Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of X-Alginate Aerogel Beads
2.2. Evaluation of X-Alginate Aerogels in Terms of Mercury Removal
2.2.1. Optimal Conditions for Mercury Adsorption
2.2.2. Mercury Adsorption Isotherm
2.2.3. Characterization of X-Alginate Beads After Mercury Adsorption
2.2.4. Time-Resolved Adsorption Experiments
2.3. Reusability of the Adsorbent
2.4. Mercury Removal from Industrial Wastewaters
3. Conclusions
4. Experimental Section
4.1. Materials and Methods
4.2. Preparation of X-Alginate Aerogel Beads
4.3. Determination of the pH of Zero-Point Charge (pHZPC) of X-Alginate Aerogels
4.4. Mercury Uptake from Aqueous Solutions
4.5. Reusability of X-Alginate Adsorbent
4.6. Mercury Uptake from Wastewaters
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarkson, T.W. Mercury: Major Issues in Environmental Health. Environ. Health Perspect. 1993, 100, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Miretzky, P.; Cirelli, A.F. Hg(II) Removal from Water by Chitosan and Chitosan Derivatives: A Review. J. Hazard. Mater. 2009, 167, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Peng, D.; Deng, S.; Chen, J.; Duan, C. Efficient Treatment of Mercury(II)-Containing Wastewater in Aerated Constructed Wetland Microcosms Packed with Biochar. Chemosphere 2022, 290, 133302. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating the 1st Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; European Union: Luxembourg, 2020.
- Ware, G.W. Mercury. USEPA Office of Drinking Water Health Advisories. Rev. Environ. Contam. Toxicol. 1989, 107, 93–102. [Google Scholar]
- Tomiyasu, T.; Mitsui, A.; Mitarai, M.; Kodamatani, H.; Kanzaki, R. Seasonal Variation in Mercury Species in Seawater of Kagoshima Bay, Southern Kyushu, Japan: The Impact of Active Submarine Volcanos on the Inner Bay. Mar. Chem. 2022, 244, 104133. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.A.M.; Miranda, G.C.N.; D’Alessandro, W.B.; de Paiva, M.J.M.; Herrera, S.D.S.C.; Odorizzi, V.F.; Mendes, S.U.R.; D’Alessandro, A.A.B.; da Silva, R.R.; de Souza, J.C. Mercury and Cardiovascular Health: Exploring the Correlation between Atherosclerosis and Hypertension. Adv. Res. 2024, 25, 255–266. [Google Scholar] [CrossRef]
- Webster, A.M.; Pinion, D.; Pineda, E.; Aboueisha, H.; Hussein, M.H.; Fawzy, M.S.; Toraih, E.A.; Kandil, E. Elucidating the Link between Thyroid Cancer and Mercury Exposure: A Review and Meta-Analysis. Environ. Sci. Pollut. Res. 2024, 31, 12841–12855. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Sekacheva, M.I.; Santamaria, A.; Barbosa, F.; Ferrer, B.; Aaseth, J.; Paoliello, M.M.B.; Rocha, J.B.T.; Tinkov, A.A. Mercury and Cancer: Where Are We Now after Two Decades of Research? Food Chem. Toxicol. 2022, 164, 113001. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, D.; Dionysiou, D.D.; Sorial, G.A.; Timberlake, D. Sources and Remediation for Mercury Contamination in Aquatic Systems—A Literature Review. Environ. Pollut. 2004, 131, 323–336. [Google Scholar] [CrossRef]
- Bidlack, W.R. Metal Ions in Biological Systems, Vol. 34 Mercury and Its Effects on Environment and Biology. J. Am. Coll. Nutr. 1998, 17, 200–201. [Google Scholar] [CrossRef]
- Jensen, M.; Combariza Bayona, D.A.; Sripada, K. Mercury Exposure among E-Waste Recycling Workers in Colombia: Perceptions of Safety, Risk, and Access to Health Information. Int. J. Environ. Res. Public Health 2021, 18, 9295. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Benda, P.L.; Gillenwater, P.S.; Negri, M.C.; Xiong, H.; Snyder, S.W. Achieving Very Low Mercury Levels in Refinery Wastewater by Membrane Filtration. J. Hazard. Mater. 2012, 215–216, 98–107. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Technologies for Cleaning Up Contaminated Sites. Available online: https://www.epa.gov/remedytech (accessed on 22 February 2025).
- Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C. Click Synthesis of Monolithic Silicon Carbide Aerogels from Polyacrylonitrile-Coated 3D Silica Networks. Chem. Mater. 2010, 22, 2790–2803. [Google Scholar] [CrossRef]
- Vareda, J.P.; Lamy-Mendes, A.; Durães, L. A Reconsideration on the Definition of the Term Aerogel Based on Current Drying Trends. Microporous Mesoporous Mater. 2018, 258, 211–216. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Polysaccharide-Based Aerogels for Thermal Insulation and Superinsulation: An Overview. Carbohydr. Polym. 2021, 266, 118130. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.; Steiner Iii, S.A. (Eds.) Springer Handbook of Aerogels; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-030-27321-7. [Google Scholar]
- García-González, C.A.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019, 24, 1815. [Google Scholar] [CrossRef] [PubMed]
- Maleki, H. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chem. Eng. J. 2016, 300, 98–118. [Google Scholar] [CrossRef]
- Bruno, B.A.; Anderson, A.M.; Carroll, M.K. Aerogels for Pollution Mitigation. In Springer Handbook of Aerogels; Aegerter, M.A., Leventis, N., Koebel, M., Steiner Iii, S.A., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2023; pp. 1399–1429. ISBN 978-3-030-27321-7. [Google Scholar]
- Georgiou, E.; Raptopoulos, G.; Anastopoulos, I.; Giannakoudakis, D.A.; Arkas, M.; Paraskevopoulou, P.; Pashalidis, I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents—A Critical Review. Nanomaterials 2023, 13, 363. [Google Scholar] [CrossRef]
- Ramadan, H.; Ghanem, A.; El-Rassy, H. Mercury Removal from Aqueous Solutions Using Silica, Polyacrylamide and Hybrid Silica–Polyacrylamide Aerogels. Chem. Eng. J. 2010, 159, 107–115. [Google Scholar] [CrossRef]
- Sun, M.; Cao, M.; Wang, J.; Bi, Y.; Ma, C.-B. Engineered PVA Aerogels for Effective Mercury Species Removal with Quick Regeneration in Wastewater Remediation. J. Water Process Eng. 2024, 57, 104618. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Investigation of Adsorption of Lead, Mercury and Nickel from Aqueous Solutions onto Carbon Aerogel. J. Chem. Technol. Biotechnol. 2005, 80, 469–476. [Google Scholar] [CrossRef]
- Meena, A.K.; Mishra, G.K.; Rai, P.K.; Rajagopal, C.; Nagar, P.N. Removal of Heavy Metal Ions from Aqueous Solutions Using Carbon Aerogel as an Adsorbent. J. Hazard. Mater. 2005, 122, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, S.; Tran, D.N.H.; Azari, S.; Losic, D. Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water. ACS Appl. Mater. Interfaces 2015, 7, 11815–11823. [Google Scholar] [CrossRef]
- Herman, P.; Fábián, I.; Kalmár, J. Mesoporous Silica–Gelatin Aerogels for the Selective Adsorption of Aqueous Hg(II). ACS Appl. Nano Mater. 2020, 3, 195–206. [Google Scholar] [CrossRef]
- Štandeker, S.; Veronovski, A.; Novak, Z.; Knez, Ž. Silica Aerogels Modified with Mercapto Functional Groups Used for Cu(II) and Hg(II) Removal from Aqueous Solutions. Desalination 2011, 269, 223–230. [Google Scholar] [CrossRef]
- Geng, B.; Wang, H.; Wu, S.; Ru, J.; Tong, C.; Chen, Y.; Liu, H.; Wu, S.; Liu, X. Surface-Tailored Nanocellulose Aerogels with Thiol-Functional Moieties for Highly Efficient and Selective Removal of Hg(II) Ions from Water. ACS Sustain. Chem. Eng. 2017, 5, 11715–11726. [Google Scholar] [CrossRef]
- Zhi, L.; Zuo, W.; Chen, F.; Wang, B. 3D MoS2 Composition Aerogels as Chemosensors and Adsorbents for Colorimetric Detection and High-Capacity Adsorption of Hg2+. ACS Sustain. Chem. Eng. 2016, 4, 3398–3408. [Google Scholar] [CrossRef]
- Ma, C.-B.; Du, Y.; Du, B.; Wang, H.; Wang, E. Investigation of an Eco-Friendly Aerogel as a Substrate for the Immobilization of MoS2 Nanoflowers for Removal of Mercury Species from Aqueous Solutions. J. Colloid Interface Sci. 2018, 525, 251–259. [Google Scholar] [CrossRef]
- Guo, J.; Tian, H.; Yang, J.; He, J. Self-Assembly of Mercury-Ion Recognizing CuS Nanocrystals into 3D Sponge-like Aerogel towards Superior Mercury Capturer with Outstanding Selectivity and Efficiency. Chem. Eng. J. 2021, 426, 130868. [Google Scholar] [CrossRef]
- Bessa, A.; Henriques, B.; Gonçalves, G.; Irurueta, G.; Pereira, E.; Marques, P.A.A.P. Graphene Oxide/Polyethyleneimine Aerogel for High-Performance Mercury Sorption from Natural Waters. Chem. Eng. J. 2020, 398, 125587. [Google Scholar] [CrossRef]
- Paraskevopoulou, P.; Raptopoulos, G.; Leontaridou, F.; Papastergiou, M.; Sakellari, A.; Karavoltsos, S. Evaluation of Polyurea-Crosslinked Alginate Aerogels for Seawater Decontamination. Gels 2021, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, E.; Raptopoulos, G.; Papastergiou, M.; Paraskevopoulou, P.; Pashalidis, I. Extremely Efficient Uranium Removal from Aqueous Environments with Polyurea-Cross-Linked Alginate Aerogel Beads. ACS Appl. Polym. Mater. 2022, 4, 920–928. [Google Scholar] [CrossRef]
- Georgiou, E.; Pashalidis, I.; Raptopoulos, G.; Paraskevopoulou, P. Efficient Removal of Polyvalent Metal Ions (Eu(III) and Th(IV)) from Aqueous Solutions by Polyurea-Crosslinked Alginate Aerogels. Gels 2022, 8, 478. [Google Scholar] [CrossRef]
- Ioannidis, I.; Pashalidis, I.; Raptopoulos, G.; Paraskevopoulou, P. Radioactivity/Radionuclide (U-232 and Am-241) Removal from Waters by Polyurea-Crosslinked Alginate Aerogels in the Sub-Picomolar Concentration Range. Gels 2023, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Leventis, N. Three-Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. Acc. Chem. Res. 2007, 40, 874–884. [Google Scholar] [CrossRef]
- Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh, A.-M.M. Nanoengineering Strong Silica Aerogels. Nano Lett. 2002, 2, 957–960. [Google Scholar] [CrossRef]
- Leventis, N.; Chandrasekaran, N.; Sadekar, A.G.; Sotiriou-Leventis, C.; Lu, H. One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. J. Am. Chem. Soc. 2009, 131, 4576–4577. [Google Scholar] [CrossRef]
- Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels. Chem. Mater. 2008, 20, 6985–6997. [Google Scholar] [CrossRef]
- Mohite, D.P.; Mahadik-Khanolkar, S.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N. Polydicyclopentadiene Aerogels Grafted with PMMA: I. Molecular and Interparticle Crosslinking. Soft Matter 2013, 9, 1516–1530. [Google Scholar] [CrossRef]
- Mohite, D.P.; Mahadik-Khanolkar, S.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N. Polydicyclopentadiene Aerogels Grafted with PMMA: II. Nanoscopic Characterization and Origin of Macroscopic Deformation. Soft Matter 2013, 9, 1531–1539. [Google Scholar] [CrossRef]
- Paraskevopoulou, P.; Smirnova, I.; Athamneh, T.; Papastergiou, M.; Chriti, D.; Mali, G.; Čendak, T.; Chatzichristidi, M.; Raptopoulos, G.; Gurikov, P. Mechanically Strong Polyurea/Polyurethane-Cross-Linked Alginate Aerogels. ACS Appl. Polym. Mater. 2020, 2, 1974–1988. [Google Scholar] [CrossRef]
- Paraskevopoulou, P.; Smirnova, I.; Athamneh, T.; Papastergiou, M.; Chriti, D.; Mali, G.; Čendak, T.; Raptopoulos, G.; Gurikov, P. Polyurea-Crosslinked Biopolymer Aerogel Beads. RSC Adv. 2020, 10, 40843. [Google Scholar] [CrossRef]
- Raptopoulos, G.; Papastergiou, M.; Chriti, D.; Effraimopoulou, E.; Čendak, T.; Samartzis, N.; Mali, G.; Ioannides, T.; Gurikov, P.; Smirnova, I.; et al. Metal-Doped Carbons from Polyurea-Crosslinked Alginate Aerogel Beads. Mater. Adv. 2021, 2, 2684–2699. [Google Scholar] [CrossRef]
- Fricke, M.; Paraskevopoulou, P.; Gurikov, P.; Chriti, D.; Papastergiou, M.; Raptopoulos, G.; Athamneh, T.; Smirnova, I.; Movahed, S.; Weinrich, D.; et al. Polyurea/Polyurethane-Crosslinked Alginate Aerogels. EP3848409A1, 14 July 2021. [Google Scholar]
- Paraskevopoulou, P.; Raptopoulos, G.; Len, A.; Dudás, Z.; Fábián, I.; Kalmár, J. Fundamental Skeletal Nanostructure of Nanoporous Polymer-Cross-Linked Alginate Aerogels and Its Relevance to Environmental Remediation. ACS Appl. Nano Mater. 2021, 4, 10575–10583. [Google Scholar] [CrossRef]
- Leventis, N.; Sotiriou-Leventis, C.; Chandrasekaran, N.; Mulik, S.; Larimore, Z.J.; Lu, H.; Churu, G.; Mang, J.T. Multifunctional Polyurea Aerogels from Isocyanates and Water. A Structure−Property Case Study. Chem. Mater. 2010, 22, 6692–6710. [Google Scholar] [CrossRef]
- Leventis, N.; Sotiriou-Leventis, C.; Saeed, A.M.; Donthula, S.; Majedi Far, H.; Rewatkar, P.M.; Kaiser, H.; Robertson, J.D.; Lu, H.; Churu, G. Nanoporous Polyurea from a Triisocyanate and Boric Acid: A Paradigm of a General Reaction Pathway for Isocyanates and Mineral Acids. Chem. Mater. 2016, 28, 67–78. [Google Scholar] [CrossRef]
- Chidambareswarapattar, C.; McCarver, P.M.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N. Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chem. Mater. 2013, 25, 3205–3224. [Google Scholar] [CrossRef]
- Bang, A.; Buback, C.; Sotiriou-Leventis, C.; Leventis, N. Flexible Aerogels from Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes). Chem. Mater. 2014, 26, 6979–6993. [Google Scholar] [CrossRef]
- Saeed, A.M.; Rewatkar, P.M.; Majedi Far, H.; Taghvaee, T.; Donthula, S.; Mandal, C.; Sotiriou-Leventis, C.; Leventis, N. Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Appl. Mater. Interfaces 2017, 9, 13520–13536. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.M.; Wisner, C.A.; Donthula, S.; Majedi Far, H.; Sotiriou-Leventis, C.; Leventis, N. Reuseable Monolithic Nanoporous Graphite-Supported Nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from Pyrolysis and Galvanic Transmetalation of Ferrocene-Based Polyamide Aerogels. Chem. Mater. 2016, 28, 4867–4877. [Google Scholar] [CrossRef]
- Papastergiou, M.; Kanellou, A.; Chriti, D.; Raptopoulos, G.; Paraskevopoulou, P. Poly(Urethane-Acrylate) Aerogels via Radical Polymerization of Dendritic Urethane-Acrylate Monomers. Materials 2018, 11, 2249. [Google Scholar] [CrossRef]
- Kanellou, A.; Anyfantis, G.C.; Chriti, D.; Raptopoulos, G.; Pitsikalis, M.; Paraskevopoulou, P. Poly(Urethane-Norbornene) Aerogels via Ring Opening Metathesis Polymerization of Dendritic Urethane-Norbornene Monomers: Structure-Property Relationships as a Function of an Aliphatic Versus an Aromatic Core and the Number of Peripheral Norbornene Moieties. Molecules 2018, 23, 1007. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Enamorado-Montes, G.; Durango-Hernández, J.; Pinedo-Hernández, J.; Díez, S. Removal of Mercury from Gold Mine Effluents Using Limnocharis flava in Constructed Wetlands. Chemosphere 2017, 167, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Wang, Y.; Cao, Y.; Tang, W.; Li, Z. Defect-Engineered MOF-801/Sodium Alginate Aerogel Beads for Boosting Adsorption of Pb(II). ACS Appl. Mater. Interfaces 2024, 16, 57614–57625. [Google Scholar] [CrossRef]
- Chemical Equilibrium Diagrams. Available online: https://www.kth.se/che/medusa/chemeq-1.369367 (accessed on 28 February 2025).
- Cataldo, S.; Gianguzza, A.; Pettignano, A.; Villaescusa, I. Mercury(II) Removal from Aqueous Solution by Sorption onto Alginate, Pectate and Polygalacturonate Calcium Gel Beads. A Kinetic and Speciation Based Equilibrium Study. React. Funct. Polym. 2013, 73, 207–217. [Google Scholar] [CrossRef]
- Lei, Y.; Li, K.; Liao, J.; Zhang, Y.; Zhang, L.; Zhu, W. Design of 3D Alumina-Doped Magnesium Oxide Aerogels with a High Efficiency Removal of Uranium(vi) from Wastewater. Inorg. Chem. Front. 2021, 8, 2561–2574. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Huang, C.-F.; Hsu, W.-J.; Chang, F.-C. Removal of Hg2+ from Aqueous Solution Using Alginate Gel Containing Chitosan. J. Appl. Polym. Sci. 2007, 104, 2896–2905. [Google Scholar] [CrossRef]
- Benettayeb, A.; Morsli, A.; Guibal, E.; Kessas, R. New Derivatives of Urea-Grafted Alginate for Improving the Sorption of Mercury Ions in Aqueous Solutions. Mater. Res. Express 2021, 8, 035303. [Google Scholar] [CrossRef]
Initial Hg2+ Concentration (mg·L−1) | Hg2+ in Solution (mmol) | CaK (% w/w) | CaK (% Atomic) | HgL (% w/w) | HgL (% Atomic) | Atomic Ratio Hg/Ca |
---|---|---|---|---|---|---|
0.01 | cannot be quantified | |||||
5 | 0.001 | 80.58 | 95.40 | 19.42 | 4.60 | 0.05 |
10 | 0.002 | 60.68 | 88.54 | 39.32 | 11.46 | 0.13 |
20 | 0.005 | 50.12 | 83.41 | 49.88 | 16.59 | 0.20 |
50 | 0.012 | 5.39 | 22.20 | 94.61 | 77.80 | 3.50 |
Pseudo first-order | qe (mmol kg−1) | 0.96 ± 0.02 |
k1 (min−1) | (4.4 ± 0.3) × 10−3 | |
R2 | 0.98 | |
Pseudo second-order | qe (mmol kg−1) | 1.17 ± 0.06 |
k2 (kg mmol−1 min−1) | (4.0 ± 0.8) × 10−3 | |
R2 | 0.95 | |
Intraparticle diffusion | qe (mmol kg−1) | 0.10 ± 0.07 |
k2 (mmol kg−1 min−1/2) | 0.028 ± 0.003 | |
R2 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigala, E.; Zoi, A.; Raptopoulos, G.; Sakellis, E.; Sakellari, A.; Karavoltsos, S.; Paraskevopoulou, P. Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels. Gels 2025, 11, 437. https://doi.org/10.3390/gels11060437
Sigala E, Zoi A, Raptopoulos G, Sakellis E, Sakellari A, Karavoltsos S, Paraskevopoulou P. Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels. Gels. 2025; 11(6):437. https://doi.org/10.3390/gels11060437
Chicago/Turabian StyleSigala, Evangelia, Artemisia Zoi, Grigorios Raptopoulos, Elias Sakellis, Aikaterini Sakellari, Sotirios Karavoltsos, and Patrina Paraskevopoulou. 2025. "Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels" Gels 11, no. 6: 437. https://doi.org/10.3390/gels11060437
APA StyleSigala, E., Zoi, A., Raptopoulos, G., Sakellis, E., Sakellari, A., Karavoltsos, S., & Paraskevopoulou, P. (2025). Removal of Mercury from Aqueous Environments Using Polyurea-Crosslinked Calcium Alginate Aerogels. Gels, 11(6), 437. https://doi.org/10.3390/gels11060437