Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum
Abstract
1. Introduction
2. Advancements in Hydrogels in Cartilage Regeneration and Healing of Soft Tissue Injuries
2.1. Natural and Synthetic Hydrogels in Cartilage Regeneration
2.2. Hybrid Hydrogels
2.3. Translational and Preclinical Research
Source/Composition | Biologic Additive(s) | Study Model | Target Tissue | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
Porcine SIS ECM + hUSCs | hUSCs overexpressing bFGF | In vivo (TBI model) | Tendon–bone interface |
|
| [9] |
Chitosan + KGN + FGF-2 | KGN and FGF-2 | Ex vivo human | Acetabular labrum |
|
| [85] |
Chitosan + PDGF | PDGF | Rat model (in vivo) | Glenoid labrum |
|
| [88] |
3. Advancements of Hydrogels in Glenoid Labral Tear
Hydrogels in Labral Repair Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, L.M.; Austin, C.N.; Reddy, R.P.; Fogg, D.N.; Nazzal, E.M.; Herman, Z.J.; Como, M.; Lin, A. Preoperative factors associated with 180°, 270°, and 360° labral tears. J. Shoulder Elb. Surg. 2024, 33, S37–S42. [Google Scholar] [CrossRef]
- Cronin, K.J.; Magnuson, J.A.; Wolf, B.R.; Hawk, G.S.; Thompson, K.L.; Jacobs, C.A.; Hettrich, C.M.; Bishop, J.Y.; Bollier, M.J.; Baumgarten, K.M.; et al. Male Sex, Western Ontario Shoulder Instability Index Score, and Sport as Predictors of Large Labral Tears of the Shoulder: A Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability Cohort Study. Arthroscopy 2021, 37, 1740–1744. [Google Scholar] [PubMed]
- Schultz, K.A.; Nelson, R. Superior Labrum Lesions; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Wilk, K.E.; Macrina, L.C.; Cain, E.L.; Dugas, J.R.; Andrews, J.R. The recognition and treatment of superior labral (slap) lesions in the overhead athlete. Int. J. Sports Phys. Ther. 2013, 8, 579–600. [Google Scholar] [PubMed]
- Pappas, N.D.; Hall, D.C.; Lee, D.H. Prevalence of labral tears in the elderly. J. Shoulder Elb. Surg. 2013, 22, e11–e15. [Google Scholar] [CrossRef] [PubMed]
- Tupe, R.N.; Tiwari, V. Anteroinferior Glenoid Labrum Lesion (Bankart Lesion); StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Almajed, Y.A.; Hall, A.C.; Gillingwater, T.H.; Alashkham, A. Anatomical, functional and biomechanical review of the glenoid labrum. J. Anat. 2022, 240, 761–771. [Google Scholar] [CrossRef]
- Ockert, B.; Braunstein, V.; Sprecher, C.M.; Shinohara, Y.; Milz, S. Fibrocartilage in various regions of the human glenoid labrum. An immunohistochemical study on human cadavers. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1036–1041. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.-Y.; Tan, J.; He, T.; Qin, B.-Q.; Sheng, N.; Zhang, H.; Xie, H.-Q. Enhanced fibrocartilage regeneration at the tendon-bone interface injury through extracellular matrix hydrogel laden with bFGF-overexpressing human urine-derived stem cells. Chem. Eng. J. 2024, 497, 154333. [Google Scholar] [CrossRef]
- Takematsu, E.; Murphy, M.; Hou, S.; Steininger, H.; Alam, A.; Ambrosi, T.H.; Chan, C.K.F. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels 2023, 9, 377. [Google Scholar] [CrossRef]
- Choi, H.; Choi, W.S.; Jeong, J.O. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024, 10, 693. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Zhang, F.; Wan, C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024, 10, 430. [Google Scholar] [CrossRef]
- Lázár, I.; Čelko, L.; Menelaou, M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023, 9, 746. [Google Scholar] [CrossRef]
- Valot, L.; Maumus, M.; Brunel, L.; Martinez, J.; Amblard, M.; Noël, D.; Mehdi, A.; Subra, G. A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, M.; Madhavan, S.; Deschner, J.; Rath-Deschner, B.; Wypasek, E.; Agarwal, S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am. J. Physiol. Cell Physiol. 2006, 290, C1610–C1615. [Google Scholar] [CrossRef] [PubMed]
- Nahian, A.; Sapra, A. Histology, Chondrocytes; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chang, L.R.; Anand, P.; Varacallo, M.A. Anatomy, Shoulder and Upper Limb, Glenohumeral Joint; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Fu, Y.; Ma, S.; Ma, B.; Han, M.; Zhao, D.; Li, Z. Innovative diagnostic framework for shoulder instability: A narrative review on machine learning-enhanced scapular dyskinesis assessment in sports injuries. Eur. J. Med. Res. 2025, 30, 257. [Google Scholar] [CrossRef] [PubMed]
- Ditsios, K.; Agathangelidis, F.; Boutsiadis, A.; Karataglis, D.; Papadopoulos, P. Long head of the biceps pathology combined with rotator cuff tears. Adv. Orthop. 2012, 2012, 405472. [Google Scholar] [CrossRef]
- Porcellini, G.; Paladini, P.; Campi, F.; Paganelli, M. Shoulder instability and related rotator cuff tears: Arthroscopic findings and treatment in patients aged 40 to 60 years. Arthroscopy 2006, 22, 270–276. [Google Scholar] [CrossRef]
- Alexeev, M.; Kercher, J.S.; Levina, Y.; Duralde, X.A. Variability of glenoid labral tear patterns: A study of 280 sequential surgical cases. J. Shoulder Elb. Surg. 2021, 30, 2762–2766. [Google Scholar] [CrossRef]
- Cooper, D.E.; Arnoczky, S.P.; O’Brien, S.J.; Warren, R.F.; DiCarlo, E.; Allen, A.A. Anatomy, histology, and vascularity of the glenoid labrum. An anatomical study. J. Bone Jt. Surg. Am. 1992, 74, 46–52. [Google Scholar] [CrossRef]
- Dickinson, R.N.; Kuhn, J.E. Nonoperative Treatment of Rotator Cuff Tears. Phys. Med. Rehabil. Clin. N. Am. 2023, 34, 335–355. [Google Scholar] [CrossRef]
- Weber, S.; Chahal, J. Management of Rotator Cuff Injuries. J. Am. Acad. Orthop. Surg. 2020, 28, e193–e201. [Google Scholar] [CrossRef]
- Moran, T.E.; Werner, B.C. Surgery and Rotator Cuff Disease: A Review of the Natural History, Indications, and Outcomes of Nonoperative and Operative Treatment of Rotator Cuff Tears. Clin. Sports Med. 2023, 42, 1–24. [Google Scholar] [CrossRef]
- Jang, S.H.; Seo, J.G.; Jang, H.S.; Jung, J.E.; Kim, J.G. Predictive factors associated with failure of nonoperative treatment of superior labrum anterior-posterior tears. J. Shoulder Elb. Surg. 2016, 25, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Provencher, M.T.; McCormick, F.; Dewing, C.; McIntire, S.; Solomon, D. A prospective analysis of 179 type 2 superior labrum anterior and posterior repairs: Outcomes and factors associated with success and failure. Am. J. Sports Med. 2013, 41, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Mc Millan, S.; Fliegel, B.; Stark, M.; Ford, E.; Pontes, M.; Markowitz, M. Recurrent Instability after Arthroscopic Glenoid Labral Repair with a Minimum of Three Points of Fixation: Do the Number of Anchors or Fixation Points Correlate to Outcomes? Surg. Technol. Int. 2021, 38, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelski, J.; Fritz, E.M.; Horan, M.P.; Katthagen, J.C.; Provencher, M.T.; Millett, P.J. Failure following arthroscopic Bankart repair for traumatic anteroinferior instability of the shoulder: Is a glenoid labral articular disruption (GLAD) lesion a risk factor for recurrent instability? J. Shoulder Elb. Surg. 2018, 27, e235–e242. [Google Scholar] [CrossRef]
- Edwards, S.L.; Lee, J.A.; Bell, J.E.; Packer, J.D.; Ahmad, C.S.; Levine, W.N.; Bigliani, L.U.; Blaine, T.A. Nonoperative treatment of superior labrum anterior posterior tears: Improvements in pain, function, and quality of life. Am. J. Sports Med. 2010, 38, 1456–1461. [Google Scholar] [CrossRef]
- Shin, S.J.; Lee, J.; Jeon, Y.S.; Ko, Y.W.; Kim, R.G. Clinical outcomes of non-operative treatment for patients presenting SLAP lesions in diagnostic provocative tests and MR arthrography. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3296–3302. [Google Scholar] [CrossRef]
- Schrøder, C.P.; Skare, O.; Gjengedal, E.; Uppheim, G.; Reikerås, O.; Brox, J.I. Long-term results after SLAP repair: A 5-year follow-up study of 107 patients with comparison of patients aged over and under 40 years. Arthroscopy 2012, 28, 1601–1607. [Google Scholar] [CrossRef]
- Katz, L.M.; Hsu, S.; Miller, S.L.; Richmond, J.C.; Khetia, E.; Kohli, N.; Curtis, A.S. Poor outcomes after SLAP repair: Descriptive analysis and prognosis. Arthroscopy 2009, 25, 849–855. [Google Scholar] [CrossRef]
- Meyer, A.; Klouche, S.; Bauer, T.; Rousselin, B.; Hardy, P. Residual inferior glenohumeral instability after arthroscopic Bankart repair: Radiological evaluation and functional results. Orthop. Traumatol. Surg. Res. 2011, 97, 590–594. [Google Scholar] [CrossRef]
- Eubank, B.H.F.; Sheps, D.M.; Dennett, L.; Connick, A.; Bouliane, M.; Panu, A.; Harding, G.; Beaupre, L.A. A scoping review and best evidence synthesis for treatment of partial-thickness rotator cuff tears. J. Shoulder Elb. Surg. 2024, 33, e126–e152. [Google Scholar] [CrossRef]
- Horinek, J.L.; Menendez, M.E.; Narbona, P.; Lädermann, A.; Barth, J.; Denard, P.J. Arthroscopic Bankart Repair with Remplissage as an Alternative to Latarjet for Anterior Glenohumeral Instability With More Than 15% Glenoid Bone Loss. Orthop. J. Sports Med. 2022, 10, 23259671221142257. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Zhou, H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023, 15, 2405. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.G.; Massironi, A.; Sugni, M.; Ensign, M.A.; Marzorati, S.; Forouharshad, M. Recent Advances in the Development of Biomimetic Materials. Gels 2023, 9, 833. [Google Scholar] [CrossRef]
- Ningjie, D.; Yunlong, F.; Hao, H.; Yixin, G.; Kewang, N. Stimuli-responsive hydrogel actuators for skin therapeutics and beyond. Soft Sci. 2024, 4, 35. [Google Scholar] [CrossRef]
- Su, J.; Li, J.; Liang, J.; Zhang, K.; Li, J. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. Life 2021, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wei, L.; Yang, Z.; Liu, X.; Ma, H.; Zhao, J.; Liu, L.; Wang, L.; Chen, R.; Cheng, Y. Hydrogel Wound Dressings Accelerating Healing Process of Wounds in Movable Parts. Int. J. Mol. Sci. 2024, 25, 6610. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Luo, Y.; Feng, M.; Yang, Q.; Tang, Y.; Tang, Z.; Xiao, W.; Zheng, Y.; Li, L. Design Strategies and Application Potential of Multifunctional Hydrogels for Promoting Angiogenesis. Int. J. Nanomed. 2024, 19, 12719–12742. [Google Scholar] [CrossRef]
- Pfaff, M.R.; Wague, A.; Davies, M.; Killaars, A.R.; Ning, D.; Garcia, S.; Nguyen, A.; Nuthalapati, P.; Liu, M.; Liu, X.; et al. Viscoelastic HyA Hydrogel Promotes Recovery of Muscle Quality and Vascularization in a Murine Model of Delayed Rotator Cuff Repair. Adv. Healthc. Mater. 2025, 14, e2403962. [Google Scholar] [CrossRef]
- Taisescu, O.; Dinescu, V.C.; Rotaru-Zavaleanu, A.D.; Gresita, A.; Hadjiargyrou, M. Hydrogels for Peripheral Nerve Repair: Emerging Materials and Therapeutic Applications. Gels 2025, 11, 126. [Google Scholar] [CrossRef]
- Gao, X.; Caruso, B.R.; Li, W. Advanced Hydrogels in Breast Cancer Therapy. Gels 2024, 10, 479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schon, L. The Current Status of Clinical Trials on Biologics for Cartilage Repair and Osteoarthritis Treatment: An Analysis of ClinicalTrials. gov Data. Cartilage 2022, 13, 19476035221093065. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.M.; Jackson, D.W. Articular cartilage: Injury pathways and treatment options. Sports Med. Arthrosc. Rev. 2006, 14, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Moyad, T.F. Cartilage Injuries in the Adult Knee: Evaluation and Management. Cartilage 2011, 2, 226–236. [Google Scholar] [CrossRef]
- Park, J.S.; Woo, D.G.; Sun, B.K.; Chung, H.M.; Im, S.J.; Choi, Y.M.; Park, K.; Huh, K.M.; Park, K.H. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Control. Release 2007, 124, 51–59. [Google Scholar] [CrossRef]
- Kim, I.L.; Mauck, R.L.; Burdick, J.A. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011, 32, 8771–8782. [Google Scholar] [CrossRef]
- Kang, Y.; Guan, Y.; Li, S. Innovative hydrogel solutions for articular cartilage regeneration: A comprehensive review. Int. J. Surg. 2024, 110, 7984–8001. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, S.S.; Kim, S.H. Synthesis and properties of poly(ethylene glycol) macromer/beta-chitosan hydrogels. J. Mater. Sci. Mater. Med. 1997, 8, 537–541. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, A.M.; Reis, R.L.; Vázquez, B.; San Román, J. New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med. 1998, 9, 825–833. [Google Scholar] [CrossRef]
- Plasencia, M.A.; Ortiz, C.; Vázquez, B.; San Román, J.; López-Bravo, A.; López-Alonso, A. Resorbable polyacrylic hydrogels derived from vitamin E and their application in the healing of tendons. J. Mater. Sci. Mater. Med. 1999, 10, 641–648. [Google Scholar] [CrossRef]
- Li, L.; Yu, F.; Zheng, L.; Wang, R.; Yan, W.; Wang, Z.; Xu, J.; Wu, J.; Shi, D.; Zhu, L.; et al. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J. Orthop. Translat. 2019, 17, 26–41. [Google Scholar] [CrossRef]
- Hashemi-Afzal, F.; Fallahi, H.; Bagheri, F.; Collins, M.N.; Eslaminejad, M.B.; Seitz, H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact. Mater. 2025, 43, 1–31. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, D.; Zhu, H.; Hua, Y.; Xiao, K.; Xu, Y.; Liu, Y.; Chen, W.; Liu, Y.; Zhang, W.; et al. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 31704–31715. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, Z.; Liu, K.; Wan, Y.Q.; Li, X.D.; Luo, X.W.; Bai, Y.G.; Yang, Z.L.; Feng, G. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. J. Zhejiang Univ. Sci. B 2015, 16, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jin, X.; Cong, Y.; Liu, Y.; Fu, J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J. Chem. Technol. Biotechnol. 2013, 88, 327–339. [Google Scholar] [CrossRef]
- Ruedinger, F.; Lavrentieva, A.; Blume, C.; Pepelanova, I.; Scheper, T. Hydrogels for 3D mammalian cell culture: A starting guide for laboratory practice. Appl. Microbiol. Biotechnol. 2015, 99, 623–636. [Google Scholar] [CrossRef]
- Lei, T.; Liu, Y.; Deng, S.; Xiao, Z.; Yang, Y.; Zhang, X.; Bi, W.; Du, H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J. Nanobiotechnol. 2022, 20, 176. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Li, W.; Du, Z.; Qin, S. Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Int. J. Biol. Macromol. 2018, 118 Pt A, 41–48. [Google Scholar] [CrossRef]
- Rýglová, Š.; Braun, M.; Suchý, T.; Hříbal, M.; Žaloudková, M.; Vištějnová, L. The investigation of batch-to-batch variabilities in the composition of isolates from fish and mammalian species using different protocols. Food Res. Int. 2023, 169, 112798. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. Membranes 2020, 10, 348. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Salman, S.; Khan, S.A.; Amin, A.; Rahman, Z.U.; Al-Ghamdi, Y.O.; Akhtar, K.; Bakhsh, E.M.; Khan, S.B. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.C.; Chu, S.; Randolph, M.A.; Bryant, S.J. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Acta Biomater. 2019, 93, 97–110. [Google Scholar] [CrossRef]
- Sapuła, P.; Bialik-Wąs, K.; Malarz, K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, 15, 253. [Google Scholar] [CrossRef]
- Rana, M.M.; De la Hoz Siegler, H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Q.; Deng, C.; Xu, B.; Zhang, Z.; Yang, Y.; Lu, T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020, 10, 9843–9864. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Liu, J.; Zhang, H.; Fu, D. Advances in the application of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems: A comprehensive review. Int. J. Pharm. 2025, 672, 125323. [Google Scholar] [CrossRef]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Yuan, S.; Wang, J.; Shen, Y.; Deng, S.; Xie, L.; Yang, Q. The Formation Mechanism of Hydrogels. Curr. Stem Cell Res. Ther. 2018, 13, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 2008, 110, 2453–2460. [Google Scholar] [CrossRef]
- Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S. Bioengineered Water-Responsive Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Hybrids for Wound Dressing and Skin Tissue Engineering Applications. Gels 2023, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers 2017, 9, 671. [Google Scholar] [CrossRef]
- Li, C.S.; Xu, Y.; Li, J.; Qin, S.H.; Huang, S.W.; Chen, X.M.; Luo, Y.; Gao, C.T.; Xiao, J.H. Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. Biomed. Eng. Online 2025, 24, 13. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Bi, B.; Hou, M.; Yao, L.; Du, Q.; He, A.; Liu, Y.; Miao, C.; Liang, X.; et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo. Acta Biomater. 2020, 108, 87–96. [Google Scholar] [CrossRef]
- Agas, D.; Laus, F.; Lacava, G.; Marchegiani, A.; Deng, S.; Magnoni, F.; Silva, G.G.; Di Martino, P.; Sabbieti, M.G.; Censi, R. Thermosensitive hybrid hyaluronan/p(HPMAm-lac)-PEG hydrogels enhance cartilage regeneration in a mouse model of osteoarthritis. J. Cell Physiol. 2019, 234, 20013–20027. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, L.; Xiong, H.; Li, Q.; Wu, C.; Huang, Y.; Xie, H.; Shen, B. Injectable decellularized cartilage matrix hydrogel encapsulating urine-derived stem cells for immunomodulatory and cartilage defect regeneration. npj Regen. Med. 2022, 7, 75. [Google Scholar] [CrossRef]
- Wahab, A.H.A.; Saad, A.P.M.; Harun, M.N.; Syahrom, A.; Ramlee, M.H.; Sulong, M.A.; Kadir, M.R.A. Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J Mech. Behav. Biomed. Mater. 2019, 91, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Fermanian, S.; Gibson, M.; Unterman, S.; Herzka, D.A.; Cascio, B.; Coburn, J.; Hui, A.Y.; Marcus, N.; Gold, G.E.; et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 2013, 5, 167ra6. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, P.; You, T.; Jiang, X.; Li, W.; Jiang, C. Allogenic Tendon-Autologous Cartilage Cells Transplantation Enhances Adhesive/Growth Ability and Promotes Chondrogenesis in a Rabbit Model of Glenoid Labrum Damage. Ann. Transpl. 2019, 24, 532–540. [Google Scholar] [CrossRef]
- Teng, C.; Fang, Y.; Zhu, H.; Huang, L.; Jin, Y.; Ye, Z. A Dual-Factor Releasing Hydrogel for Rotator Cuff Injury Repair. Front. Mater. 2021, 8, 754973. [Google Scholar] [CrossRef]
- Stone, R.N.; Reeck, J.C.; Oxford, J.T. Advances in Cartilage Tissue Engineering Using Bioinks with Decellularized Cartilage and Three-Dimensional Printing. Int. J. Mol. Sci. 2023, 24, 5526. [Google Scholar] [CrossRef]
- Kannayiram, G.; Sendilvelan, S. Importance of nanocomposites in 3D bioprinting: An overview. Bioprinting 2023, 32, e00280. [Google Scholar] [CrossRef]
- Sahranavard, M.; Sarkari, S.; Safavi, S.; Ghorbani, F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: A systematic review. Biomater. Transl. 2022, 3, 105–115. [Google Scholar]
- Hoang, L.Q.; Vaish, B.; Izuagbe, S.; Co, C.M.; Borrelli, J., Jr.; Millett, P.J.; Tang, L. Histological Analysis of Regenerative Properties in Human Glenoid Labral Regions. Am. J. Sports Med. 2023, 51, 2030–2040. [Google Scholar] [CrossRef]
- Li, S.; Co, C.M.; Izuagbe, S.; Hong, Y.; Liao, J.; Borrelli, J., Jr.; Tang, L. Biomolecules-releasing click chemistry-based bioadhesives for repairing acetabular labrum tears. J. Orthop. Res. 2022, 40, 2646–2655. [Google Scholar] [CrossRef]
- Co, C.M.; Nguyen, T.; Vaish, B.; Izuagbe, S.; Borrelli, J., Jr.; Tang, L. Biomolecule-releasing bioadhesive for glenoid labrum repair through induced host progenitor cell responses. J. Orthop. Res. 2023, 41, 1624–1636. [Google Scholar] [CrossRef]
- Como, C.J.; Rothrauff, B.B.; Alexander, P.G.; Lin, A.; Musahl, V. Common animal models lack a distinct glenoid labrum: A comparative anatomy study. J. Exp. Orthop. 2021, 8, 63. [Google Scholar] [CrossRef]
Hydrogel Type | Example Materials | Fabrication/Crosslinking Method | Degradation Time | Cell Viability (%) | Mechanism of Performance | Ref. |
---|---|---|---|---|---|---|
Natural | Chitosan + gelatin |
|
|
|
| [58,59,60] |
Synthetic | PEG, PCL, and PVA |
|
|
|
| [65,66,67,68,69] |
Hybrid | PEG–PCL, PVA–alginate, gelatin–PCL, PEG–gelatin, and chitosan–PCL |
|
|
|
| [70,71,72,73,74,75,76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, B.R.; Cha, J.; Hanna, T. Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum. Gels 2025, 11, 652. https://doi.org/10.3390/gels11080652
Caruso BR, Cha J, Hanna T. Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum. Gels. 2025; 11(8):652. https://doi.org/10.3390/gels11080652
Chicago/Turabian StyleCaruso, Benjamin R., Jihun Cha, and Tammam Hanna. 2025. "Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum" Gels 11, no. 8: 652. https://doi.org/10.3390/gels11080652
APA StyleCaruso, B. R., Cha, J., & Hanna, T. (2025). Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum. Gels, 11(8), 652. https://doi.org/10.3390/gels11080652