Sci. 2024, 11, 2402477. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 26, 1921–1971. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhu, C.F.; Liu, H.C.; Zhu, J.M. Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives. Des. Monomers Polym. 2022, 25, 75–88. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Ohar, H.; Budkowski, A.; Lazzara, G. Molecular design and role of the dynamic hydrogen bonds and hydrophobic interactions in temperature-switchable polymers: From understanding to applications. Polymers 2025, 17, 1580. [Google Scholar] [CrossRef]
- Peng, Y.; Ao, M.Y.; Dong, B.H.; Jiang, Y.X.; Yu, L.Y.; Chen, Z.M.; Hu, C.J.; Xu, R.C. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Jiang, D.C.; Yang, M.Z.; Tao, J.; Hu, X.; Yang, X.; Zeng, Y. Emerging roles of macrophage polarization in osteoarthritis: Mechanisms and therapeutic strategies. Orthop. Surg. 2024, 16, 532–550. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zuo, Z.; Kuang, Y.Y. An emerging target in the battle against osteoarthritis: Macrophage polarization. Int. J. Mol. Sci. 2020, 21, 8513. [Google Scholar] [CrossRef]
- Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 53, 676–688. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Kong, M.; An, Y.; Liu, Y.; Li, J.J.; Zhou, X.; Feng, C.; Li, J.; Jiang, S.Y.; Cheng, X.J.; et al. Hydroxybutyl chitosan thermo-sensitive hydrogel: A potential drug delivery system. J. Mater. Sci. 2013, 48, 5614–5623. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, Y.; Li, S.; Huang, Z.; Yu, Z.; Liu, H.; Wu, W.; Xu, Q.; Chen, K.; Huang, J. A Novel Thermosensitive Curcumin-Loaded Hydrogel That Modulates Macrophage M1/M2 Polarization for Osteoarthritis Therapy. Gels 2026, 12, 7. https://doi.org/10.3390/gels12010007
Zhou Y, Li S, Huang Z, Yu Z, Liu H, Wu W, Xu Q, Chen K, Huang J. A Novel Thermosensitive Curcumin-Loaded Hydrogel That Modulates Macrophage M1/M2 Polarization for Osteoarthritis Therapy. Gels. 2026; 12(1):7. https://doi.org/10.3390/gels12010007
Chicago/Turabian StyleZhou, Yuanyuan, Shengsheng Li, Zitong Huang, Zhongjia Yu, Hang Liu, Wanshan Wu, Qiao Xu, Keyun Chen, and Jun Huang. 2026. "A Novel Thermosensitive Curcumin-Loaded Hydrogel That Modulates Macrophage M1/M2 Polarization for Osteoarthritis Therapy" Gels 12, no. 1: 7. https://doi.org/10.3390/gels12010007
APA StyleZhou, Y., Li, S., Huang, Z., Yu, Z., Liu, H., Wu, W., Xu, Q., Chen, K., & Huang, J. (2026). A Novel Thermosensitive Curcumin-Loaded Hydrogel That Modulates Macrophage M1/M2 Polarization for Osteoarthritis Therapy. Gels, 12(1), 7. https://doi.org/10.3390/gels12010007

