Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films
Abstract
1. Introduction
2. Results and Discussion
2.1. EG and CT Release Kinetics
2.2. XRD Analysis
2.3. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4. SEM Morphology of Films
2.5. Tensile Properties
2.6. Oxygen Barrier Properties of Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Films
2.7. Antioxidant Activity of Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Films
2.8. Antibacterial Activity of Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Films
2.9. Packaging Preservation Test
2.9.1. Total Viable Count (TVC)
2.9.2. TBA
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of EG@NZ and CT@NZ
4.3. Preparation of Gel/Gl, Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Membranes
4.4. Physicochemical Characterization of EG@NZ and EG@NZ Nanohybrids
4.5. Physicochemical Characterization of Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Films
4.6. Packaging Properties of Gel/Gl/xNZ, Gel/Gl/xEG@NZ, and Gel/Gl/xCT@NZ Films
4.7. Packaging Preservation Test of Fresh Pork Ham Slices with Gel/Gl/15EG@NZ, Gel/Gl/10CT@NZ Films Applied as Extra Active Pads
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liberty, J.T.; Habanabakize, E.; Adamu, P.I.; Bata, S.M. Advancing Food Manufacturing: Leveraging Robotic Solutions for Enhanced Quality Assurance and Traceability across Global Supply Networks. Trends Food Sci. Technol. 2024, 153, 104705. [Google Scholar] [CrossRef]
- Khandeparkar, A.S.; Paul, R.; Sridhar, A.; Lakshmaiah, V.V.; Nagella, P. Eco-Friendly Innovations in Food Packaging: A Sustainable Revolution. Sustain. Chem. Pharm. 2024, 39, 101579. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Sabita, A.; Putri, N.A.; Azliza, N.; Illiyanasafa, N.; Darmokoesoemo, H.; Amenaghawon, A.N.; Kurniawan, T.A. Waste to Wealth: Polyhydroxyalkanoates (PHA) Production from Food Waste for a Sustainable Packaging Paradigm. Food Chem. Mol. Sci. 2024, 9, 100225. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.H.B.; Duarte-Sierra, A. An Overview of Low-Cost Approaches for the Postharvest Storage of Fruits and Vegetables for Smallholders, Retailers, and Consumers. Horticulturae 2024, 10, 803. [Google Scholar] [CrossRef]
- Dörnyei, K.R.; Uysal-Unalan, I.; Krauter, V.; Weinrich, R.; Incarnato, L.; Karlovits, I.; Colelli, G.; Chrysochou, P.; Fenech, M.C.; Pettersen, M.K.; et al. Sustainable Food Packaging: An Updated Definition Following a Holistic Approach. Front. Sustain. Food Syst. 2023, 7, 1119052. [Google Scholar] [CrossRef]
- Savin, M.; Vrkatić, A.; Dedić, D.; Vlaški, T.; Vorgučin, I.; Bjelanović, J.; Jevtic, M. Additives in Children’s Nutrition—A Review of Current Events. Int. J. Environ. Res. Public Health 2022, 19, 13452. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xu, J.; Liu, X.; Goda, A.A.; Salem, S.H.; Deabes, M.M.; Ibrahim, M.I.M.; Naguib, K.; Mohamed, S.R. Evaluation of Some Artificial Food Preservatives and Natural Plant Extracts as Antimicrobial Agents for Safety. Discov. Food 2024, 4, 89. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Yew, G.Y.; Leong, W.H.; Lim, J.W.; Lam, M.K.; Ho, Y.-C.; Ng, H.S.; Munawaroh, H.S.H.; Show, P.L. Advances in Production of Bioplastics by Microalgae Using Food Waste Hydrolysate and Wastewater: A Review. Bioresour. Technol. 2021, 342, 125947. [Google Scholar] [CrossRef]
- Sahraeian, S.; Abdollahi, B.; Rashidinejad, A. Biopolymer-Polyphenol Conjugates: Novel Multifunctional Materials for Active Packaging. Int. J. Biol. Macromol. 2024, 280, 135714. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Gaikwad, K.K. Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Conv. Bioref. 2024, 14, 4419–4440. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Giannakas, A.E.; Andritsos, N.D.; Leontiou, A.A.; Moschovas, D.; Karydis-Messinis, A.; Avgeropoulos, A.; Zafeiropoulos, N.E.; Proestos, C.; Salmas, C.E. Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films. Antioxidants 2024, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.I.; Li, Y.; Pan, J.; Liu, F.; Dai, H.; Fu, Y.; Huang, T.; Farooq, S.; Zhang, H. Collagen and Gelatin: Structure, Properties, and Applications in Food Industry. Int. J. Biol. Macromol. 2024, 254, 128037. [Google Scholar] [CrossRef] [PubMed]
- Yarahmadi, A.; Dousti, B.; Karami-Khorramabadi, M.; Afkhami, H. Materials Based on Biodegradable Polymers Chitosan/Gelatin: A Review of Potential Applications. Front. Bioeng. Biotechnol. 2024, 12, 1397668. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. Membranes 2022, 12, 442. [Google Scholar] [CrossRef]
- Salmas, C.E.; Giannakas, A.E.; Karabagias, V.K.; Moschovas, D.; Karabagias, I.K.; Gioti, C.; Georgopoulos, S.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation. Antioxidants 2023, 12, 523. [Google Scholar] [CrossRef]
- Bastos, B.M.; Silva, P.P.D.; Rocha, S.F.D.; Bertolo, J.; Arias, J.L.D.O.; Michelon, M.; Pinto, L.A.D.A. Preparation of Films Based on Reticulated Fish Gelatin Containing Garlic Essential Oil. Food Res. Int. 2024, 188, 114496. [Google Scholar] [CrossRef]
- Bassey, A.P.; Cui, X.; Ibeogu, I.H.; Wang, F.; Nasiru, M.M.; Bako, H.K.; Fan, L.; Liu, X. Fabrication and Characterization of Gelatin/Carboxymethyl Chitosan Composite Film Incorporated with Carvacrol and Its Preservation Efficacy in Chinese Mitten Crab (Eriocheir Sinensis). Food Hydrocoll. 2025, 160, 110723. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Yang, H.; Wu, K.; Guo, M.; Wang, X.; Fang, Y.; Li, L. A Novel Gelatin Composite Film with Melt Extrusion for Walnut Oil Packaging. Food Chem. 2025, 462, 141021. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Costa, D.; Yamashita, F.; Martelli, S.M.; Jesus, R.C.; Alganer, K.; Collares-Queiroz, F.P.; Innocentini-Mei, L.H. Comparative Study of Processing Methods for Starch/Gelatin Films. Carbohydr. Polym. 2013, 95, 681–689. [Google Scholar] [CrossRef]
- Krishna, M.; Nindo, C.I.; Min, S.C. Development of Fish Gelatin Edible Films Using Extrusion and Compression Molding. J. Food Eng. 2012, 108, 337–344. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, X.; Li, L.; Qi, D.; Wang, J.; Lou, J.; Wang, W. Development of Gelatin-Based Active Packaging and Its Application in Bread Preservation. J. Renew. Mater. 2023, 11, 3693–3709. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Ma, W.; Wang, H.; Dong, Q.; Li, L. High Strength and Water Tolerance Fish Gelatin-Xanthan Gum Acid-Induced Electrostatic Film by Melt Extrusion Method. Food Hydrocoll. 2024, 151, 109769. [Google Scholar] [CrossRef]
- Lou, L.; Chen, H. Functional Modification of Gelatin-Based Biodegradable Composite Films: A Review. Food Addit. Contam. Part A 2023, 40, 928–949. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Tarahi, M.; Almasi, H.; Chawla, R.; Ali, A.M.M. Insights into Recent Innovations in Barrier Resistance of Edible Films for Food Packaging Applications. Int. J. Biol. Macromol. 2024, 271, 132354. [Google Scholar] [CrossRef]
- Kang, S.; Bai, Q.; Qin, Y.; Liang, Q.; Hu, Y.; Li, S.; Luan, G. Film-Forming Modifications and Mechanistic Studies of Soybean Protein Isolate by Glycerol Plasticization and Thermal Denaturation: A Molecular Interaction Perspective. Food Res. Int. 2024, 196, 115042. [Google Scholar] [CrossRef] [PubMed]
- Al-Hassan, A.A. Development and Characterization of Camel Gelatin Films: Influence of Camel Bone Age and Glycerol or Sorbitol on Film Properties. Heliyon 2024, 10, e30338. [Google Scholar] [CrossRef]
- Duan, Q.; Chen, Y.; Yu, L.; Xie, F. Chitosan–Gelatin Films: Plasticizers/Nanofillers Affect Chain Interactions and Material Properties in Different Ways. Polymers 2022, 14, 3797. [Google Scholar] [CrossRef]
- De Nazaré De Oliveira, A.; Melchiorre, M.; Farias Da Costa, A.A.; Soares Da Silva, L.; De Jesus Paiva, R.; Auvigne, A.; Ouyang, W.; Luque, R.; Narciso Da Rocha Filho, G.; Rodrigues Noronha, R.C.; et al. Glycerol: A Green Solvent for Synthetic Chemistry. Sustain. Chem. Pharm. 2024, 41, 101656. [Google Scholar] [CrossRef]
- Pandya, T.; Patel, S.; Kulkarni, M.; Singh, Y.R.; Khodakiya, A.; Bhattacharya, S.; Prajapati, B.G. Zeolite-Based Nanoparticles Drug Delivery Systems in Modern Pharmaceutical Research and Environmental Remediation. Heliyon 2024, 10, e36417. [Google Scholar] [CrossRef]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical Applications of Zeolite-Based Materials: A Review. Mater. Sci. Eng. C 2020, 116, 111225. [Google Scholar] [CrossRef]
- Chalmpes, N.; Tantis, I.; Bakandritsos, A.; Bourlinos, A.B.; Karakassides, M.A.; Gournis, D. Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials 2020, 10, 1564. [Google Scholar] [CrossRef]
- Mancinelli, M.; Martucci, A. Exploring the Potential of Zeolites for Sustainable Environmental Applications. Sustain. Chem. 2025, 6, 9. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O. Modification of Natural Zeolites and Their Applications for Heavy Metal Removal from Polluted Environments: Challenges, Recent Advances, and Perspectives. Heliyon 2024, 10, e25303. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Almeida-Aguiar, C.; Costa, S.P.G.; Neves, I.C. Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. Molecules 2022, 27, 8525. [Google Scholar] [CrossRef]
- Rawat, R.; Saini, C.S. A Novel Biopolymeric Composite Edible Film Based on Sunnhemp Protein Isolate and Potato Starch Incorporated with Clove Oil: Fabrication, Characterization, and Amino Acid Composition. Int. J. Biol. Macromol. 2024, 268, 131940. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lei, Q.; Yang, F.; Xie, J.; Chen, C. Development of Cinnamon Essential Oil-Loaded PBAT/Thermoplastic Starch Active Packaging Films with Different Release Behavior and Antimicrobial Activity. Int. J. Biol. Macromol. 2024, 263, 130048. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.A.N.; Dos Santos, G.A.; Dos Santos, C.T.; Soares, D.C.F.; Saraiva, M.F.; Leal, D.H.S.; Sachs, D. Eugenol as a Promising Antibiofilm and Anti-Quorum Sensing Agent: A Systematic Review. Microb. Pathog. 2024, 196, 106937. [Google Scholar] [CrossRef]
- Silva, M.V.; De Lima, A.D.C.A.; Silva, M.G.; Caetano, V.F.; De Andrade, M.F.; Da Silva, R.G.C.; De Moraes Filho, L.E.P.T.; De Lima Silva, I.D.; Vinhas, G.M. Clove Essential Oil and Eugenol: A Review of Their Significance and Uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- Gutiérrez-Pacheco, M.M.; Torres-Moreno, H.; Flores-Lopez, M.L.; Velázquez Guadarrama, N.; Ayala-Zavala, J.F.; Ortega-Ramírez, L.A.; López-Romero, J.C. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics 2023, 12, 1608. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Sheen, S.; Sommers, C.; Sheen, L.-Y. Modeling the Inactivation of Escherichia Coli O157:H7 and Uropathogenic E. Coli in Ground Beef by High Pressure Processing and Citral. Food Control 2017, 73, 672–680. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, E.; Hosseini, H.; Abdi Moghadam, Z.; Halberg Larsen, M.; Haslberger, A.; Alebouyeh, M. Importance of Listeria Monocytogenes in Food Safety: A Review of Its Prevalence, Detection, and Antibiotic Resistance. Iran. J. Vet. Res. 2019, 20, 241–254. [Google Scholar] [PubMed]
- Oluwarinde, B.O.; Ajose, D.J.; Abolarinwa, T.O.; Montso, P.K.; Du Preez, I.; Njom, H.A.; Ateba, C.N. Safety Properties of Escherichia Coli O157:H7 Specific Bacteriophages: Recent Advances for Food Safety. Foods 2023, 12, 3989. [Google Scholar] [CrossRef]
- Nazir, A.; Ochani, S.; Nazir, A.; Fatima, B.; Ochani, K.; Hasibuzzaman, M.A.; Ullah, K. Rising Trends of Foodborne Illnesses in the U.S.: Short Communication. Ann. Med. Surg. 2023, 85, 2280. [Google Scholar] [CrossRef]
- Richter, C.H.; Custer, B.; Steele, J.A.; Wilcox, B.A.; Xu, J. Intensified Food Production and Correlated Risks to Human Health in the Greater Mekong Subregion: A Systematic Review. Environ. Health 2015, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Zaharioudakis, K.; Georgopoulos, S.; Asimakopoulos, G.; Aktypis, A.; Proestos, C.; Karakassides, A.; Avgeropoulos, A.; et al. The Increase of Soft Cheese Shelf-Life Packaged with Edible Films Based on Novel Hybrid Nanostructures. Gels 2022, 8, 539. [Google Scholar] [CrossRef]
- Salmas, C.Ε.; Kollia, E.; Avdylaj, L.; Kopsacheili, A.; Zaharioudakis, K.; Georgopoulos, S.; Leontiou, A.; Katerinopoulou, K.; Kehayias, G.; Karakassides, A.; et al. Thymol@Natural Zeolite Nanohybrids for Chitosan/Poly-Vinyl-Alcohol Based Hydrogels Applied as Active Pads. Gels 2023, 9, 570. [Google Scholar] [CrossRef]
- Rontogianni, A.; Chalmpes, Ν.; Nikolaraki, E.; Botzolaki, G.; Androulakis, A.; Stratakis, A.; Zygouri, P.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; et al. Efficient CO2 Hydrogenation over Mono- and Bi-Metallic RuNi/MCM-41 Catalysts: Controlling CH4 and CO Products Distribution through the Preparation Method and/or Partial Replacement of Ni by Ru. Chem. Eng. J. 2023, 474, 145644. [Google Scholar] [CrossRef]
- Wen, X.; Zhao, W.; Su, Y.; Wang, D. Interfacial Effects on Crystallization Behavior of Polymer Nanocomposites with Polymer-Grafted Nanoparticles. Polym. Cryst. 2019, 2, e10066. [Google Scholar] [CrossRef]
- Zhang, K.; Li, G.-H.; Shi, Y.-D.; Chen, Y.-F.; Zeng, J.-B.; Wang, M. Crystallization Kinetics and Morphology of Biodegradable Poly(ε-Caprolactone) with Chain-like Distribution of Ferroferric Oxide Nanoparticles: Toward Mechanical Enhancements. Polymer 2017, 117, 84–95. [Google Scholar] [CrossRef]
- Dhoot, G.; Auras, R.; Rubino, M.; Dolan, K.; Soto-Valdez, H. Determination of Eugenol Diffusion through LLDPE Using FTIR-ATR Flow Cell and HPLC Techniques. Polymer 2009, 50, 1470–1482. [Google Scholar] [CrossRef]
- Chalmpes, N.; Bourlinos, A.B.; Talande, S.; Bakandritsos, A.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials 2021, 11, 1. [Google Scholar] [CrossRef]
- Panáček, D.; Zdražil, L.; Langer, M.; Šedajová, V.; Baďura, Z.; Zoppellaro, G.; Yang, Q.; Nguyen, E.P.; Álvarez-Diduk, R.; Hrubý, V.; et al. Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small 2022, 18, 2201003. [Google Scholar] [CrossRef] [PubMed]
- Chalmpes, N.; Asimakopoulos, G.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Functional Carbon Materials Derived through Hypergolic Reactions at Ambient Conditions. Nanomaterials 2020, 10, 566. [Google Scholar] [CrossRef]
- Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and Characterization of Citral-Loaded Solid Lipid Nanoparticles. Food Chem. 2018, 248, 78–85. [Google Scholar] [CrossRef]
- Xu, B.; Lin, X.; Zhao, Y.; Yin, C.; Cheng, Y.; Li, X.; Li, Y. The Effect of Citral Loading and Fatty Acid Distribution on the Oleogels: Physicochemical Properties and in Vitro Digestion. Food Chem. 2024, 459, 140337. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yang, Y.; Li, T.; Yu, H.; Chen, C.; Zhuang, L.; Tian, H. Synergistic Effect in the Ternary System of Citral Microemulsion Based on Self-Assembled Complex Surfactants. Ind. Eng. Chem. Res. 2024, 63, 5958–5969. [Google Scholar] [CrossRef]
- Karydis-Messinis, A.; Moschovas, D.; Markou, M.; Gkantzou, E.; Vasileiadis, A.; Tsirka, K.; Gioti, C.; Vasilopoulos, K.C.; Bagli, E.; Murphy, C.; et al. Development, Physicochemical Characterization and in Vitro Evaluation of Chitosan-Fish Gelatin-Glycerol Hydrogel Membranes for Wound Treatment Applications. Carbohydr. Polym. Technol. Appl. 2023, 6, 100338. [Google Scholar] [CrossRef]
- Momtaz, M.; Momtaz, E.; Mehrgardi, M.A.; Momtaz, F.; Narimani, T.; Poursina, F. Preparation and Characterization of Gelatin/Chitosan Nanocomposite Reinforced by NiO Nanoparticles as an Active Food Packaging. Sci. Rep. 2024, 14, 519. [Google Scholar] [CrossRef]
- Pérez, C.D.; Flores, S.K.; Marangoni, A.G.; Gerschenson, L.N.; Rojas, A.M. Development of a High Methoxyl Pectin Edible Film for Retention of l -(+)-Ascorbic Acid. J. Agric. Food Chem. 2009, 57, 6844–6855. [Google Scholar] [CrossRef]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Perdones, Á.; Chiralt, A.; Vargas, M. Properties of Film-Forming Dispersions and Films Based on Chitosan Containing Basil or Thyme Essential Oil. Food Hydrocoll. 2016, 57, 271–279. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of Essential Oils and Homogenization Conditions on Properties of Chitosan-Based Films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Giannakas, A.E.; Andritsos, N.D.; Leontiou, A.A.; Moschovas, D.; Karydis-Messinis, A.; Avgeropoulos, A.; Zafeiropoulos, N.E.; Proestos, C.; Salmas, C.E. Development of Carvacrol@natural Zeolite Nanohybrid and Poly-Lactide Acid/Triethyl Citrate/Carvacrol@natural Zeolite Self-Healable Active Packaging Films for Minced Pork Shelf-Life Extension. Prepint 2024. [CrossRef]
- Virág, L.; Bocsi, R.; Pethő, D. Adsorption Properties of Essential Oils on Polylactic Acid Microparticles of Different Sizes. Materials 2022, 15, 6602. [Google Scholar] [CrossRef]
- Klinmalai, P.; Srisa, A.; Laorenza, Y.; Katekhong, W.; Harnkarnsujarit, N. Antifungal and Plasticization Effects of Carvacrol in Biodegradable Poly(Lactic Acid) and Poly(Butylene Adipate Terephthalate) Blend Films for Bakery Packaging. LWT 2021, 152, 112356. [Google Scholar] [CrossRef]
- Giannakas, A.; Grigoriadi, K.; Leontiou, A.; Barkoula, N.-M.; Ladavos, A. Preparation, Characterization, Mechanical and Barrier Properties Investigation of Chitosan–Clay Nanocomposites. Carbohydr. Polym. 2014, 108, 103–111. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.-S.; Han, J.; Chang, Y. Development of Gelatin–Sodium Caseinate High-Oxygen-Barrier Film Containing Elderberry (Sambucus Nigra L.) Extract and Its Antioxidant Capacity on Pork. Food Biosci. 2023, 53, 102617. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; McNamara, J.; Roos, Y.H.; Kerry, J.P. Effect of Plasticizer Content on the Functional Properties of Extruded Gelatin-Based Composite Films. Food Hydrocoll. 2013, 31, 264–269. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; O’Mahony, J.A.; Roos, Y.H.; Oliveira, P.M.; Kerry, J.P. Extrusion of Gelatin-Based Composite Films: Effects of Processing Temperature and pH of Film Forming Solution on Mechanical and Barrier Properties of Manufactured Films. Food Packag. Shelf Life 2014, 2, 91–101. [Google Scholar] [CrossRef]
- Bull, M.K.; Steele, R.J.; Kelly, M.; Olivier, S.A.; Chapman, B. Packaging under Pressure: Effects of High Pressure, High Temperature Processing on the Barrier Properties of Commonly Available Packaging Materials. Innov. Food Sci. Emerg. Technol. 2010, 11, 533–537. [Google Scholar] [CrossRef]
- Pal, A.K.; Wu, F.; Misra, M.; Mohanty, A.K. Reactive Extrusion of Sustainable PHBV/PBAT-Based Nanocomposite Films with Organically Modified Nanoclay for Packaging Applications: Compression Moulding vs. Cast Film Extrusion. Compos. Part B Eng. 2020, 198, 108141. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Physical and Mechanical Properties of Compression Molded and Solution Casting Soybean Protein Concentrate Based Films. Food Hydrocoll. 2014, 38, 193–204. [Google Scholar] [CrossRef]
- Grigoriadi, K.; Giannakas, A.; Ladavos, A.K.; Barkoula, N.-M. Interplay between Processing and Performance in Chitosan-Based Clay Nanocomposite Films. Polym. Bull. 2015, 72, 1145–1161. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. In Search of the EC60: The Case Study of Bee Pollen, Quercus Ilex Honey, and Saffron. Eur. Food Res. Technol. 2020, 246, 2451–2459. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, J.; Yang, J.; Yan, H.; Zhu, X.; Shao, Y.; Zhang, H.; Zhu, J. Effect of Carrier Materials for Active Silver in Antibacterial Powder Coatings. Coatings 2024, 14, 297. [Google Scholar] [CrossRef]
- Caballero-Prado, C.J.; Merino-Mascorro, J.A.; Heredia, N.; Dávila-Aviña, J.; García, S. Eugenol, Citral, and Hexanal, Alone or in Combination with Heat, Affect Viability, Biofilm Formation, and Swarming on Shiga-Toxin-Producing Escherichia Coli. Food Sci. Biotechnol. 2021, 30, 599–607. [Google Scholar] [CrossRef]
- Zaharioudakis, K.; Salmas, C.E.; Andritsos, N.D.; Kollia, E.; Leontiou, A.; Karabagias, V.K.; Karydis-Messinis, A.; Moschovas, D.; Zafeiropoulos, N.E.; Avgeropoulos, A.; et al. Carvacrol, Citral, Eugenol and Cinnamaldehyde Casein Based Edible Nanoemulsions as Novel Sustainable Active Coatings for Fresh Pork Tenderloin Meat Preservation. Front. Food Sci. Technol. 2024, 4, 1400224. [Google Scholar] [CrossRef]
- Ju, J.; Lei, Y.; Guo, Y.; Yu, H.; Cheng, Y.; Yao, W. Eugenol and Citral Kills Aspergillus Niger through the Tricarboxylic Acid Cycle and Its Application in Food Preservation. LWT 2023, 173, 114226. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J.; Chen, Q.; Zhang, Y. Rapid Detection of Total Viable Count (TVC) in Pork Meat by Hyperspectral Imaging. Food Res. Int. 2013, 54, 821–828. [Google Scholar] [CrossRef]
- Zheng, X.; Peng, Y.; Wang, W. A Nondestructive Real-Time Detection Method of Total Viable Count in Pork by Hyperspectral Imaging Technique. Appl. Sci. 2017, 7, 213. [Google Scholar] [CrossRef]
- Stewart, G.S.A.B. Micro-Organisms in Food—2. Sampling for Microbiological Analysis: Principles and Specific Applications: ICMSF, Blackwell Scientific Publications, Oxford, 1986. 310 Pp. Price: £19·50 (Cloth). Meat Sci. 1987, 19, 315. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Ben Amara, C.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin Films with Nisin and Catechin for Minced Pork Preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Cabeza de Vaca, M.; Ramírez, R.; Rocha-Pimienta, J.; Tejerina, D.; Delgado-Adámez, J. Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Gels 2025, 11, 338. [Google Scholar] [CrossRef]
- Ding, Z.-G.; Shen, Y.; Hu, F.; Zhang, X.-X.; Thakur, K.; Khan, M.R.; Wei, Z.-J. Preparation and Characterization of Eugenol Incorporated Pullulan-Gelatin Based Edible Film of Pickering Emulsion and Its Application in Chilled Beef Preservation. Molecules 2023, 28, 6833. [Google Scholar] [CrossRef]
- Ying, Q.; Zhan, S.; Yu, H.; Li, J.; Jia, R.; Wei, H.; Roura, E.; Tan, X.; Qiao, Z.; Huang, T. Gelatin Based Preservation Technologies on the Quality of Food: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2025, 65, 3223–3240. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of Action and Determination of Antioxidant Activity in the Dietary Sources: An Overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential Oils and Its Antibacterial, Antifungal and Anti-Oxidant Activity Applications: A Review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Menezes, E.F.; Peixoto, L.G.; Teixeira, R.R.; Justino, A.B.; Puga, G.M.; Espindola, F.S. Potential Benefits of Nitrate Supplementation on Antioxidant Defense System and Blood Pressure Responses after Exercise Performance. Oxidative Med. Cell. Longev. 2019, 2019, 7218936. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Coutinho de Oliveira, T.L.; Malfitano de Carvalho, S.; de Araújo Soares, R.; Andrade, M.A.; Cardoso, M.d.G.; Ramos, E.M.; Piccoli, R.H. Antioxidant Effects of Satureja Montana L. Essential Oil on TBARS and Color of Mortadella-Type Sausages Formulated with Different Levels of Sodium Nitrite. LWT-Food Sci. Technol. 2012, 45, 204–212. [Google Scholar] [CrossRef]
- Candido Júnior, J.R.; Romeiro, L.A.S.; Marinho, E.S.; Monteiro, N.d.K.V.; de Lima-Neto, P. Antioxidant Activity of Eugenol and Its Acetyl and Nitroderivatives: The Role of Quinone Intermediates—A DFT Approach of DPPH Test. J. Mol. Model. 2022, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, A.; Salmas, C.E.; Chalmpes, N.; Leontiou, A.A.; Karakassides, M.A.; Giannelis, E.P.; Giannakas, A.E. Laponite vs. Montmorillonite as Eugenol Nanocarriers for Low Density Polyethylene Active Packaging Films. Nanomaterials 2024, 14, 1938. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, A.; Leontiou, A.A.; Oliinychenko, Y.K.; Stratakos, A.C.; Zaharioudakis, K.; Proestos, C.; Giannelis, E.P.; Chalmpes, N.; Salmas, C.E.; Giannakas, A.E. Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films. Polymers 2025, 17, 1518. [Google Scholar] [CrossRef]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2018.
- ASTM D3985; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM: West Conshohocken, PA, USA, 2015.
- Iammarino, M.; Di Taranto, A. Nitrite and Nitrate in Fresh Meats: A Contribution to the Estimation of Admissible Maximum Limits to Introduce in Directive 95/2/EC. Int. J. Food Sci. Technol. 2012, 47, 1852–1858. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured Meat Products without Direct Addition of Nitrate or Nitrite: What Are the Issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef]
- Tsai, G.E.; Anderson, R.C.; Kotzur, J.; Davila, E.; McQuitty, J.; Nelson, E. Bay Salt in Seventeenth-Century Meat Preservation: How Ethnomicrobiology and Experimental Archaeology Help Us Understand Historical Tastes. BJHS Themes 2022, 7, 63–93. [Google Scholar] [CrossRef]
- Saleh, T.A. Chapter 3-Kinetic Models and Thermodynamics of Adsorption Processes: Classification. In Interface Science and Technology; Saleh, T.A., Ed.; Surface Science of Adsorbents and Nanoadsorbents; Elsevier: Amsterdam, The Netherlands, 2022; Volume 34, pp. 65–97. [Google Scholar]
- Asimakopoulos, G.; Baikousi, M.; Salmas, C.; Bourlinos, A.B.; Zboril, R.; Karakassides, M.A. Advanced Cr(VI) Sorption Properties of Activated Carbon Produced via Pyrolysis of the “Posidonia oceanica” Seagrass. J. Hazard. Mater. 2021, 405, 124274. [Google Scholar] [CrossRef]
- Frenkel, J. Theorie der Adsorption und verwandter Erscheinungen. Z. Für Phys. 1924, 26, 117–138. [Google Scholar] [CrossRef]
- Knopf, D.A.; Ammann, M. Technical Note: Adsorption and Desorption Equilibria from Statistical Thermodynamics and Rates from Transition State Theory. Atmos. Chem. Phys. 2021, 21, 15725–15753. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Für Phys. Chem. 1889, 4U, 96–116. [Google Scholar] [CrossRef]
- Salmas, C.E.; Giannakas, A.E.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Proestos, C. Effect of Copper and Titanium-Exchanged Montmorillonite Nanostructures on the Packaging Performance of Chitosan/Poly-Vinyl-Alcohol-Based Active Packaging Nanocomposite Films. Foods 2021, 10, 3038. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.M.; Kane, M.T.; Quinlan, L.R.; Hynes, A.C. Enhancing Oxygen Delivery to Ovarian Follicles by Three Different Methods Markedly Improves Growth in Serum-Containing Culture Medium. Reprod. Fertil. Dev. 2019, 31, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Stratakos, A.C.; Koidis, A. Chapter 4-Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 31–38. ISBN 978-0-12-416641-7. [Google Scholar]
- Turalija, M.; Bischof, S.; Budimir, A.; Gaan, S. Antimicrobial PLA Films from Environment Friendly Additives. Compos. Part B Eng. 2016, 102, 94–99. [Google Scholar] [CrossRef]
- Ardjoum, N.; Chibani, N.; Shankar, S.; Fadhel, Y.B.; Djidjelli, H.; Lacroix, M. Development of Antimicrobial Films Based on Poly(Lactic Acid) Incorporated with Thymus vulgaris Essential Oil and Ethanolic Extract of Mediterranean Propolis. Int. J. Biol. Macromol. 2021, 185, 535–542. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A Distillation Method for the Quantitative Determination of Malonaldehyde in Rancid Foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf Life Extension of Lamb Meat Using Thyme or Oregano Essential Oils and Modified Atmosphere Packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Assanti, E.; Karabagias, V.K.; Karabagias, I.K.; Badeka, A.; Kontominas, M.G. Shelf Life Evaluation of Fresh Chicken Burgers Based on the Combination of Chitosan Dip and Vacuum Packaging under Refrigerated Storage. J. Food Sci. Technol. 2021, 58, 870–883. [Google Scholar] [CrossRef]
Sample Code | Temp. (°C) | k2 × 10−4 (s−1) | % qe | R2 |
---|---|---|---|---|
EG@NZ | 70 | 0.217 ± 0.0358 | 90 ± 1 | 0.964 ± (2.8 × 10−4) |
90 | 1.470 ± 0.2400 | 93 ± 1 | 0.934 ± (4.0 × 10−4) | |
110 | 10.900 ± 0.5000 | 95 ± 1 | 0.931 ± (2.4 × 10−4) | |
CT@NZ | 70 | 12.700 ± 0.5000 | 33 ± 2 | 0.993 ± (1.2 × 10−5) |
90 | 25.000 ± 0.8000 | 36 ± 3 | 0.994 ± (3.3 × 10−7) | |
110 | 30.300 ± 0.1000 | 44 ± 7 | 0.990 ± (1.3 × 10−6) |
Specimen | Elastic Modulus (Ε) (MPa) | Ultimate Strength (σuts) (MPa) | %Elongation (%ε) |
---|---|---|---|
Gel/Gl25 | 393.94 ± 56.01 C | 13.90 ± 2.11 A | 97.73 ± 54.64 D |
Gel/Gl25/NZ5 | 1209.62 ± 109.94 A | 38.25 ± 2.98 A | 11.16 ± 6.68 G |
Gel/Gl25/NZ10 | 1084.73 ± 193.81 A | 31.17 ± 2.86 B | 9.33 ± 4.31 G |
Gel/Gl25/EG@NZ5 | 384.40 ± 104.99 C | 13.21 ± 3.50 A | 147.05 ± 84.19 B |
Gel/Gl25/EG@NZ10 | 112.63 ± 5.07 D | 5.97 ± 0.61 C | 219.90 ± 41.06 A |
Gel/Gl25/EG@NZ15 | 71.15 ± 17.96 D | 4.76 ± 1.11 C | 332.93 ± 39.94 A |
Gel/Gl25/CT@NZ5 | 610.38 ± 101.72 B | 22.10 ± 6.01 B | 116.18 ± 19.15 C |
Gel/Gl25/CT@NZ10 | 741.94 ± 62.61 B | 22.92 ± 1.51 B | 14.84 ± 2.84 E |
Thickness (mm) | OTR (mL·m−2·day−1) | PeO2 (cm2·s−1) × 10−9 | EC60 (mg/L) | |
---|---|---|---|---|
Gel/Gl | 0.08 ± 0.01 | 0 | 0 | - |
Gel/Gl/5NZ | 0.12 ± 0.04 | 0 | 0 | - |
Gel/Gl/10NZ | 0.15 ± 0.01 | 0 | 0 | - |
Gel/Gl/5EG@NZ | 0.13 ± 0.01 | 0 | 0 | 7.4 ± 0.2 B |
Gel/Gl/10EG@NZ | 0.14 ± 0.02 | 0 | 0 | 8.9 ± 0.3 A |
Gel/Gl/15EG@NZ | 0.09 ± 0.01 | 0 | 0 | 8.2 ± 0.1 A |
Gel/Gl/5CT@NZ | 0.09 ± 0.01 | 0 | 0 | 205 ± 0.3 D |
Gel/Gl/10CT@NZ | 0.08 ± 0.01 | 0 | 0 | 7.4 ± 0.2 B |
Sample Code | logCFU/g | |||
Day0 | Day 2 | Day 4 | Day 6 | |
Control | 0.47 ± 0.06 aA | 1.53 ± 0.75 aA | 1.98 ± 0.18 aA | 2.19 ± 0.16 aA |
Gel/Gl/10CT@NZ | 0.47 ± 0.06 aA | 2.26 ± 0.20 abB | 1.37 ± 0.35 cA | 1.94 ± 0.52 bB |
Gel/Gl/15EG@NZ | 0.47 ± 0.06 aA | 0.56 ± 0.15 bA | 0.97 ± 0.15 cB | 2.59 ± 0.17 cc |
Sample Code | logCFU/g | |||
Day 10 | Day 14 | Day 18 | Day 22 | |
Control | 1.03 ± 0.16 aA | 3.02 ± 0.43 aA | 4.85 ± 0.04 aA | 5.72 ± 0.17 aA |
Gel/Gl/10CT@NZ | 2.85 ± 0.20 aB | 2.94 ± 0.52 abB | 3.24 ± 0.27 cB | 4.50 ± 0.32 bB |
Gel/Gl/15EG@NZ | 1.13 ± 0.15 aB | 1.13 ± 0.15 aB | 1.33 ± 0.14 bB | 1.06 ± 0.12 cc |
Sample Code | logCFU/g | |||
Day 26 | ||||
Control | 7.69 ± 0.09 aA | |||
Gel/Gl/10CT@NZ | 5.43 ± 0.12 abB | |||
Gel/Gl/15EG@NZ | 1.13 ± 0.15 bc |
Sample Name | Gelatin (g) | Glycerol (g) | H2O (g) | NZ (g) | EG@NZ (g) | CT@NZ (g) |
---|---|---|---|---|---|---|
Gel/Gl | 4 | 1 | 1.6 | - | - | - |
Gel/Gl/5NZ | 4 | 1 | 1.6 | 0.347 | - | - |
Gel/Gl/10NZ | 4 | 1 | 1.6 | 0.733 | - | - |
Gel/Gl/5EG@NZ | 4 | 1 | 1.6 | - | 0.347 | - |
Gel/Gl/10EG@NZ | 4 | 1 | 1.6 | - | 0.733 | - |
Gel/Gl/15EG@NZ | 4 | 1 | 1.6 | - | 1.160 | - |
Gel/Gl/5CT@NZ | 4 | 1 | 1.6 | - | - | 0.347 |
Gel/Gl/10CT@NZ | 4 | 1 | 1.6 | - | - | 0.733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kechagias, A.; Leontiou, A.A.; Oliinychenko, Y.K.; Stratakos, A.C.; Zaharioudakis, K.; Katerinopoulou, K.; Baikousi, M.; Andritsos, N.D.; Proestos, C.; Chalmpes, N.; et al. Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films. Gels 2025, 11, 518. https://doi.org/10.3390/gels11070518
Kechagias A, Leontiou AA, Oliinychenko YK, Stratakos AC, Zaharioudakis K, Katerinopoulou K, Baikousi M, Andritsos ND, Proestos C, Chalmpes N, et al. Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films. Gels. 2025; 11(7):518. https://doi.org/10.3390/gels11070518
Chicago/Turabian StyleKechagias, Achilleas, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstantinos Zaharioudakis, Katerina Katerinopoulou, Maria Baikousi, Nikolaos D. Andritsos, Charalampos Proestos, Nikolaos Chalmpes, and et al. 2025. "Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films" Gels 11, no. 7: 518. https://doi.org/10.3390/gels11070518
APA StyleKechagias, A., Leontiou, A. A., Oliinychenko, Y. K., Stratakos, A. C., Zaharioudakis, K., Katerinopoulou, K., Baikousi, M., Andritsos, N. D., Proestos, C., Chalmpes, N., Giannakas, A. E., & Salmas, C. E. (2025). Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films. Gels, 11(7), 518. https://doi.org/10.3390/gels11070518