Hydrogels for Therapeutic Delivery: Current Developments and Future Directions
1. Introduction
2. Current Developments Included in the Special Issue
2.1. Thermoresponsive Gels with Rosemary Essential Oil: A Novel Topical Carrier for Antimicrobial Therapy and Drug Delivery Applications
2.2. Self-Assembled Peptide Hydrogels PPI45 and PPI47: Novel Drug Candidates for Staphylococcus aureus Infection Treatment
2.3. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control
2.4. Chitosan-Type A-Gelatin Hydrogels Used as Potential Platforms in Tissue Engineering for Drug Delivery
2.5. Tissue Regeneration and Remodeling in Rat Models After Application of Hypericum perforatum L. Extract-Loaded Bigels
2.6. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating Anti-Inflammatory Efficiency
2.7. Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties
2.8. Antibiotic-Loaded Dendrimer Hydrogels in Periodontal Bone Regeneration: An In Vitro Release Feasibility Study
2.9. Extremely Rapid Gelling Curcumin Silk-Tyrosine Crosslinked Hydrogels
2.10. The MnO2/GelMA Composite Hydrogels Improve the ROS Microenvironment of Annulus Fibrosus Cells by Promoting the Antioxidant and Autophagy Through the SIRT1/NRF2 Pathway
3. Conclusions and Future Directions
Conflicts of Interest
List of Contributions
- Bejenaru, L.E.; Segneanu, A.-E.; Bejenaru, C.; Bradu, I.A.; Vlase, T.; Herea, D.-D.; Văruţ, M.C.; Bălăşoiu, R.M.; Biţă, A.; Radu, A.; et al. Thermoresponsive Gels with Rosemary Essential Oil: A Novel Topical Carrier for Antimicrobial Therapy and Drug Delivery Applications. Gels 2025, 11, 61. https://doi.org/10.3390/gels11010061.
- Wu, Q.; Deng, M.; Mao, R.; Yang, N.; Hao, Y.; Cao, M.; Teng, D.; Wang, J. Self-Assembled Peptide Hydrogels PPI45 and PPI47: Novel Drug Candidates for Staphylococcus aureus Infection Treatment. Gels 2025, 11, 63. https://doi.org/10.3390/gels11010063.
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Calarco, A.; Margarucci, S.; Peluso, G.; Conte, R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025, 11, 198. https://doi.org/10.3390/gels11030198.
- Mehdi-Sefiani, H.; Granados-Carrera, C.M.; Romero, A.; Chicardi, E.; Domínguez-Robles, J.; Perez-Puyana, V.M. Chitosan–Type-A-Gelatin Hydrogels Used as Potential Platforms in Tissue Engineering for Drug Delivery. Gels 2024, 10, 419. https://doi.org/10.3390/gels10070419.
- Sotirova, Y.; Kiselova-Kaneva, Y.; Vankova, D.; Tasinov, O.; Ivanova, D.; Popov, H.; Hristova, M.; Nikolova, K.; Andonova, V. Tissue Regeneration and Remodeling in Rat Models after Application of Hypericum perforatum L. Extract-Loaded Bigels. Gels 2024, 10, 341. https://doi.org/10.3390/gels10050341.
- Atia, H.A.; Shahien, M.M.; Ibrahim, S.; Ahmed, E.H.; Elariny, H.A.; Abdallah, M.H. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024, 10, 525. https://doi.org/10.3390/gels10080525.
- Banov, D.; Song, G.; Foraida, Z.; Tkachova, O.; Zdoryk, O.; Carvalho, M. Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties. Gels 2024, 10, 447. https://doi.org/10.3390/gels10070447.
- Yesbeck, N.; Huang, D.; Carrico, C.; Madurantakam, P.; Yang, H. Antibiotic-Loaded Dendrimer Hydrogels in Periodontal Bone Regeneration: An In Vitro Release Feasibility Study. Gels 2024, 10, 593. https://doi.org/10.3390/gels10090593.
- Sundarakrishnan, A. Extremely Rapid Gelling Curcumin Silk-Tyrosine Crosslinked Hydrogels. Gels 2025, 11, 288. https://doi.org/10.3390/gels11040288.
- Xu, B.; Huang, M.; Li, J.; Meng, Q.; Hu, J.; Chen, Q.; He, H.; Jiang, H.; Han, F.; Meng, B.; et al. The MnO2/GelMA Composite Hydrogels Improve the ROS Microenvironment of Annulus Fibrosus Cells by Promoting the Antioxidant and Autophagy through the SIRT1/NRF2 Pathway. Gels 2024, 10, 333. https://doi.org/10.3390/gels10050333.
References
- Arkas, M.; Vardavoulias, M.; Kythreoti, G.; Giannakoudakis, D.A. Dendritic polymers in tissue engineering: Contributions of PAMAM, PPI PEG and PEI to injury restoration and bioactive scaffold evolution. Pharmaceutics 2023, 15, 524. [Google Scholar] [CrossRef] [PubMed]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.K.; Jensen, H.E.; Blirup-Plum, S.A.; Bue, M.; Hanberg, P.; Kvich, L.; Aalbæk, B.; López, Y.; Soto, S.M.; Douloudi, M.; et al. Coating of bone implants with silica, hyperbranched polyethyleneimine, and gentamicin prevents development of osteomyelitis in a porcine model. Materialia 2022, 24, 101473. [Google Scholar] [CrossRef]
- Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-based hemostatic hydrogels: The concept, mechanism, application, and prospects. Molecules 2023, 28, 1473. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yang, Y.; Yu, W.; Xu, L. Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges. Lubricants 2024, 12, 186. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011, 111, 4453–4474. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel machines. Mater. Today 2020, 36, 102–124. [Google Scholar] [CrossRef]
- Bejenaru, L.E.; Biţă, A.; Mogoşanu, G.D.; Segneanu, A.E.; Radu, A.; Ciocîlteu, M.V.; Bejenaru, C. Polyphenols investigation and antioxidant and anticholinesterase activities of Rosmarinus officinalis L. species from southwest Romania flora. Molecules 2024, 29, 4438. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, N.; Mao, R.; Hao, Y.; Teng, D.; Wang, J. In vitro pharmacodynamics and bactericidal mechanism of fungal defensin-derived peptides NZX and P2 against Streptococcus agalactiae. Microorganisms 2022, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Conte, R.; Valentino, A.; Romano, S.; Margarucci, S.; Petillo, O.; Calarco, A. Stimuli-responsive nanocomposite hydrogels for oral diseases. Gels 2024, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Rubio-Valle, J.F.; Romero, A.; Ostos, F.J.; Rafii-El-Idrissi Benhnia, M.; Perez-Puyana, V. Biocompatible and thermoresistant hydrogels based on collagen and chitosan. Polymers 2022, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Sotirova, Y.; Gugleva, V.; Stoeva, S.; Kolev, I.; Nikolova, R.; Marudova, M.; Andonova, V. Bigel Formulations of Nanoencapsulated St. John’s Wort Extract—An Approach for Enhanced Wound Healing. Gels 2023, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.H.; Elsewedy, H.S.; AbuLila, A.S.; Almansour, K.; Unissa, R.; Elghamry, H.A.; Soliman, M.S. Quality by design for optimizing a novel liposomal jojoba oil-based emulgel to ameliorate the anti-inflammatory effect of brucine. Gels 2021, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J. Biol. Eng. 2022, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Sundarakrishnan, A.; Acero, E.H.; Coburn, J.; Chwalek, K.; Partlow, B.; Kaplan, D.L. Phenol red-silk tyrosine cross-linked hydrogels. Acta Biomater. 2016, 42, 102–113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkas, M.; Kythreoti, G. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Gels 2025, 11, 675. https://doi.org/10.3390/gels11090675
Arkas M, Kythreoti G. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Gels. 2025; 11(9):675. https://doi.org/10.3390/gels11090675
Chicago/Turabian StyleArkas, Michael, and Georgia Kythreoti. 2025. "Hydrogels for Therapeutic Delivery: Current Developments and Future Directions" Gels 11, no. 9: 675. https://doi.org/10.3390/gels11090675
APA StyleArkas, M., & Kythreoti, G. (2025). Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Gels, 11(9), 675. https://doi.org/10.3390/gels11090675