Analysis of the Growth of Hydrogel Applications in Agriculture: A Review
Abstract
1. Introduction
2. Results and Discussion
2.1. Macro- and Micro-Level
2.2. Analysis of Categories
2.2.1. Pesticides
2.2.2. Nutritional Growth Inputs
2.2.3. Soil Conditioners
2.2.4. Bioactive
2.3. Opportunities for Future Research
- Conduct detailed investigations of hydrogel-soil interactions, with special emphasis on soil microbiota and plant–microbe dynamics.
- Expand field-based assessments in practical agricultural environments [2]. While the number of such studies has increased, further research is particularly needed in underexplored contexts, such as flooded soils.
- Examine the potential toxicity of hydrogels in soil and aquatic systems. This remains insufficiently studied, as highlighted by Kolya et al. 2023 [45], despite the likelihood of large-scale applications.
- Evaluate hydrogels performance under a wide range of environmental conditions. Research has largely prioritized drought stress, but greater attention is needed to conditions such as extreme moisture, atmospheric variability, and non-traditional systems, including soilless, urban, and peri-urban agriculture.
- Integrate regulatory aspects into hydrogel research. Future studies must address regulatory frameworks and toxicity assessments, as their absence represents a critical barrier to the safe, sustainable, and large-scale agricultural application of hydrogels.
- Despite the identification of bio-based hydrogels in this study, including those derived from agro-industrial sources, further exploration of alternatives from food waste as well as urban and industrial residues remains essential.
- None of the analyzed studies address the environmental impact of the developed hydrogels. This gap highlights a key opportunity for future research to integrate green engineering principles with environmental systems analysis, including carbon neutrality, life cycle assessment, and water footprint evaluation.
- The reviewed documents did not report the implementation of strategies such as machine learning models or simulation tools for predicting hydrogel behavior. Incorporating these approaches could improve resource utilization and leverage the expanding corpus of scientific and technical knowledge.
- Incorporating emerging technologies, such as additive manufacturing or rapid prototyping, which rely on layer-by-layer fabrication technology [124], could support the development of complex structures. Multifunctional hydrogel may particularly benefit from these methods, which offer greater flexibility and reduced material waste [124].
- Only one study was identified that investigated the use of hydrogel as mulch. The combination of hydrogels with film-based alternatives represents a promising direction for developing multifunctional materials that integrate soil protection, water management, and compound release, particularly relevant to small-scale food production.
- This study demonstrates a growing interest in hydrogel applications; however, additional research is essential, especially for the transition from laboratory prototypes to real-scale applications. Such efforts should foster broader engagement from researchers across industrial sectors.
- Various researchers have highlighted the need to investigate alternatives to the conventional soil integration of hydrogels, such as packaging them in bags made from hygienic mask wastes [110], while also exploring techniques for reprocessing or refilling the hydrogel [23]. These methods may reduce reliance on raw materials and continuously strengthen the circular economy.
- Variations in the crosslinking process were also identified, reflecting efforts to lower the environmental impact compared with conventional methods. These trends are likely to intensify in the future, particularly for hydrogels used as chemical release devices. However, it is crucial to examine the potential by-products arising from hydrogel-compound interactions, as well as any resulting contaminants and their impacts on plants or soil.
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, A.-Y.; Niu, S.-Q.; Liu, Y.-Z.; He, A.-L.; Zhao, Q.; Paré, P.W.; Li, M.-F.; Han, Q.-Q.; Khan, S.A.; Zhang, J.-L. Synergistic effects of Bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass. Int. J. Mol. Sci. 2017, 18, 2651. [Google Scholar] [CrossRef] [PubMed]
- M’barki, N.; Chehab, H.; Aissaoui, F.; Dabbaghi, O.; Attia, F.; Mahjoub, Z.; Laamari, S.; Chihaoui, B.; del Giudice, T.; Jemai, A.; et al. Effects of mycorrhizal fungi inoculation and soil amendment with hydrogel on leaf anatomy, growth, and physiological performance of olive plantlets under two contrasting water regimes. Acta Physiol. Plant. 2018, 40, 113. [Google Scholar] [CrossRef]
- Turioni, C.; Guerrini, G.; Squartini, A.; Morari, F.; Maggini, M.; Gross, S. Biodegradable hydrogels: Evaluation of degradation as a function of synthesis parameters and environmental conditions. Soil Syst. 2021, 5, 47. [Google Scholar] [CrossRef]
- Richard, B.; Qi, A.; Fitt, B.D. Control of crop diseases through Integrated Crop Management to deliver climate-smart farming systems for low- and high-input crop production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Mandal, M.; Singh Lodhi, R.; Chourasia, S.; Das, S.; Das, P. A review on sustainable slow-release N, P, K fertilizer hydrogels for smart agriculture. ChemPlusChem 2025, 90, e202400643. [Google Scholar] [CrossRef]
- Biswakarma, N.; Sharma, A.; Kumar, S.; Yadav, G.; Choudhary, A.K.; Babu, S.; Singh, R.; Rathore, S.S.; Das, A.; Singh, V.K. Integrated crop management practices for improving productivity and environmental sustainability. In Agricultural Diversification for Sustainable Food Production; Babu, S., Singh, R., Rathore, S.S., Das, A., Singh, V.K., Eds.; Sustainability Sciences in Asia and Africa; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Jaafar, A.M.; Kamarudin, N.S.; Sukor, A.S.A. Preparation and characterization of gellan gum–seaweed beads as a controlled release fertilizer: A biodegradable and environmentally friendly option. Malays. J. Chem. 2021, 23, 18–28. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Jarzembowski, Ł.; Izydorczyk, G.; Mikula, K.; Hoppe, V.; Mielko, K.A.; Pudełko-Malik, N.; Młynarz, P.; Chojnacka, K.; Witek-Krowiak, A. Hydrogel alginate seed coating as an innovative method for delivering nutrients at the early stages of plant growth. Polymers 2021, 13, 4233. [Google Scholar] [CrossRef]
- Perez, J.J.; Francois, N.J.; Maroniche, G.A.; Borrajo, M.P.; Pereyra, M.A.; Creus, C.M. A novel, green, low-cost chitosan–starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr. Polym. 2018, 202, 409–417. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Bilal, M.; Cao, C.; Zhao, P.; Zhang, H.; Huang, Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydr. Polym. 2021, 262, 117933. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products; L170; Publications Office of the European Union: Luxembourg, 2019; pp. 1–114. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 4 June 2025).
- Bruce, T.J.A.; Smart, L.E.; Birch, A.N.E.; Blok, V.C.; MacKenzie, K.; Guerrieri, E.; Cascone, P.; Luna, E.; Ton, J. Prospects for plant defence activators and biocontrol in IPM—Concepts and lessons learnt so far. Crop Prot. 2017, 97, 128–134. [Google Scholar] [CrossRef]
- Yassin, M.; Ton, J.; Rolfe, S.A.; Valentine, T.A.; Cromey, M.; Holden, N.J.; Newton, A.C. The rise, fall and resurrection of chemical-induced resistance agents. Pest Manag. Sci. 2021, 77, 3900–3909. [Google Scholar] [CrossRef]
- Jeger, M.; Beresford, R.; Bock, C.; Brown, N.; Fox, A.; Newton, A.; Vicent, A.; Xu, X.; Yuen, J. Global challenges facing plant pathology: Multidisciplinary approaches to meet the food security and environmental challenges in the mid-twenty-first century. CABI Agric. Biosci. 2021, 2, 20. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as Safer Release Systems for Agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Pu, L.; Wang, H.; Zhao, Y.; Yuan, Z.; Zhang, Y.; Ding, J.; Qu, K.; Sun, W.; Xue, Z.; Xu, W.; et al. Skin-like hydrogels: Design strategy and mechanism, properties, and sensing applications. J. Mater. Chem. C 2023, 11, 8358–8377. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Zhao, Y.; Qi, Y.; Wu, N.; Zhang, S.; Xu, W. Recent advances of hydrogel in agriculture: Synthesis, mechanism, properties and applications. Eur. Polym. J. 2024, 196, 113376. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Torres-Figueroa, A.V.; de los Santos-Villalobos, S.; Rodríguez-Félix, D.E.; Moreno-Salazar, S.F.; Pérez-Martínez, C.J.; Chan-Chan, L.H.; Ochoa-Meza, A.; del Castillo-Castro, T. Physically and chemically cross-linked poly(vinyl alcohol)/humic acid hydrogels for agricultural applications. ACS Omega 2023, 8, 44784–44795. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Quiceno, N.; Rueda-Mira, S.; Santa Marín, J.F.; Álvarez-López, C. Development of a novel silk sericin-based hydrogel film by mixture design. J. Polym. Res. 2023, 30, 120. [Google Scholar] [CrossRef]
- Zaharia, A.; Radu, A.-L.; Iancu, S.; Florea, A.-M.; Sandu, T.; Minca, I.; Fruth-Oprisan, V.; Teodorescu, M.; Sarbu, A.; Iordache, T.-V. Bacterial cellulose–poly(acrylic acid-co-N,N′-methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Adv. 2018, 8, 17635–17644. [Google Scholar] [CrossRef] [PubMed]
- Malka, E.; Margel, S. Engineering of PVA/PVP hydrogels for agricultural applications. Gels 2023, 9, 895. [Google Scholar] [CrossRef]
- Fu, J.; Yap, J.X.; Leo, C.P.; Chang, C.K.; Show, P.L. Polysaccharide hydrogels for controlling the nutrient release. Sep. Purif. Rev. 2024, 53, 276–288. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Yang, W.; Zhang, Y.; Zhou, Y.; Chen, L. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Stud. Constr. Mater. 2022, 16, e00830. [Google Scholar] [CrossRef]
- Gañán, P.; Barajas, J.; Zuluaga, R.; Castro, C.; Marín, D.; Tercjak, A.; Builes, D.H. The evolution and future trends of unsaturated polyester biocomposites: A bibliometric analysis. Polymers 2023, 15, 2970. [Google Scholar] [CrossRef] [PubMed]
- Saraydın, D.; Karadağ, E.; Güven, O. Relationship between the swelling process and the releases of water soluble agrochemicals from radiation crosslinked acrylamide/itaconic acid copolymers. Polym. Bull. 2000, 45, 287–294. [Google Scholar] [CrossRef]
- Karadağ, E.; Saraydın, D.; Çaldiran, Y.; Güven, O. Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym. Adv. Technol. 2000, 11, 59–68. [Google Scholar] [CrossRef]
- Gupta, A.; Stead, T.S.; Ganti, L. Determining a meaningful R-squared value in clinical medicine. Acad. Med. Surg. 2024. [Google Scholar] [CrossRef]
- Korves, R. China, Brazil & India in Agricultural Trade Policy. Global Farmer Network. 2004. Available online: https://globalfarmernetwork.org/china-brazil-india-in-agricultural-trade-policy/ (accessed on 31 May 2025).
- Liu, P.; Peng, J.; Li, J.; Wu, J. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat. Phys. Chem. 2005, 72, 635–638. [Google Scholar] [CrossRef]
- Hua, B.; Wei, H.; Hu, C.; Zhang, Y.; Yang, S.; Wang, G.; Guo, T.; Li, J. Preparation of pH/Temperature-Responsive Semi-IPN Hydrogels Based on Sodium Alginate and Humic Acid as Slow-Release and Water-Retention Fertilizers. Polym. Bull. 2024, 81, 4175–4198. [Google Scholar] [CrossRef]
- Qi, L.; Xiao, X.; Liu, T.; Ren, Z.; Ren, W.; Gao, Q.; Liu, M.; Wei, P.; Lai, Y.; Yao, W.; et al. Functionally Responsive Hydrogels with Salt-Alkali Sensitivity Effectively Target Soil Amelioration. Sci. Total Environ. 2024, 918, 170350. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Wang, W.; Xiang, Y.; Liu, J.; An, Y.; Shi, J.; Qi, H.; Huang, Z. Sodium alginate/sodium lignosulfonate hydrogel based on inert Ca2+ activation for water conservation and growth promotion. Environ. Res. 2024, 246, 118144. [Google Scholar] [CrossRef]
- Gao, L.; Wang, S.; Zhao, X. Synthesis and characterization of agricultural controllable humic acid superabsorbent. J. Environ. Sci. 2013, 25, S69–S76. [Google Scholar] [CrossRef]
- Shi, C.; Lv, X.; Peng, J.; Zhu, J.; Tang, F.; Hu, L. Methylated Biochemical Fulvic Acid-Derived Hydrogels with Improved Swelling Behavior and Water Retention Capacity. Materials 2024, 17, 61448. [Google Scholar] [CrossRef]
- Kumar, K.; Kaith, B.S. Psyllium and acrylic acid based polymeric networks synthesized under the influence of γ-radiations for sustained release of fungicide. Fibers Polym. 2010, 11, 147–152. [Google Scholar] [CrossRef]
- Tanaka, F.C.; Junior, C.R.F.; Fernandes, R.S.; de Moura, M.R.; Aouada, F.A. Correlating pH and swelling degree parameters to understand the sorption and desorption process of diquat herbicide from nanocomposites based on polysaccharide and clinoptilolite. J. Polym. Environ. 2021, 29, 3389–3400. [Google Scholar] [CrossRef]
- Mordor Intelligence. Russia Crop Protection Chemicals Market Size & Share Analysis (2025–2030). Available online: https://www.mordorintelligence.com/industry-reports/russia-crop-protection-chemicals-market (accessed on 19 February 2025).
- Mordor Intelligence. Mexico Crop Chemicals Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). Available online: https://www.mordorintelligence.com/industry-reports/mexico-agrochemicals-market (accessed on 15 August 2025).
- AgroPages; Atanor S.A. Is a Leading Manufacturer of Chemicals, Petrochemicals and Polymers in Argentina and the Largest Producer and Exporter of Agrochemicals in Latin America. AgroPages, 7 August 2019. Available online: https://news.agropages.com/News/Detail-31489.htm (accessed on 15 August 2025).
- M’barki, N.; Aissaoui, F.; Chehab, H.; Dabbaghi, O.; del Giudice, T.; Boujnah, D.; Mechri, B. Cultivar dependent impact of soil amendment with water retaining polymer on olive (Olea europaea L.) under two water regimes. Agric. Water Manag. 2019, 216, 70–75. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Devi, K.; Sharma, S.; Naushad, M.; Ghfar, A.A.; Ahamad, T.; Stadler, F.J. Guar gum-crosslinked-soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int. J. Biol. Macromol. 2018, 114, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Sanhueza, C.; Mondaca, P.; Tamayo, M.; Álvaro, J.E.; Díaz-Barrera, A.; Cuneo, I.F. Enhancing the mechanical and hydraulic properties of coarse quartz sand using a water-soluble hydrogel based on bacterial alginate for novel application in agricultural contexts. Soil Sci. Soc. Am. J. 2021, 85, 1880–1893. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Synthesis of starch-based smart hydrogel derived from rice-cooked wastewater for agricultural use. Int. J. Biol. Macromol. 2023, 226, 1477–1489. [Google Scholar] [CrossRef]
- Oliveira Frühauf, G.; Rossa Beltrami, L.V.; Francisquetti, E.; Borsoi, C. Fungicidal potential of polymeric hydrogels based on carboxymethylcellulose and yerba mate residues with the incorporation of garlic oil. Starch/Stärke 2022, 75, 2200182. [Google Scholar] [CrossRef]
- Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Effects of a novel poly(AA-co-AAm)/AlZnFe2O4/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth. Molecules 2012, 17, 12587–12602. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Rhie, Y.H.; Kong, S.M.; Kim, Y.S.; Na, Y.H. Synthesis of nanocomposite hydrogels for improved water retention in horticultural soil. ACS Agric. Sci. Technol. 2022, 2, 1206–1217. [Google Scholar] [CrossRef]
- Tanaka, F.C.; Yonezawa, U.G.; de Moura, M.R.; Aouada, F.A. Obtention, characterization, and herbicide diquat carrier/release properties by nanocomposite hydrogels based on the polysaccharides and zeolite for future use in agriculture. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100880. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Mousaa, I.M.; El-Sayyad, G.S. Radiation synthesis of urea/hydrogel core shells coated with three different natural oils via a layer-by-layer approach: An investigation of their slow release and effects on plant growth-promoting rhizobacteria. Prog. Org. Coat. 2021, 151, 106022. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, D.K.; Negi, S.; Dhiman, A. Synthesis and characterization of agar–starch based hydrogels for slow herbicide delivery applications. Int. J. Plast. Technol. 2015, 19, 263–274. [Google Scholar] [CrossRef]
- Mafune, K.K.; Kasson, M.T.; Winkler, M.-K.H. Building blocks toward sustainable biofertilizers: Variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J. Appl. Microbiol. 2024, 135, lxae167. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Han, A.; Zhao, Y.; Li, H.; Yang, Y.; Yuan, B.; Wang, Y.; Liu, R.; Yin, X.; Du, X. Smart, degradable, and eco-friendly carboxymethyl cellulose-CaII hydrogel-like networks gated MIL-101(FeIII) nanoherbicides for paraquat delivery. Sci. Total Environ. 2023, 903, 166424. [Google Scholar] [CrossRef]
- Dorochesi, F.; Barrientos-Sanhueza, C.; Díaz-Barrera, Á.; Cuneo, I.F. Enhancing soil resilience: Bacterial alginate hydrogel vs. algal alginate in mitigating agricultural challenges. Gels 2023, 9, 988. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Z.; Shi, H.; Wang, Y.; Yan, A.; Yang, F.; Xie, K. Synthesis and characterization of agarose-bacterial cellulose hydrogel for promoting seed germination by improving soil water retention. Polym. Bull. 2024, 81, 8215–8227. [Google Scholar] [CrossRef]
- Tanaka, F.C.; Yonezawa, U.G.; de Moura, M.R.; Aouada, F.A. Studies of the sorption-desorption of pesticides from cellulose-based derivative nanocomposite hydrogels. Molecules 2024, 29, 204932. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, B.; Vishavnath. Agar-gelatin-derived hydrogel-based controlled delivery devices for linuron herbicide to prevent environmental hazards. Environ. Chem. Ecotoxicol. 2024, 6, 153–163. [Google Scholar] [CrossRef]
- Flores-Urquieta, M.P.; Claudio-Rizo, J.A.; Cabrera-Munguía, D.A.; Cano-Salazar, L.F.; Flores-Guía, T.E.; Espinoza-Neira, R.; Becerra-Rodriguez, J.J. Studying the impact of selenium complex chemical structure on collagen-starch hydrogels for enhanced tissue growth. Soft Mater. 2024, 22, 325–341. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Clemente, I.; Baglioni, M.; Bonechi, C.; Bisozzi, F.; Rossi, C.; Tamasi, G. Green hydrogels loaded with extracts from Solanaceae for the controlled disinfection of agricultural soils. Polymers 2023, 15, 4455. [Google Scholar] [CrossRef]
- Azahari, N.A.; Jaafar, A.M.; Rayung, M.; Asib, N.; Mamat, M. Evaluation of gellan gum-glufosinate ammonium beads and its release study performance. Malays. J. Chem. 2023, 25, 36–45. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Cao, C.; Chen, H.; Zhang, H.; Li, Y.; Huang, Q. Fungicide itself as a trigger to facilely construct Hymexazol-Encapsulated polysaccharide supramolecular hydrogels with controllable rheological properties and reduced environmental risks. Chem. Eng. J. 2023, 452, 139195. [Google Scholar] [CrossRef]
- Cruz-Barrera, M.; Izquierdo-García, L.F.; Gómez-Marroquín, M.; Santos-Díaz, A.; Uribe-Gutiérrez, L.; Moreno-Velandia, C.A. Hydrogel Capsules as New Delivery System for Trichoderma koningiopsis Th003 to Control Rhizoctonia solani in Rice (Oryza sativa). World J. Microbiol. Biotechnol. 2024, 40, 108. [Google Scholar] [CrossRef]
- Market Research Future. Paraquat Market Research Report—Forecast till 2032. Available online: https://www.marketresearchfuture.com/reports/paraquat-market-25859 (accessed on 12 June 2025).
- Abd El-Rehim, H.A.; Hegazy, E.-S.A.; Abd El-Mohdy, H.L. Properties of polyacrylamide-based hydrogels prepared by electron beam irradiation for possible use as bioactive controlled delivery matrices. J. Appl. Polym. Sci. 2005, 98, 1262–1270. [Google Scholar] [CrossRef]
- Liao, R.; Ren, S.; Yang, P. Quantitative fractal evaluation of herbicide effects on the water-absorbing capacity of superabsorbent polymers. J. Nanomater. 2014, 2014, 905630. [Google Scholar] [CrossRef]
- Supare, K.; Mahanwar, P. Starch-chitosan hydrogels for the controlled-release of herbicide in agricultural applications: A study on the effect of the concentration of raw materials and crosslinkers. J. Polym. Environ. 2022, 30, 2448–2461. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, K.; Bai, B.; Hu, N.; Wang, H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydr. Polym. 2022, 282, 119113. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, A.; Das, T.K.; Sarkar, D.J.; Singh, S.B.; Dhaka, R.; Kumar, A. Release behavior and bioefficacy of imazethapyr formulations based on biopolymeric hydrogels. J. Environ. Sci. Health B 2017, 52, 402–409. [Google Scholar] [CrossRef]
- Namasivayam, S.K.R.; Vidyasankar, A. Biocompatible formulation of potential fungal biopesticide Nomuraea rileyi (F.) Samson for the improved post treatment persistence and biocontrol potential. Nat. Environ. Pollut. Technol. 2014, 13, 835–838. [Google Scholar]
- Shang, H.; Ma, C.; Li, C.; Zhao, J.; Elmer, W.; White, J.C.; Xing, B. Copper oxide nanoparticle-embedded hydrogels enhance nutrient supply and growth of lettuce (Lactuca sativa) infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 2021, 55, 13432–13442. [Google Scholar] [CrossRef]
- Abd El-Mohdy, H.L.; Hegazy, E.A.; El-Nesr, E.M.; El-Wahab, M.A. Control release of some pesticides from starch/(ethylene glycol-co-methacrylic acid) copolymers prepared by γ-irradiation. J. Polym. Res. 2011, 18, 1605–1615. [Google Scholar] [CrossRef]
- Naboulsi, A.; Haydari, I.; Bouzid, T.; Grich, A.; Aziz, F.; Regti, A.; Himri, M.E.; Haddad, M.E. Fixed-bed adsorption of pesticide agricultural waste using cross-linked adsorptive hydrogel composite beads. Environ. Sci. Pollut. Res. 2024, 31, 32320–32338. [Google Scholar] [CrossRef] [PubMed]
- Adi Sulianto, A.; Adiyaksa, I.P.; Wibisono, Y.; Khan, E.; Ivanov, A.; Drannikov, A.; Ozaltin, K.; Di Martino, A. From fruit waste to hydrogels for agricultural applications. Clean Technol. 2024, 6, 1–17. [Google Scholar] [CrossRef]
- You, C.; Ji, X.; Lin, H.; Ma, N.; Wei, W.; Long, L.; Ning, L.; Wang, F. Preparation of UV-responsive hydrogels based on nanocellulose and their utilization in fungicide delivery. Environ. Sci. Nano 2024, 11, 1442–1451. [Google Scholar] [CrossRef]
- Pizzaro, G.d.C.; Marambio, O.G.; Jeria-Orell, M.; Avellán, M.C.; Rivas, B.L. Synthesis, characterization and application of poly[(1-vinyl-2-pyrrolidone)-co-(2-hydroxyethyl methacrylate)] as controlled-release polymeric system for 2,4-dichlorophenoxyacetic chloride using an ultrafiltration technique. Polym. Int. 2008, 57, 897–904. [Google Scholar] [CrossRef]
- Smagin, A.V.; Smagina, M.V.; Kolganihina, G.B.; Sadovnikova, N.B.; Gulbe, A.Y.; Bashina, A.S. Fungicidal and antibacterial activity of the hydrogel compositions with silver. Int. J. Eng. Technol. 2018, 7, 14–20. [Google Scholar] [CrossRef]
- Singh, R.K.; Mishra, S.; Pandey, A.; Singh, A.; Tripathi, D.K. Multifunctional polymeric hydrogels for agricultural sustainability. Polym. Test. 2023, 126, 107579. [Google Scholar]
- Zheng, L.; Seidi, F.; Wu, W.; Pan, Y.; Xiao, H. Dual-functional lignin-based hydrogels for sustained release of agrochemicals and heavy metal ion complexation. Int. J. Biol. Macromol. 2023, 235, 123701. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, B.; Vishavnath. Designing starch–alginate hydrogels for controlled delivery of fungicide for the alleviation of environmental pollution. ACS Agric. Sci. Technol. 2022, 2, 1239–1250. [Google Scholar] [CrossRef]
- Singh, J.; Singh, B.; Vishavnath. Design of innovative agrochemical delivery system for sustainable agriculture and to alleviate environmental and health hazards. Sustain. Chem. Environ. 2023, 4, 100046. [Google Scholar] [CrossRef]
- Singh, A.; Kaith, B.S.; Sud, D.; Bhatti, M.S. Fabrication of smart hydrogel based on functionally modified Colocasia esculenta as potential nutrient carrier and soil conditioner. Water Air Soil Pollut. 2023, 234, 402. [Google Scholar] [CrossRef]
- Chandrika, K.P.; Singh, A.; Rathore, A.; Kumar, A. Novel cross-linked guar gum-g-poly(acrylate) porous superabsorbent hydrogels: Characterization and swelling behaviour in different environments. Carbohydr. Polym. 2016, 149, 175–185. [Google Scholar] [CrossRef]
- Sharma, R.; Kalia, S.; Kaith, B.S.; Kumar, A.; Thakur, P.; Pathania, D.; Srivastava, M.K. Guar gum-poly(itaconic acid) based superabsorbents via two-step free-radical aqueous polymerization for environmental and antibacterial applications. J. Polym. Environ. 2017, 25, 176–191. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, F.; Cao, C.; Cao, L.; Li, F.; Zhao, P.; Huang, Q. Reducing pesticide spraying drift by folate/Zn2+ supramolecular hydrogels. Pest Manag. Sci. 2021, 77, 5278–5285. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Shen, X.-F.; Zhang, J.-Q.; Pang, Y.-H. Fabrication of β-cyclodextrin-polyacrylamide/covalent organic framework hydrogel at room temperature for the efficient removal of triazole fungicides from environmental water. Environ. Pollut. 2023, 333, 121971. [Google Scholar] [CrossRef]
- Fu, X.; Xu, M.; Li, T.; Li, Y.; Zhang, H.; Zhang, C. The improved expression and stability of zearalenone lactonohydrolase from Escherichia coli BL21 (DE3). Appl. Biochem. Microbiol. 2021, 57, 79–85. [Google Scholar] [CrossRef]
- Kolesnikov, L.E.; Uspenskaya, M.V.; Kremenevskaya, M.I.; Orlova, A.G.; Razumova, I.E.; Kolesnikova, Y.R. The biological basis for the use of acrylic hydrogel and protein growth stimulant in the soft wheat and triticale cultivation. Agron. Res. 2021, 19, 1545–1561. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H.; Hou, C.; Guan, H.; Gu, S.; Yin, Y.; Jing, H.; Wang, Y.; Wang, M. Preparation of an attapulgite-modified composite hydrogel and application in an environmentally responsive green fertilizer. ACS Appl. Polym. Mater. 2023, 5, 10217–10225. [Google Scholar] [CrossRef]
- Phansroy, N.; Boonyod, S.; Mulasake, O.; Uttha, A.; Songkram, C.; Somboon, T.; Kongon, J.; Lersuwannapong, N.; Saengsuwan, S.; Khawdas, W.; et al. Innovative environment-friendly liquid fertilizer bead from sodium alginate coating with IPN membrane derived from natural rubber and cassava starch. J. Polym. Res. 2024, 31, 67. [Google Scholar] [CrossRef]
- Cui, S.; Li, P.; Ji, L.; Wang, T.; Liu, Y.; Lan, Y.; Jiang, J. Superabsorbent quaternary ammonium guar gum hydrogel with controlled release of humic acid for soil improvement and plant growth. Carbohydr. Polym. 2024, 337, 122188. [Google Scholar] [CrossRef]
- Kumar, A.; Meena, R.S.; Nirmal, D.E.; Gurjar, D.S.; Singh, A.; Yadav, G.S.; Pradhan, G. Response of polymers and biofertilizers on soybean (Glycine max) yield under rainfed condition. Indian J. Agric. Sci. 2020, 90, 767–770. [Google Scholar] [CrossRef]
- Chaparro-Rodríguez, M.; Estrada-Bonilla, G.; Rosas-Pérez, J.; Gómez-Álvarez, M.; Cruz-Barrera, M. Hydrogel capsules as new approach for increasing drying survival of plant biostimulant gram-negative consortium. Appl. Microbiol. Biotechnol. 2023, 107, 6671–6682. [Google Scholar] [CrossRef] [PubMed]
- Lima-Tenório, M.K.; Furmam-Cherobim, F.; Karas, P.R.; Hyeda, D.; Takahashi, W.Y.; Pinto Junior, A.S.; Galvão, C.W.; Tenório-Neto, E.T.; Etto, R.M. Azospirillum brasilense AbV5/6 encapsulation in dual-crosslinked beads based on cationic starch. Carbohydr. Polym. 2023, 308, 120631. [Google Scholar] [CrossRef]
- Kanagalakshmi, M.; Devi, S.G.; Subasini, S.; Amalan, A.J.; Pius, A. Experimental assessment of biostimulants on mung bean growth on a soilless culture system using superabsorbent pectin based hydrogel. Int. J. Biol. Macromol. 2024, 273, 133058. [Google Scholar] [CrossRef]
- Rodríguez-Quesada, J.; Rodríguez Mora, K.; Bernal-Samaniego, C.A.; Jirón-García, E.G.; Rojas-Alvarado, C. Development of nanocellulose hydrogels from Sargassum seaweed as controlled nutrient release systems and their application in germination. Ecol. Eng. Environ. Technol. 2024, 25, 308–320. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: A step towards pollution free environment. Energy 2022, 242, 122977. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Chen, G.; Yi, S.-H.; Wang, Y.; Liu, Q.; Wang, R. Multifunctional porous hydrogel with nutrient controlled-release and excellent biodegradation. J. Environ. Chem. Eng. 2021, 9, 106146. [Google Scholar] [CrossRef]
- Lima-Tenório, M.K.; Karas, L.P.; Furmam-Cherobim, F.; Guerlinguer, E.; Rubira, A.F.; Steffens, M.B.R.; Galvão, C.W.; Tenório-Neto, E.T.; Etto, R.M. Encapsulation of plant growth-promoting bacteria with gum arabic hydrogels: A potential system for sustainable agriculture. J. Polym. Environ. 2024, 32, 5702–5712. [Google Scholar] [CrossRef]
- Powlson, D.S.; Gregory, P.J.; Whalley, W.R.; Quinton, J.N.; Hopkins, D.W.; Whitmore, A.P.; Hirsch, P.R.; Goulding, K.W.T. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 2011, 36, 72–87. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Machalík, R.; Wandzik, I. A mini-review on chitosan-based hydrogels with potential for sustainable agriculture applications. Polymers 2020, 12, 2425. [Google Scholar] [CrossRef]
- Barrientos-Sanhueza, C.; Cargnino-Cisternas, D.; Díaz-Barrera, A.; Cuneo, I.F. Bacterial alginate-based hydrogel reduces hydro-mechanical soil-related problems in agriculture facing climate change. Polymers 2022, 14, 922. [Google Scholar] [CrossRef]
- Smagin, A.; Sadovnikova, N.; Smagina, M. Synthetic gel structures in soils for sustainable potato farming. Sci. Rep. 2019, 9, 55205. [Google Scholar] [CrossRef]
- Turull, M.; Fontàs, C.; Díez, S. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. Sci. Total Environ. 2019, 668, 40–46. [Google Scholar] [CrossRef]
- Hasija, V.; Sharma, K.; Kumar, V.; Sharma, S.; Sharma, V. Green synthesis of agar/gum arabic based superabsorbent as an alternative for irrigation in agriculture. Vacuum 2018, 157, 458–464. [Google Scholar] [CrossRef]
- Baidakova, M.; Sitnikova, V.; Uspenskaya, M.; Olekhnovich, R.; Kremenevskaya, M. Polymer acrylic hydrogels with protein filler: Synthesis and characterization. Agron. Res. 2019, 17, 913–922. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, S.; Fu, X.; Liu, T.; Shao, L.; Fei, M.; Hao, C.; Liu, Y.; Zhong, W.-H. Robust supramolecular composite hydrogels for sustainable and “visible” agriculture irrigation. J. Mater. Chem. A 2021, 9, 24613–24621. [Google Scholar] [CrossRef]
- Saha, A.; Gupt, C.B.; Sekharan, S. Recycling natural fibre to superabsorbent hydrogel composite for conservation of irrigation water in semi-arid regions. Waste Biomass Valoriz. 2021, 12, 6433–6448. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. A New approach for agricultural water management using pillows made from covid-19waste face masks and filled with a hydrogel polymer: Preliminary studies. Agriculture 2023, 13, 152. [Google Scholar] [CrossRef]
- Sorze, A.; Valentini, F.; Dorigato, A.; Pegoretti, A. Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications. Molecules 2023, 28, 1952. [Google Scholar] [CrossRef]
- Pham, V.T.H.; Murugaraj, P.; Mathes, F.; Tan, B.K.; Truong, V.K.; Murphy, D.V.; Mainwaring, D.E. Copolymers enhance selective bacterial community colonization for potential root zone applications. Sci. Rep. 2017, 7, 16253. [Google Scholar] [CrossRef]
- Taha, T.H.; Elnouby, M.S.; Abu-Saied, M.A.; Alamri, S. Tested functionalization of alginate-immobilized ureolytic bacteria for improvement of soil biocementation and maximizing water retention. RSC Adv. 2020, 10, 21350–21359. [Google Scholar] [CrossRef]
- Li, S.-S.; Wang, S.-B.; Chen, Y.; Zhu, Q.-S.; Lan, L.-M.; Bu, H.; Hu, T.; Jiang, G.-B. Biodegradable, anti-freezing and self-healable hydrogel mulch film for weed control. Chem. Eng. J. 2023, 462, 142211. [Google Scholar] [CrossRef]
- Mayerová, M.; Šimon, T.; Stehlík, M.; Madaras, M. Improving the stability of soil aggregates using soil additives and revegetation by grassland. Plant Soil Environ. 2023, 69, 282–290. [Google Scholar] [CrossRef]
- Sandoval, A.P.; Gerardo Yáñez-Chávez, L.; Sánchez-Cohen, I.; Samaniego-Gaxiola, J.A.; Trejo-Calzada, R. Hydrogel, biocompost and its effect on photosynthetic activity and production of forage maize plants (Zea mays L.). Acta Agron. 2017, 66, 63–68. [Google Scholar]
- Varma, J.; Kulshrestha, A.K.; Pankaj, P.P.; Upadhye, V.J.; Shrivastav, A. Bioactive compounds: Industrial and agricultural applications. In Biotechnological Intervention in Production of Bioactive Compounds; Devi, J., Ed.; Sustainable Landscape Planning and Natural Resources Management; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) plant compounds, biological activities and prospects—A comprehensive review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef] [PubMed]
- Amanzholkyzy, A.; Zhumagaliyeva, S.; Sultanova, N.; Abilov, Z.; Ongalbek, D.; Donbayeva, E.; Niyazbekova, A.; Mukazhanova, Z. Hydrogel delivery systems for biological active substances: Properties and the role of HPMC as a carrier. Molecules 2025, 30, 1354. [Google Scholar] [CrossRef]
- Nuzzo, A.; Mazzei, P.; Drosos, M.; Piccolo, A. Novel humo-pectic hydrogels for controlled release of agroproducts. ACS Sustain. Chem. Eng. 2020, 8, 10079–10088. [Google Scholar] [CrossRef]
- Valdés-Lozano, C.I.; Claudio-Rizo, J.A.; Cabrera-Munguía, D.A.; León-Campos, M.I.; Mendoza-Villafaña, J.J.; Becerra-Rodriguez, J.J. Modulation of animal and plant tissue growth with collagen-starch-organic molybdenum networks hydrogel biomatrices. Polym. Adv. Technol. 2024, 35, e6568. [Google Scholar] [CrossRef]
- Liu, W.; Liu, K.; Chen, D.; Zhang, Z.; Li, B.; El-Mogy, M.M.; Tian, S.; Chen, T. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods 2022, 11, 2402. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Martínez, E.; Bovy, A.; Plazas, M.; Tikunov, Y.; Prohens, J.; Pereira-Dias, L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Front. Plant Sci. 2023, 14, 1135237. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, C.; Chu, P.K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Blunt, H.; PRISMA-S Group. An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- López, L.C.; Hincapié-Llanos, G.A. Comparison of Mango (Mangifera indica) dehydration technologies: A systematic review. Agriengineering 2024, 6, 2694–2717. [Google Scholar] [CrossRef]
- Aghaei Chadegani, A.; Salehi, H.; Yunus, M.; Farhadi, H.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and Scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Bergman, E.M.L. Finding citations to social work literature: The relative benefits of using Web of Science, Scopus, or Google Scholar. J. Acad. Librariansh. 2012, 38, 370–379. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitrago-Arias, C.; Gañán-Rojo, P.; Torres-Taborda, M.; Perdomo-Villar, L.; Álvarez-López, C.; Jaramillo-Quiceno, N.; Hincapié-Llanos, G.A. Analysis of the Growth of Hydrogel Applications in Agriculture: A Review. Gels 2025, 11, 731. https://doi.org/10.3390/gels11090731
Buitrago-Arias C, Gañán-Rojo P, Torres-Taborda M, Perdomo-Villar L, Álvarez-López C, Jaramillo-Quiceno N, Hincapié-Llanos GA. Analysis of the Growth of Hydrogel Applications in Agriculture: A Review. Gels. 2025; 11(9):731. https://doi.org/10.3390/gels11090731
Chicago/Turabian StyleBuitrago-Arias, Carolina, Piedad Gañán-Rojo, Mabel Torres-Taborda, Luisa Perdomo-Villar, Catalina Álvarez-López, Natalia Jaramillo-Quiceno, and Gustavo Adolfo Hincapié-Llanos. 2025. "Analysis of the Growth of Hydrogel Applications in Agriculture: A Review" Gels 11, no. 9: 731. https://doi.org/10.3390/gels11090731
APA StyleBuitrago-Arias, C., Gañán-Rojo, P., Torres-Taborda, M., Perdomo-Villar, L., Álvarez-López, C., Jaramillo-Quiceno, N., & Hincapié-Llanos, G. A. (2025). Analysis of the Growth of Hydrogel Applications in Agriculture: A Review. Gels, 11(9), 731. https://doi.org/10.3390/gels11090731