Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering
Abstract
1. Introduction
2. Gelation Mechanism and Preparation Methods of SA-Based Hydrogels
2.1. Gelation Mechanism
2.1.1. Ionic Crosslinking
2.1.2. Covalent Crosslinking
2.1.3. Physical Crosslinking
2.1.4. Comparison of Three Gelation Mechanism
2.2. Preparation Forms of SA-Based Hydrogels
2.2.1. Traditional SA-Based Hydrogels
2.2.2. SA Hydrogel Microspheres
2.2.3. 3D-Printed SA Hydrogel Scaffolds
3. Performance Optimization Strategies for SA-Based Hydrogels
3.1. Mechanical Property Enhancement
3.1.1. Combining Polymers
3.1.2. Reinforcement Nanomaterials
3.1.3. Constructing Dynamic Cross-Linking Networks
3.2. Functionalization Modification
3.2.1. Intelligent Responsive Modification
3.2.2. Surface Functionalization
3.2.3. Drug Loading and Controlled Release Design
3.3. Regulating Degradability
4. Multifunctional Applications of SA-Based Hydrogels
4.1. Drug Delivery
4.2. Tissue Engineering and Regenerative Medicine
4.3. Biosensing and Diagnostics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapoor, D.U.; Garg, R.; Gaur, M.; Pareek, A.; Prajapati, B.G.; Castro, G.R.; Suttiruengwong, S.; Sriamornsak, P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm. J. 2024, 32, 102002. [Google Scholar] [CrossRef]
- Astaneh, M.E.; Hashemzadeh, A.; Fereydouni, N. Recent advances in sodium alginate-based dressings for targeted drug delivery in the context of diabetic wound healing. J. Mater. Chem. B 2024, 12, 10163–10197. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xiao, H.; Seidi, F.; Jin, Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020, 21, 2983–3006. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, R.; Hu, Y.; Li, M.; You, L.; Wang, S. Fermentation-inspired macroporous and tough gelatin/sodium alginate hydrogel for accelerated infected wound healing. Int. J. Biol. Macromol. 2024, 268, 131905. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Liu, C.; Lu, Z.; Li, M.; Hurren, C.; Wang, D. Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int. J. Biol. Macromol. 2024, 260, 129428. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- He, X.; Zeng, L.; Cheng, X.; Yang, C.; Chen, J.; Chen, H.; Ni, H.; Bai, Y.; Yu, W.; Zhao, K.; et al. Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose. Eur. Polym. J. 2021, 156, 110592. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Sun, Y.; Zhao, S.; Feng, M.; Xu, G.; Zhu, H.; Ji, P.; Mao, H.; He, Y.; et al. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr. Polym. 2021, 261, 117870. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, Z.; Bai, L.; Ye, H.; Ye, H.; Wang, Y.; Gao, Y.; Chen, T.; Chen, H.; Liu, Y.; et al. Bioactive Peptide-Based Composite Hydrogel for Myocardial Infarction Treatment: ROS Scavenging and Angiogenesis Regulation. Acta Biomater. 2025, 197, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, X.-D.; Chen, Z.-Q.; Hu, C.; Wang, Y.-B. Recent advances in the application of Injectable hydrogels for myocardial infarction. Biomed. Eng. Commun. 2025, 4, 21–28. [Google Scholar] [CrossRef]
- Huan, Z.; Li, J.; Cao, X.; Lu, M.; Yu, Y.; Li, L. Injectable self-healing hydrogels loaded with islet-integrated microfiber scaffolds for islet transplantation in diabetes mellitus. Sci. Bull. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, X.; Sun, G.; Yu, M.; Qin, J.; Zhang, Y.; Ding, D. Advances in cancer diagnosis and therapy by alginate-based multifunctional hydrogels: A review. Int. J. Biol. Macromol. 2024, 283, 137707. [Google Scholar] [CrossRef]
- Peng, L.; Lv, X.; Sun, Y.; Zhang, W.; Shi, B.; Zhou, J. Alginate-collagen fibers composite biomass material for ultra-rapid recovery of strontium from contaminated water with excellent reusability. J. Hazard. Mater. 2025, 491, 137938. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Mao, S.; Ren, Y.; Wei, C.; Chen, S.; Ye, X.; Jinhu, T. Development of novel EGCG/Fe loaded sodium alginate-based packaging films with antibacterial and slow-release properties. Food Hydrocoll. 2023, 145, 109032. [Google Scholar] [CrossRef]
- Hoque, M.; Babu, R.P.; McDonagh, C.; Jaiswal, S.; Tiwari, B.K.; Kerry, J.P.; Pathania, S. Pectin/sodium alginate-based active film integrated with microcrystalline cellulose and geraniol for food packaging applications. Int. J. Biol. Macromol. 2024, 271, 132414. [Google Scholar] [CrossRef]
- Shaikh, M.A.J.; Alharbi, K.S.; Almalki, W.H.; Imam, S.S.; Albratty, M.; Meraya, A.M.; Alzarea, S.I.; Kazmi, I.; Al-Abbasi, F.A.; Afzal, O.; et al. Sodium alginate based drug delivery in management of breast cancer. Carbohydr. Polym. 2022, 292, 119689. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Shahid, M.A.; Hossain, M.T.; Sheikh, M.S.; Rahman, M.S.; Uddin, N.; Rahim, A.; Khan, R.A.; Hossain, I. Sources, extractions, and applications of alginate: A review. Discov. Appl. Sci. 2024, 6, 443. [Google Scholar] [CrossRef]
- Lan, M.; Zhang, J.; Zhou, J.; Gu, H. CQDs-Cross-Linked Conductive Collagen/PAA-Based Nanocomposite Organohydrogel Coupling Flexibility with Multifunctionality for Dual-Modal Sensing of Human Motions. ACS Appl. Mater. Interfaces 2024, 16, 23838–23854. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.O.; Derkach, S.R.; Khair, T.; Kazantseva, M.A.; Zuev, Y.F.; Zueva, O.S. Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers 2023, 15, 1243. [Google Scholar] [CrossRef]
- Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, X.; Meng, G.; Xu, T.; Shu, J.; Zhao, J.; He, J.; Wu, F. Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2024, 16, 178–189. [Google Scholar] [CrossRef]
- Zare, P.; Pezeshki-Modaress, M.; Davachi, S.M.; Zare, P.; Yazdian, F.; Simorgh, S.; Ghanbari, H.; Rashedi, H.; Bagher, Z. Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering. Carbohydr. Polym. 2021, 266, 118123. [Google Scholar] [CrossRef]
- Ohm, Y.; Pan, C.; Ford, M.J.; Huang, X.; Liao, J.; Majidi, C. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 2021, 4, 185–192. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhong, H.; Guo, M.; Chen, X.; Lu, Y. Construction of a non-toxic interpenetrating network hydrogel drug carrier supported by carbon microspheres and nanocellulose. Carbohydr. Polym. 2025, 350, 123035. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xia, Y.; Zhao, X.; Xue, Z.; Sui, K.; Dong, X.; Wang, D. Cooking-Inspired Versatile Design of an Ultrastrong and Tough Polysaccharide Hydrogel through Programmed Supramolecular Interactions. Adv. Mater. 2019, 31, 1902381. [Google Scholar] [CrossRef]
- Valentin, T.M.; Landauer, A.K.; Morales, L.C.; DuBois, E.M.; Shukla, S.; Liu, M.; Stephens Valentin, L.H.; Franck, C.; Chen, P.-Y.; Wong, I.Y. Alginate-graphene oxide hydrogels with enhanced ionic tunability and chemomechanical stability for light-directed 3D printing. Carbon 2019, 143, 447–456. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, Y.; Zhang, X.; Lin, X.; Wang, L. Design of mechanically strong and tough alginate hydrogels based on a soft-brittle transition. Int. J. Biol. Macromol. 2019, 139, 850–857. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Lee, W.; Han, E.J.; Ahn, G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chem. Eng. J. 2020, 391, 123823. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Chen, J.; Guo, J.; Yuan, M.; Wan, G.; Yan, C.; Li, W.; Machens, H.-G.; Rinkevich, Y.; et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int. J. Biol. Macromol. 2022, 202, 657–670. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Huang, L. Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: A pilot study in vitro. Biotechnol. Biotechnol. Equip. 2017, 31, 766–773. [Google Scholar] [CrossRef]
- Barba, A.A.; Lamberti, G.; Rabbia, L.; Grassi, M.; Larobina, D.; Grassi, G. Modeling of the reticulation kinetics of alginate/pluronic blends for biomedical applications. Mater. Sci. Eng. C 2014, 37, 327–331. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, Z.; Liu, J.; Wang, Y.; Huang, L.; Liu, M.; Bai, L.; Gao, Y.; Ye, H.; Chen, H.; et al. Bioactive Peptide-Based Electroactive Hydrogels for Myocardial Infarction Treatment via Electrical and Microenvironmental Regulation. ACS Appl. Mater. Interfaces 2025, 17, 32066–32080. [Google Scholar] [CrossRef]
- Li, B.-H.; Jiang, J.-G.; Du, S.-W.; Cheng, H.-J.; Song, Y.-N.; Shi, W.; Yang, D.-L. Biomimetic fibril-like injectable hydrogels for wound management. Biomed. Eng. Commun. 2024, 3, 7–11. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Huang, L.; Xu, X.; He, S.; Wang, Z.; Liu, W.; Yao, Y.; Yang, L.; Hu, C.; et al. Microenvironment-Regulated Hydrogels Prepared with a Brand-New Small Molecule Cross-Linker for Stepwise Treatment of Myocardial Infarction. Adv. Healthc. Mater. 2025, 14, 2500804. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Chen, L.; Li, B.; Quan, C.; Wu, J. Applications of oxidized alginate in regenerative medicine. J. Mater. Chem. B 2021, 9, 2785–2801. [Google Scholar] [CrossRef] [PubMed]
- Reakasame, S.; Boccaccini, A.R. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules 2018, 19, 3–21. [Google Scholar] [CrossRef]
- Ghorbani, M.; Vasheghani-Farahani, E.; Azarpira, N.; Hashemi-Najafabadi, S.; Ghasemi, A. Dual-crosslinked in-situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering. Biomater. Adv. 2023, 153, 213565. [Google Scholar] [CrossRef]
- Xiao, G.; Li, F.; Li, Y.; Chen, C.; Chen, C.; Liu, Q.; Chen, W. A novel biomass material composite hydrogel based on sodium alginate. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129383. [Google Scholar] [CrossRef]
- Sharma, R.; Malviya, R.; Singh, S.; Prajapati, B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023, 9, 430. [Google Scholar] [CrossRef]
- Tan, J.; Li, J.; Zhang, Y.; Li, X.; Han, S.; Li, Z.; Zhou, X. Application of photocrosslinked gelatin, alginate and dextran hydrogels in the in vitro culture of testicular tissue. Int. J. Biol. Macromol. 2024, 260, 129498. [Google Scholar] [CrossRef]
- Tavafoghi, M.; Sheikhi, A.; Tutar, R.; Jahangiry, J.; Baidya, A.; Haghniaz, R.; Khademhosseini, A. Engineering Tough, Injectable, Naturally Derived, Bioadhesive Composite Hydrogels. Adv. Healthc. Mater. 2020, 9, 1901722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, J.; Liu, R.; Cheng, J.; Yuan, Y.; Mao, W.; Zhou, J.; He, H.; Liu, Q.; Tan, W.; et al. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact. Mater. 2024, 37, 51–71. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, F.; Long, L.; Kong, Q.; Luo, R.; Wang, Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release 2020, 324, 204–217. [Google Scholar] [CrossRef]
- Troncoso-Afonso, L.; Henríquez-Banegas, Y.M.; Vinnacombe-Willson, G.A.; Gutierrez, J.; Gallastegui, G.; Liz-Marzán, L.M.; García-Astrain, C. Using thiol–ene click chemistry to engineer 3D printed plasmonic hydrogel scaffolds for SERS biosensing. Biomater. Sci. 2025, 13, 2936–2950. [Google Scholar] [CrossRef] [PubMed]
- Oki, Y.; Kirita, K.; Ohta, S.; Ohba, S.; Horiguchi, I.; Sakai, Y.; Ito, T. Switching of Cell Proliferation/Differentiation in Thiol–Maleimide Clickable Microcapsules Triggered by in Situ Conjugation of Biomimetic Peptides. Biomacromolecules 2019, 20, 2350–2359. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, D.; Chen, X.; Liu, M. Self-Cross-Linked Oxidized Sodium Alginate/Gelatin/Halloysite Hydrogel as Injectable, Adhesive, Antibacterial Dressing for Hemostasis. ACS Sustain. Chem. Eng. 2024, 12, 11739–11753. [Google Scholar] [CrossRef]
- Xu, G.; Xiao, Y.; Cheng, L.; Zhou, R.; Xu, H.; Chai, Y.; Lang, M. Synthesis and rheological investigation of self-healable deferoxamine grafted alginate hydrogel. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 856–865. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, W.; Ning, F.; Zhen, J.; Qiang, H.; Zhang, Y.; Liu, F.; Jia, Z. Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility. Polymers 2022, 14, 4063. [Google Scholar] [CrossRef]
- Goswami, M.; Dutta, A.; Kulshreshtha, R.; Vasilyev, G.; Zussman, E.; Volokh, K. Mechanics of Physically Cross-Linked Hydrogels: Experiments and Theoretical Modeling. Macromolecules 2025, 58, 4478–4487. [Google Scholar] [CrossRef]
- Chen, W.; Li, N.; Ma, Y.; Minus, M.L.; Benson, K.; Lu, X.; Wang, X.; Ling, X.; Zhu, H. Superstrong and Tough Hydrogel through Physical Cross-Linking and Molecular Alignment. Biomacromolecules 2019, 20, 4476–4484. [Google Scholar] [CrossRef]
- Cui, W.; Zheng, Y.; Zhu, R.; Mu, Q.; Wang, X.; Wang, Z.; Liu, S.; Li, M.; Ran, R. Strong Tough Conductive Hydrogels via the Synergy of Ion-Induced Cross-Linking and Salting-Out. Adv. Funct. Mater. 2022, 32, 2204823. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Y.; Zhou, X.; Liu, E.; Xu, S. Mechanically tunable ion-crosslinked alginate-based gradient hydrogels by electrolysis-electrophoresis method. Carbohydr. Polym. 2022, 289, 119473. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Huang, Y.; Hu, M.; Wang, Y.; Wang, H.; Chen, H.; Ma, L.; Zhang, Y.; Dai, H. Biopolymer-Based Hydrogel Beads with Enhanced Stability and pH/Ion-Responsive Controlled Release through a Dual-Cross-Linking Strategy. Biomacromolecules 2025. [Google Scholar] [CrossRef]
- Khan, M.J.; Zhang, J.; Guo, Q. Covalent/crystallite cross-linked co-network hydrogels: An efficient and simple strategy for mechanically strong and tough hydrogels. Chem. Eng. J. 2016, 301, 92–102. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Wu, Y.; Wang, Z.; Liu, X.; Hu, Q.; Yang, L.; Hu, C.; Wang, Y. ROS-triggered biomimetic hydrogel soft scaffold for ischemic stroke repair. Biomaterials 2025, 319, 123217. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, K.; Mitragotri, S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Adv. Mater. 2021, 33, 2006362. [Google Scholar] [CrossRef]
- de Paiva Narciso, N.; Navarro, R.S.; Gilchrist, A.E.; Trigo, M.L.M.; Aviles Rodriguez, G.; Heilshorn, S.C. Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks. Adv. Healthc. Mater. 2023, 12, 2301265. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Guo, W.; Bai, L.; Luo, Q.; Kwong Cheng, C.; Zhang, W.; Wu, D.; Hu, C.; Wang, Y. An injectable extracellular matrix-mimicking conductive hydrogel for sequential treatment of ischemic stroke. Chem. Eng. J. 2024, 502, 158039. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, L. Formation of pH-responsive hydrogel beads and their gel properties: Soybean protein nanofibers and sodium alginate. Carbohydr. Polym. 2024, 329, 121748. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Res. Lett. 2016, 11, 184. [Google Scholar] [CrossRef]
- Shuai, F.; Zhang, Y.; Yin, Y.; Zhao, H.; Han, X. Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities. Carbohydr. Polym. 2021, 260, 117777. [Google Scholar] [CrossRef]
- Yu, L.; Sun, Q.; Hui, Y.; Seth, A.; Petrovsky, N.; Zhao, C.-X. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J. Colloid. Interface Sci. 2019, 539, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, X.; Huang, R.; Wang, H.; Lan, P.; Zhao, Y. Prebiotics and Postbiotics Synergistic Delivery Microcapsules from Microfluidics for Treating Colitis. Adv. Sci. 2022, 9, 2104089. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hu, Q.; Wang, T.; Xue, J.; Luo, Y. Alginate hydrogel beads as a carrier of low density lipoprotein/pectin nanogels for potential oral delivery applications. Int. J. Biol. Macromol. 2018, 120, 859–864. [Google Scholar] [CrossRef]
- Lv, Y.; Jiang, M.; Ouyang, Y.; Zheng, X.; Zhang, L.; Yao, J.; Hu, L.; Zhao, J.; Li, Z.; Wang, S. Sodium Butyrate-Loaded Microspheres With Enhanced Bioavailability for Targeted Treatment of Intestinal Barrier Injury. Adv. Healthc. Mater. 2025, 14, 2402773. [Google Scholar] [CrossRef]
- Sun, T.; Li, X.; Shi, Q.; Wang, H.; Huang, Q.; Fukuda, T. Microfluidic Spun Alginate Hydrogel Microfibers and Their Application in Tissue Engineering. Gels 2018, 4, 38. [Google Scholar] [CrossRef]
- Jia, J.; Liu, J.; Shi, W.; Yao, F.; Wu, C.; Liu, X.; Na, J.; Jin, Z.; Xu, C.; Zhang, Q.; et al. Microalgae-loaded biocompatible alginate microspheres for tissue repair. Int. J. Biol. Macromol. 2024, 271, 132534. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, J.; Cheng, Q.; Shionoya, M.; Gao, C.; Wang, R. Oral microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. Sci. Adv. 2024, 10, eado6798. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Silva, P.; Altamirano, C. Microencapsulation of probiotics by efficient vibration technology. J. Microencapsul. 2017, 34, 667–674. [Google Scholar] [CrossRef]
- Kamil, R.Z.; Suwarno, G.C.D.; Hasniah, N.; Dewi, S.; Abduh, S.B.M. Optimizing probiotic orange juice spherification: Effects of sodium alginate, calcium lactate, and hardening time using Box-Behnken. Food Sci. Biotechnol. 2025, 34, 2497–2505. [Google Scholar] [CrossRef]
- Tao, M.; Xu, T. Development and properties of bio-based rice oil microcapsule and its dispersibility in emulsified asphalt. J. Ind. Eng. Chem. 2024, 131, 503–513. [Google Scholar] [CrossRef]
- Moser, P.; Nicoletti, V.R.; Drusch, S.; Brückner-Gühmann, M. Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocoll. 2020, 107, 105929. [Google Scholar] [CrossRef]
- Lee, T.Y.; Choi, T.M.; Shim, T.S.; Frijns, R.A.M.; Kim, S.-H. Microfluidic production of multiple emulsions and functional microcapsules. Lab. A Chip 2016, 16, 3415–3440. [Google Scholar] [CrossRef] [PubMed]
- Almassri, N.; Trujillo, F.J.; Terefe, N.S. Microencapsulation technology for delivery of enzymes in ruminant feed. Front. Vet. Sci. 2024, 11, 1352375. [Google Scholar] [CrossRef]
- Zhu, J.; He, J.; Zhou, J.; Yang, Z.; Li, X.; Li, Y.; You, Z. Recent progress in microencapsulation technology and its applications in petroleum industry. J. Mol. Liq. 2024, 407, 125162. [Google Scholar] [CrossRef]
- Lopez-Mendez, T.B.; Santos-Vizcaino, E.; Pedraz, J.L.; Hernandez, R.M.; Orive, G. Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discov. Today 2021, 26, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Kim, B.-S.; Gao, G. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Mar. Drugs 2021, 19, 708. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Wu, H.; Yang, S.; Zhao, W.; Che, L.; Wang, Y.; Cao, J.; Li, K.; Qian, Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Biomater. Adv. 2023, 152, 213501. [Google Scholar] [CrossRef]
- You, F.; Wu, X.; Zhu, N.; Lei, M.; Eames, B.F.; Chen, X. 3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2016, 2, 1200–1210. [Google Scholar] [CrossRef]
- Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021, 3, 30. [Google Scholar] [CrossRef]
- Bekin, S.; Sarmad, S.; Gürkan, K.; Yenici, G.; Keçeli, G.; Gürdağ, G. Dielectric, thermal, and swelling properties of calcium ion-crosslinked sodium alginate film. Polym. Eng. Sci. 2014, 54, 1372–1382. [Google Scholar] [CrossRef]
- Hazur, J.; Detsch, R.; Karakaya, E.; Kaschta, J.; Teßmar, J.; Schneidereit, D.; Friedrich, O.; Schubert, D.W.; Boccaccini, A.R. Improving alginate printability for biofabrication: Establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020, 12, 045004. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.; Li, Z.; Sun, Y.; Chen, R.; Rehman, S.u.; Xia, H.; Zhang, J.; Ma, K.; Wang, J. Borate bioactive glass enhances 3D bioprinting precision and biocompatibility on a sodium alginate platform via Ca2+ controlled self-solidification. Int. J. Biol. Macromol. 2024, 277, 134338. [Google Scholar] [CrossRef] [PubMed]
- Tabriz, A.G.; Cornelissen, D.-J.; Shu, W. 3D Bioprinting of Complex, Cell-laden Alginate Constructs. In Computer-Aided Tissue Engineering: Methods and Protocols; Rainer, A., Moroni, L., Eds.; Springer: New York, NY, USA, 2021; pp. 143–148. [Google Scholar]
- Setareyi, R.; Hatamian-Zarmi, A.; Mokhtari-Hosseini, Z.-B.; Kianirad, S.; Heidarian, E.; Abbasi-Malati, S.; Feizollahi, N.; Naji, M. Biofabrication and evaluation of 3D printed and cast PCL/collagen-alginate hydrogel tubular scaffolds for urethral tissue engineering. Int. J. Biol. Macromol. 2025, 307, 142143. [Google Scholar] [CrossRef]
- Castanheira, E.J.; Monteiro, L.P.G.; Gaspar, V.M.; Correia, T.R.; Rodrigues, J.M.M.; Mano, J.F. In-Bath 3D Printing of Anisotropic Shape-Memory Cryogels Functionalized with Bone-Bioactive Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 18386–18399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, F.; Li, H.; Wang, C.-F.; Zhang, J.; Chen, S. Interpenetrating network hydrogels via low-temperature frontal polymerization and 3D printing. Chem. Eng. J. 2025, 519, 164775. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Wang, J.; Zhang, F. Recent Advances in Cryogenic 3D Printing Technologies. Adv. Eng. Mater. 2022, 24, 2200245. [Google Scholar] [CrossRef]
- He, Z.; Hu, P.; Li, Z.; Mao, K.; Zheng, J.; Yang, C.Y.; Luo, Y.; Yang, J.; Cao, Z.; Lu, J.; et al. Self-assembled hybrid hydrogel microspheres create a bone marrow-mimicking niche for bone regeneration. Bioact. Mater. 2025, 54, 179–200. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, B.; Xiong, Y.; Tao, R.; Panayi, A.C.; Chen, L.; Tian, W.; Xue, H.; Shi, L.; Zhang, X.; et al. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem. Eng. J. 2021, 426, 130634. [Google Scholar] [CrossRef]
- Xu, C.; Xia, Y.; Zhuang, P.; Liu, W.; Mu, C.; Liu, Z.; Wang, J.; Chen, L.; Dai, H.; Luo, Z. FePSe3-Nanosheets-Integrated Cryogenic-3D-Printed Multifunctional Calcium Phosphate Scaffolds for Synergistic Therapy of Osteosarcoma. Small 2023, 19, 2303636. [Google Scholar] [CrossRef]
- Supramaniam, J.; Adnan, R.; Mohd Kaus, N.H.; Bushra, R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 2018, 118, 640–648. [Google Scholar] [CrossRef]
- Harlen, W.C.; Prakash, S.; Yuliani, S.; Bhandari, B. Characterization of Alginate-Crystalline Nanocellulose Composite Hydrogel as Polyphenol Encapsulation Agent. Food Res. Int. 2024, 195, 114989. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Dong, Y.; Wu, R.; Fu, L.; Tang, W.; Zhang, R.; Zheng, K.; Wu, S.; Zou, X. An oxidized alginate linked tough conjoined-network hydrogel with self-healing and conductive properties for strain sensing. New J. Chem. 2022, 46, 11676–11684. [Google Scholar] [CrossRef]
- Rashidzadeh, B.; Shokri, E.; Mahdavinia, G.R.; Moradi, R.; Mohamadi-Aghdam, S.; Abdi, S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. Int. J. Biol. Macromol. 2020, 154, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ow, V.; Chang, J.J.; Chooi, W.H.; Boo, Y.J.; Tan, R.P.T.; Wong, J.H.M.; Parikh, B.H.; Su, X.; Ng, S.Y.; Loh, X.J.; et al. Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydr. Polym. 2023, 302, 120308. [Google Scholar] [CrossRef] [PubMed]
- Hung, B.P.; Gonzalez-Fernandez, T.; Lin, J.B.; Campbell, T.; Lee, Y.B.; Panitch, A.; Alsberg, E.; Leach, J.K. Multi-peptide presentation and hydrogel mechanics jointly enhance therapeutic duo-potential of entrapped stromal cells. Biomaterials 2020, 245, 119973. [Google Scholar] [CrossRef]
- Dang, L.H.; Doan, P.; Nhi, T.T.Y.; Nguyen, D.T.; Nguyen, B.T.; Nguyen, T.P.; Tran, N.Q. Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int. J. Biol. Macromol. 2021, 185, 592–603. [Google Scholar] [CrossRef]
- Ma, Z.; Song, W.; He, D.; Zhang, X.; He, Y.; Li, H. Smart µ-Fiber Hydrogels with Macro-Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration. Adv. Funct. Mater. 2022, 32, 2113380. [Google Scholar] [CrossRef]
- Song, Y.; Milichko, V.A.; Ding, Z.; Li, W.; Kang, B.; Dou, Y.; Krizkova, S.; Heger, Z.; Li, N. Double Cross-Linked Hydrogel for Intra-articular Injection as Modality for Macrophages Metabolic Reprogramming and Therapy of Rheumatoid Arthritis. Adv. Funct. Mater. 2025, 35, 2502880. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ma, Z.; He, D.; Li, H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact. Mater. 2021, 6, 3692–3704. [Google Scholar] [CrossRef]
- Morshedloo, F.; Khoshfetrat, A.B.; Kazemi, D.; Ahmadian, M. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2950–2960. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhou, R.; Qiao, J.; Liu, J.; Cai, R.; Cheng, X.; Chen, Y. Sodium Alginate/Cellulose Nanofiber/Polyacrylamide Composite Hydrogel Microspheres for Efficient Removal of Heavy Metal from Water. ChemistrySelect 2025, 10, e202405988. [Google Scholar] [CrossRef]
- Wu, X.; Li, H. Incorporation of Bioglass Improved the Mechanical Stability and Bioactivity of Alginate/Carboxymethyl Chitosan Hydrogel Wound Dressing. ACS Appl. Bio Mater. 2021, 4, 1677–1692. [Google Scholar] [CrossRef]
- Xu, J.; Song, W.; Ren, L.; Wu, N.; Zeng, R.; Wang, S.; Wang, Z.; Zhang, Q. Reinforced hydrogel building via formation of alginate-chitosan double network with pH & salt-responsiveness and electric conductivity for soft actuators. Int. J. Biol. Macromol. 2024, 263, 130282. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Z.; Jing, X.; Yi, X.; Zou, J.; Feng, P.; Zhang, H.; Liu, Y. Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy. Carbohydr. Polym. 2024, 335, 122048. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Ma, Z.; Bai, G.; Qin, W.; Li, L.; Hao, D.; Wang, Y.; Yan, J.; Han, X.; Niu, W.; et al. Neurovascularization inhibiting dual responsive hydrogel for alleviating the progression of osteoarthritis. Nat. Commun. 2025, 16, 1390. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, J.; Liu, Y.; Liu, L.; Yu, J.; Fan, Y. Controlled delivery of aspirin from nanocellulose-sodium alginate interpenetrating network hydrogels. Ind. Crops Prod. 2023, 192, 116081. [Google Scholar] [CrossRef]
- Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytönen, V.P. 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 21959–21970. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, F.; Qin, H.; Cui, X.; Wang, L.; Yang, W.; Lu, C.; Zhang, B.; Sun, L. Bright Nanocomposites based on Quantum Dot-Initiated Photocatalysis. Angew. Chem. Int. Ed. 2025, 64, e202415645. [Google Scholar] [CrossRef]
- Macias, E.; Yee-de León, J.F.; Gonzalez-Vilchis, R.A.; Cantoral-Sánchez, A.; Flores-Loera, F.J.; Alvarez, M.M.; Santiago, G.T.-d.; Ray, M.; Madadelahi, M. One-step generation of luminescent core-shell microspheres for cell encapsulation via pulsed operation in centrifugal microfluidics. Microsyst. Nanoeng. 2025, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11, 10644–10653. [Google Scholar] [CrossRef]
- Sun, T.; Ai, F.; Zhu, G.; Wang, F. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications. Chem. Asian J. 2018, 13, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Guo, Z.; Bian, Y.; Zhang, L.; Zhang, J.; Sun, C.; Cui, D.; Lv, W.; Zheng, C.; Huang, W.; Chen, R. Multi-Stimuli-Responsive Carbon Dots with Intrinsic Photochromism and In Situ Radical Afterglow. Adv. Mater. 2024, 36, 2409361. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, X.; Zhang, Y.; Lu, S. pH-induced synergistic changes in color and shape of soft actuator based on degradable carbon dots/sodium alginate gel. Carbohydr. Polym. 2025, 351, 123112. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Mohammadi, R. Synthesizing of pH-sensitive bio-nanocomposite hydrogels based on okra polysaccharide and sodium alginate for targeted colorectal cancer drug delivery with antibacterial and antioxidant properties. Carbohydr. Polym. Technol. Appl. 2025, 11, 100890. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S.A.; Weaver, J.C.; Huebsch, N.; Lee, H.-p.; Lippens, E.; Duda, G.N.; et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 2016, 15, 326–334. [Google Scholar] [CrossRef]
- Guo, W.; Hu, C.; Wang, Y.; Zhang, W.; Zhang, S.; Peng, J.; Wang, Y.; Wu, J. NO-releasing double-crosslinked responsive hydrogels accelerate the treatment and repair of ischemic stroke. Acta Pharm. Sin. B 2025, 15, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, T.; Yuan, Y.; Liu, W.; Tang, X.; Zhang, Y.; Zhou, Y.; Wang, Z.; Zhu, Y.; Pang, Y. L-arginine induced versatile hydrogel with skin adaptiveness and mild photothermal antibacterial activity for dynamic diabetic wound healing. Chem. Eng. J. 2025, 522, 166942. [Google Scholar] [CrossRef]
- Ding, Y.-W.; Li, Y.; Zhang, Z.-W.; Dao, J.-W.; Wei, D.-X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact. Mater. 2024, 38, 95–108. [Google Scholar] [CrossRef]
- Gao, L.T.; Chen, Y.M.; Aziz, Y.; Wei, W.; Zhao, X.Y.; He, Y.; Li, J.; Li, H.; Miyatake, H.; Ito, Y. Tough, self-healing and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate. Carbohydr. Polym. 2024, 330, 121812. [Google Scholar] [CrossRef]
- Huebsch, N.; Arany, P.R.; Mao, A.S.; Shvartsman, D.; Ali, O.A.; Bencherif, S.A.; Rivera-Feliciano, J.; Mooney, D.J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 2010, 9, 518–526. [Google Scholar] [CrossRef]
- Wei, F.-L.; Zhai, Y.; Wang, T.-F.; Zhao, J.-W.; Wang, C.-L.; Tang, Z.; Shen, K.; Wu, H.; Zheng, R.; Du, M.-R.; et al. Stem cell–homing biomimetic hydrogel promotes the repair of osteoporotic bone defects through osteogenic and angiogenic coupling. Sci. Adv. 2024, 10, eadq6700. [Google Scholar] [CrossRef]
- Chou, H.-Y.; Weng, C.-C.; Lai, J.-Y.; Lin, S.-Y.; Tsai, H.-C. Design of an Interpenetrating Polymeric Network Hydrogel Made of Calcium-Alginate from a Thermos-Sensitive Pluronic Template as a Thermal-Ionic Reversible Wound Dressing. Polymers 2020, 12, 2138. [Google Scholar] [CrossRef]
- Kopač, T.; Krajnc, M.; Ručigaj, A. A mathematical model for pH-responsive ionically crosslinked TEMPO nanocellulose hydrogel design in drug delivery systems. Int. J. Biol. Macromol. 2021, 168, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yuan, P.; Wu, B.; Liu, Y.; Hu, C. Advances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels 2023, 9, 662. [Google Scholar] [CrossRef]
- Ji, D.; Park, J.M.; Oh, M.S.; Nguyen, T.L.; Shin, H.; Kim, J.S.; Kim, D.; Park, H.S.; Kim, J. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 2022, 13, 3019. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Virrueta, C.; Zhang, S.; Mao, C.; Wang, J. 4D printing: The spotlight for 3D printed smart materials. Mater. Today 2024, 77, 66–91. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Cao, P.; Tao, L.; Gong, J.; Wang, T.; Wang, Q.; Ju, J.; Zhang, Y. 4D Printing of a Sodium Alginate Hydrogel with Step-Wise Shape Deformation Based on Variation of Crosslinking Density. ACS Appl. Polym. Mater. 2021, 3, 6167–6175. [Google Scholar] [CrossRef]
- Lv, S.; Lian, X.; Feng, H.; Yang, B.; Liu, Z.; Fu, T.; Zhao, L.; Huang, D. Three-step crosslinking dependent self-bending transformation of a nano-spherical mineralized collagen laden 4D printed sodium alginate scaffold for bone regeneration. Carbohydr. Polym. 2025, 355, 123422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, Z.; Hou, Y.; Li, N.; Zhang, Q.; Lin, J.-M. Microfluidic Engineering of Crater–Terrain Hydrogel Microparticles: Toward Novel Cell Carriers. ACS Appl. Mater. Interfaces 2023, 15, 7833–7840. [Google Scholar] [CrossRef]
- Nerger, B.A.; Kashyap, K.; Deveney, B.T.; Lou, J.; Hanan, B.F.; Liu, Q.; Khalil, A.; Lungjangwa, T.; Cheriyan, M.; Gupta, A.; et al. Tuning porosity of macroporous hydrogels enables rapid rates of stress relaxation and promotes cell expansion and migration. Proc. Natl. Acad. Sci. USA 2024, 121, e2410806121. [Google Scholar] [CrossRef]
- Gong, H.; Yang, L.; Li, Y.; Zhang, X.; Zheng, C.; Gan, T.; Yin, S.; Zhang, H.; Hu, C.; Wang, Y. Metal-polyphenol nanocomposite hybrid hydrogel: A multifunctional platform for treating diabetic foot ulcers through metabolic microenvironment reprogramming. Biomaterials 2025, 322, 123414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Wang, Z.; He, S.; Liu, W.; Wu, Y.; Yang, L.; Hu, C.; Wang, Y. Remodeling brain pathological microenvironment to lessen cerebral ischemia injury by multifunctional injectable hydrogels. J. Control. Release 2024, 369, 591–603. [Google Scholar] [CrossRef]
- Günter, E.; Popeyko, O.; Popov, S. Ca-Alginate Hydrogel with Immobilized Callus Cells as a New Delivery System of Grape Seed Extract. Gels 2023, 9, 256. [Google Scholar] [CrossRef]
- Wei, N.; Lv, Z.; Meng, X.; Liang, Q.; Jiang, T.; Sun, S.; Li, Y.; Feng, J. Sodium alginate-carboxymethyl chitosan hydrogels loaded with difenoconazole for pH-responsive release to control wheat crown rot. Int. J. Biol. Macromol. 2023, 252, 126396. [Google Scholar] [CrossRef]
- Zhang, C.W.; Si, M.; Chen, C.; He, P.; Fei, Z.; Xu, N.; He, X. Hierarchical Engineering for Biopolymer-based Hydrogels with Tailored Property and Functionality. Adv. Mater. 2025, 37, 2414897. [Google Scholar] [CrossRef]
- García-Astrain, C.; Avérous, L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr. Polym. 2018, 190, 271–280. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Li, J.; Zhang, N.; Xu, B.; Li, Y.; Ding, N.; Ge, B. Self-assembly and cross-linking preparation of tilapia-skin-derived collagen/alginate hydrogels for efficient wound repairing. Polym. Eng. Sci. 2024, 64, 2146–2156. [Google Scholar] [CrossRef]
- Roquero, D.M.; Bollella, P.; Melman, A.; Katz, E. Nanozyme-Triggered DNA Release from Alginate Films. ACS Appl. Bio Mater. 2020, 3, 3741–3750. [Google Scholar] [CrossRef]
- Che, Z.; Sheng, X.; Sun, Q.; Wu, Y.; Song, K.; Chen, A.; Chen, J.; Chen, Q.; Cai, M. Deferoxamine functionalized alginate-based collagen composite material enhances the integration of metal implant and bone interface. Carbohydr. Polym. 2025, 349, 122944. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, X.; Guo, X.; Zhao, Y.; Tong, M.; Chen, L.; Zhuang, S.; Gu, X. Switchable, Recyclable, and Time-Programmable Hydrogels via Counterion-Engineered Differential Metal-Ion Coordination. Adv. Funct. Mater. 2025, e14481. [Google Scholar] [CrossRef]
- Cui, D.; Sun, Y.; Li, T.; Hu, Z.; Zhao, Y.; Wang, X.; Chen, S.; Toktarbay, Z.; Wei, H. Mechanically robust polyacrylamide/gelatin ionic hydrogels reinforced by sodium alginate for wearable device applications. Adv. Compos. Hybrid. Mater. 2025, 8, 233. [Google Scholar] [CrossRef]
- Siboro, S.A.P.; Anugrah, D.S.B.; Ramesh, K.; Park, S.-H.; Kim, H.-R.; Lim, K.T. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr. Polym. 2021, 260, 117779. [Google Scholar] [CrossRef] [PubMed]
- Andretto, V.; Taurino, G.; Guerriero, G.; Guérin, H.; Lainé, E.; Bianchi, M.G.; Agusti, G.; Briançon, S.; Bussolati, O.; Clayer-Montembault, A.; et al. Nanoemulsions Embedded in Alginate Beads as Bioadhesive Nanocomposites for Intestinal Delivery of the Anti-Inflammatory Drug Tofacitinib. Biomacromolecules 2023, 24, 2892–2907. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.L.; Tran, N.C.T.; Le, Q.-V.; Thach, U.D. Cytotoxicity and pH-Responsive Release Properties of α-Mangostin-Loaded Nano Polydopamine-Alginate Hydrogel. J. Appl. Polym. Sci. 2025, 142, e57025. [Google Scholar] [CrossRef]
- Huang, C.; Xie, T.; Liu, Y.; Yan, S.; OuYang, F.; Zhang, H.; Lei, L.; He, D.; Wei, H.; Yu, C.-Y. A Sodium Alginate-Based Multifunctional Nanoplatform for Synergistic Chemo-Immunotherapy of Hepatocellular Carcinoma. Adv. Mater. 2023, 35, 2301352. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Zhang, D.; Zhou, S.; Liu, X.; Luo, B.; Zhou, C.; Liu, M. Orally administered hydrogel containing polyphenol@halloysite clay for probiotic delivery and treatment of inflammatory bowel disease. Nano Today 2025, 62, 102669. [Google Scholar] [CrossRef]
- Meena, P.; Singh, P.; Warkar, S.G. Degradable pH-Sensitive Calcium-Crosslinked Tragacanth Gum/β-Cyclodextrin/Sodium Alginate Hydrogel Microspheres Prepared via Ionotropic Gelation Technique for Hydrophobic Drug Delivery. J. Polym. Environ. 2025, 33, 928–944. [Google Scholar] [CrossRef]
- Qin, B.-Q.; Wu, S.-Z.; Nie, R.; Zhang, Q.-Y.; Tan, J.; Zhang, H.; Xie, H.-Q. SDF-1α/BMP-12 loaded biphasic sustained-release SIS hydrogel/SA microspheres composite for tendon regeneration. Biomaterials 2025, 320, 123246. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, X.; Wu, M.; Zhu, J.; Wu, Y. Sodium Alginate Hydrogel Infusion of Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles and p38α Antagonistic Peptides in Myocardial Infarction Fibrosis Mitigation. J. Am. Heart Assoc. 2025, 14, e036887. [Google Scholar] [CrossRef]
- Chaerani, M.A.D.; Baraja, H.A.; Putranti, I.N.D.; Reswari, K.E.; Ainurofiq, A. Alginate/collagen hydrogel containing calcium from eggshell waste as a potential diabetic foot ulcer wound dressing. Mater. Today Commun. 2025, 42, 111417. [Google Scholar] [CrossRef]
- Motesadi Zarandi, F.; Alizadeh, P.; Kohoolat, G.; Kaviani, A. Novel multifunctional bioactive glass incorporated alginate/poly(amidoamine) hydrogels with controlled drug release for cartilage tissue regeneration. J. Mater. Sci. 2024, 59, 1550–1569. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Li, P.; Sun, X.; Chen, Z.; Wang, J.; Gu, X.; Wang, X.; Fan, Y. Continuous mechanical-gradient hydrogel with on-demand distributed Mn2+/Mg-doped hydroxyapatite@Fe3O4 for functional osteochondral regeneration. Bioact. Mater. 2025, 49, 608–626. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, Z.; Peng, L.; Wang, X.; Zheng, F.; Su, T.; Huang, Q.; Cao, L.; Zheng, A. Organic-inorganic nHA-Gelatin/Alginate high strength macroporous cryogel promotes bone regeneration. Smart Mater. Med. 2024, 5, 337–347. [Google Scholar] [CrossRef]
- Ming, P.; Liu, Y.; Yu, P.; Jiang, X.; Yuan, L.; Cai, S.; Rao, P.; Cai, R.; Lan, X.; Tao, G.; et al. A Biomimetic Se-nHA/PC Composite Microsphere with Synergistic Immunomodulatory and Osteogenic Ability to Activate Bone Regeneration in Periodontitis. Small 2024, 20, 2305490. [Google Scholar] [CrossRef]
- Xie, K.; Liu, Z.; Wang, Y.; Zhu, L.; Yang, J.; Wang, Y.; Zhang, M. Injectable functionalised Lycium barbarum polysaccharide/alginate hydrogel particles for the treatment of bone defects. Mater. Today Bio 2025, 32, 101919. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, S.; Talebi, A.; Labbaf, S.; Karimzadeh, F. Conductive GelMA/alginate/polypyrrole/graphene hydrogel as a potential scaffold for cardiac tissue engineering; Physiochemical, mechanical, and biological evaluations. Int. J. Biol. Macromol. 2024, 259, 129276. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, Z.; Liu, X.; Ling, Q.; Li, Z.; Gu, H. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 11344–11355. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Fu, W.; Wei, W.; Qian, C.; Ni, G.; Zhu, D. GO-aptamer hydrogel microneedle sensors for the on-site detection of exosomes in interstitial fluid on acupuncture treatment. Biosens. Bioelectron. 2025, 280, 117426. [Google Scholar] [CrossRef]
- Bai, L.; Luo, Q.; Gao, Z.; Wang, Y.; Wu, Y.; Yuan, D.; Liu, M.; Hu, C.; Wang, Y. Bioinspired Conductive Structural Color Hydrogels: A Theragnostic Platform for Spatiotemporal Monitoring and Repair of Myocardial Infarction. Adv. Funct. Mater. 2025, 10548. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Chen, X.; Bai, Y.; Ye, Z.; Zhang, P.; Liu, W.; Liu, X. Hierarchical Conductive Hydrogel for Smart Detection and Killing of Gram-Positive Bacteria in Wound Healing. Biomacromolecules 2025, 26, 6258–6272. [Google Scholar] [CrossRef]
- Xin, J.; Gao, L.; Zhang, W.; Song, X.; Yang, Y.; Li, W.; Zhou, X.; Zhang, H.; Wang, Z.; Wang, Z.; et al. A thermogalvanic cell dressing for smart wound monitoring and accelerated healing. Nat. Biomed. Eng. 2025, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Yan, K.; Yang, C.; Wang, D. Coupling nano-redox carbon dots with nontraditional AIE-polysaccharides on a smart fabric for healthcare sensing systems. Chem. Eng. J. 2023, 478, 147402. [Google Scholar] [CrossRef]
Property | Physical Crosslinking | Ionic Crosslinking | Covalent Crosslinking |
---|---|---|---|
Mechanical Strength | Low | Moderate | High |
Weak physical forces and entanglements are easily disrupted. | Strength depends on ion type and concentration. | High energy covalent bonds form a strong, stable 3D network with high load-bearing capacity. | |
Stiffness | Low | Highly Tunable | High (and Tunable) |
Soft and brittle, with low modulus. | Precisely adjustable via ion type, concentration, and crosslinking time. | Typically exhibits high elastic, adjustable via crosslinker density. | |
Toughness | Low | Moderate | High (but can be brittle) |
Prone to irreversible fracture with low energy absorption. | Exhibits energy dissipation via the reversible rupture and reformation of ionic bonds. | The network itself is often brittle. | |
Self-Healing | Excellent | Good | Poor (Typically Irreversible) |
Physical interactions can reversibly reassemble, allowing for rapid self-healing. | The dynamic nature of ionic bonds allows for inherent self-healing capability after damage. | Covalent bonds, once broken, are permanently lost, no inherent self-healing ability. (Excluding dynamic reversible covalent crosslinking.) | |
Stability | Poor (Sensitive) | Moderate (Ion-sensitive) | Excellent (Stable) |
Highly sensitive to temperature, pH, and ionic strength; very unstable. | Susceptible to ion exchange and dissolution in high ionic strength solutions or chelating agents. | High chemical stability, resistant to solvents, ionic erosion, and degradation. | |
Typical Applications | Drug delivery | Cell encapsulation, tissue engineering scaffolds, wound dressings | Applications requiring long-term mechanical stability, e.g., cartilage repair |
Main Constituents | Gelation Mechanism | Preparation Form | Optimization Strategy | Optimized Performance | Applications | Ref. |
---|---|---|---|---|---|---|
CS, SA, NaCl | Ionic crosslinking | Scaffold | Combining polymers | High hydrophilicity | Tissue engineering and regenerative medicine | [32] |
OSA, carboxymethyl chitosan (CMCS) | Covalent crosslinking | Scaffold | Combining polymers | Self-healing | Drug delivery | [12] |
SA, CaCl2, crystalline nanocellulose (CNC) | Ionic crosslinking | Microsphere | Combining polymers | Increased swelling degree | Drug delivery | [95] |
cellulose nanofibers (CNF), SA, CaCl2 | Ionic crosslinking | Microsphere | Introducing nanomaterials | Green, low-toxicity, biodegradable, and good mechanical properties | Drug delivery | [26] |
CNC, SA, Ca2+ | Ionic crosslinking | General hydrogel | Introducing nanomaterials | Increased density of the gel network | Drug delivery | [96] |
OSA, acrylamide-modified CS, polyacrylamide (PAM) | Covalent and physical crosslinking | General hydrogel | Constructing dynamic cross-linking networks | High toughness and self-healing properties | Biosensing and diagnostics | [97] |
Ag, Fe3O4, SA, CaCl2 | Ionic crosslinking | Microsphere | Intelligent responsive modification | Antibacterial and magnetic-/pH-sensitive | Drug delivery | [98] |
polyethylene glycol (PEG), polypropylene glycol, polycaprolactone, SA, Ca2+ | Ionic and physical crosslinking | General hydrogel | Intelligent responsive modification | Temperature and Ca2+ response | Tissue engineering and regenerative medicine | [99] |
SA, CaCO3, QK and RGD peptide | Ionic crosslinking | General hydrogel | Surface functionalization | Enhance adhesion and multiple aspects of MSC regenerative potential | Tissue engineering and regenerative medicine | [100] |
SA, cystamine, pluronic F127, | Physical crosslinking | General hydrogel | Surface functionalization | Excellent cytocompatibility and effective antimicrobial activity | Tissue engineering and regenerative medicine | [101] |
SA, HA, bioactive glass (BG), poly (lactic-co-glycolic acid), kartogenin | Covalent crosslinking | General hydrogel | Drug loading and controlled release design | improving tissue infiltration and sequentially delivering bioactive substances | Tissue engineering and regenerative medicine | [102] |
Zn2+, SA, hyperbranched poly(β-amino esters), TNF-α siRNA | Ionic and physical crosslinking | General hydrogel | Drug loading and controlled release design | Inducing reprogramming of immunometabolism | Drug delivery | [103] |
SA, BG, deferoxamine (DFO) | Covalent crosslinking | General hydrogel | Regulating degradability | Faster degradation and better tissue infiltration | Tissue engineering and regenerative medicine | [104] |
Applications | Key Requirements | Optimization Strategies | Example Ref. |
---|---|---|---|
Drug Delivery | Controlled release, targeting, biocompatibility | Intelligent responsive modification, Drug loading design, Nanomaterial reinforcement | [98,123,140] |
Tissue Engineering | Mechanical strength, cell adhesion, biodegradability | Combining polymers, Surface functionalization, Dynamic cross-linking | [32,100,127] |
Regenerative Medicine | Bioactivity, vascularization, tissue integration | Surface functionalization, Drug loading, Degradation regulation | [102,104,146] |
Biosensing and Diagnostics | Conductivity, responsiveness, stability | Intelligent responsive modification, Nanomaterial reinforcement | [131,147,148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Wu, B.; Yuan, P.; Liu, Y.; Hu, C. Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering. Gels 2025, 11, 758. https://doi.org/10.3390/gels11090758
Cao J, Wu B, Yuan P, Liu Y, Hu C. Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering. Gels. 2025; 11(9):758. https://doi.org/10.3390/gels11090758
Chicago/Turabian StyleCao, Juan, Bo Wu, Ping Yuan, Yeqi Liu, and Cheng Hu. 2025. "Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering" Gels 11, no. 9: 758. https://doi.org/10.3390/gels11090758
APA StyleCao, J., Wu, B., Yuan, P., Liu, Y., & Hu, C. (2025). Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering. Gels, 11(9), 758. https://doi.org/10.3390/gels11090758