Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance Characterization of PCMs with Different Content of Modified Materials
2.1.1. Cooling Time Analysis
2.1.2. Supercooling Degree Analysis
2.1.3. Phase Transition Latent Heat Analysis
2.1.4. Phase Transition Temperature Analysis
2.2. Physical and Chemical Structural Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Composite Phase Change Material Preparation
4.3. Experimental Method
4.4. Methods of Analysis
4.5. Test and Characterization Methods
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Bland, A.; Khzouz, M.; Statheros, T.; Gkanas, E.I. PCMs for residential building applications: A short review focused on disadvantages and proposals for future development. Buildings 2017, 7, 78. [Google Scholar] [CrossRef]
- Liu, W.; Qu, M.; Zhang, F.; Cao, S.; Li, Z.; Xu, Z. A comparative study of thermal radiation model in Chinese solar greenhouse. PLoS ONE 2024, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Alizadeh, M.; Sadrameli, S.M. Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations–A review. Renew. Sustain. Energy Rev. 2016, 58, 619–645. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020, 5, 100039. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, F.; Xu, Z.; Yu, W.; Bai, Y.; Liu, W. Effect of thermal parameters on heat storage and release performance of phase change material composite wall. Energy Explor. Exploit. 2023, 41, 619–635. [Google Scholar] [CrossRef]
- Qiao, X.; Kong, X.; Wang, L. Thermal performance analysis of a thermal enhanced form-stable composite phase change material with aluminum nitride. Appl. Therm. Eng. 2021, 187, 116581. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Ding, Y. Preparation and properties of composite phase change material based on solar heat storage system. J. Energy Storage 2021, 40, 102805. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, M.; Sun, B.; Zhang, F.; Bai, Y.; Liu, Z. Temperature Dependency on the Microscopic Mechanism in the Normal Direction of Wrought AZ31 Sheet under Dynamic Compressive Behavior. Materials 2021, 14, 7436. [Google Scholar] [CrossRef]
- Cellat, K.; Beyhan, B.; Kazanci, B.; Konuklu, Y.; Paksoy, H. Direct incorporation of butyl stearate as phase change material into concrete for energy saving in buildings. J. Clean Energy Technol. 2017, 5, 64–68. [Google Scholar] [CrossRef]
- An, J.; Yang, E.H.; Duan, F. Synthesis and characterization of robust SiO2-PCM microcapsules. ES Mater. Manuf. 2021, 15, 34–45. [Google Scholar] [CrossRef]
- Beyhan, B.; Paksoy, H.; Daşgan, Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers. Manag. 2013, 74, 446–453. [Google Scholar] [CrossRef]
- Ling, H.; Chen, C.; Wei, S.; Guan, Y.; Ma, C.; Xie, G.; Li, N.; Chen, Z. Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time. Appl. Energy 2015, 140, 329–337. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Li, X.; Wu, X. Novel composite phase change materials with enhancement of light-thermal conversion, thermal conductivity and thermal storage capacity. Sol. Energy 2020, 196, 419–426. [Google Scholar] [CrossRef]
- Yang, A.; Xu, X.; Jia, S.; Hao, W. Heat storage and release performance of solar greenhouses made of composite phase change material comprising methyl palmitate and hexadecanol in cold climate. Therm. Sci. Eng. Prog. 2024, 54, 102837. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Hua, W.; Ji, J.; Lv, X. Current status and development of research on phase change materials in agricultural greenhouses: A review. J. Energy Storage 2023, 66, 107104. [Google Scholar] [CrossRef]
- Naghibi, Z.; Carriveau, R.; Ting, D.S.-K. Improving clean energy greenhouse heating with solar thermal energy storage and phase change materials. Energy Storage 2020, 2, e116. [Google Scholar] [CrossRef]
- Kenisarin, M.M. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 2014, 107, 553–575. [Google Scholar] [CrossRef]
- Hassan, F.; Jamil, F.; Hussain, A.; Ali, H.M.; Janjua, M.M.; Khushnood, S.; Farhan, M.; Altaf, K.; Said, Z.; Li, C. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustain. Energy Technol. Assess. 2022, 49, 101646. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Yun, B.-Y.; Yang, S.; Kim, S. Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage. Chem. Eng. J. 2022, 437, 135407. [Google Scholar] [CrossRef]
- Junaid, M.F.; Rehman, Z.U.; Čekon, M.; Čurpek, J.; Farooq, R.; Cui, H.; Khan, I. Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications. Energy Build. 2021, 252, 111443. [Google Scholar] [CrossRef]
- Lian, P.; Yan, R.; Wu, Z.; Wang, Z.; Chen, Y.; Li, Z.; Sheng, X. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid Mater. 2023, 6, 74. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, D.; Zhang, L.; Sheng, X.; Chen, Y. An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation. Adv. Compos. Hybrid Mater. 2023, 6, 80. [Google Scholar] [CrossRef]
- Ye, R.; Jiang, H.; Wang, J.; Yang, X.; Shu, X. Fabrication and characteristics of eutectic hydrated salts/fumed silica composite as form-stable phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 238, 111584. [Google Scholar] [CrossRef]
- Fang, Y.; Ding, Y.; Tang, Y.; Liang, X.; Jin, C.; Wang, S.; Gao, X.; Zhang, Z. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl. Therm. Eng. 2019, 150, 1177–1185. [Google Scholar] [CrossRef]
- Duan, Z.-J.; Zhang, H.-Z.; Sun, L.-X.; Cao, Z.; Xu, F.; Zou, Y.-J.; Chu, H.-L.; Qiu, S.-J.; Xiang, C.-L.; Zhou, H.-Y. CaCl2 6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage. J. Therm. Anal. Calorim. 2014, 115, 111–117. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Xie, B.; Zhao, X.; Chen, J. Tailored phase change behavior of Na2SO4 10H2O/expanded graphite composite for thermal energy storage. Energy Convers. Manag. 2020, 208, 112586. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Ci, E.; Li, X.; Guo, L.; Wu, L.; Li, J. Preparation and characterization of a solar-driven sodium acetate trihydrate composite phase change material with Ti4O7 particles. Sol. Energy Mater. Sol. Cells 2022, 238, 111591. [Google Scholar] [CrossRef]
- Mu, M.; Zhang, S.; Yang, S.; Wang, Y. Phase change materials applied in agricultural greenhouses. J. Energy Storage 2022, 49, 104100. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Xu, X.; Munyalo, J.M.; Liu, L.; Liu, X.; Lu, M.; Zhao, Y. Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials. J. Mol. Liq. 2019, 280, 360–366. [Google Scholar] [CrossRef]
- Prabakaran, R.; Dhamodharan, P.; Sathishkumar, A.; Gullo, P.; Vikram, M.P.; Pandiaraj, S.; Alodhayb, A.; Khouqeer, G.A.; Kim, S.-C. An overview of the state of the art and challenges in the use of gelling and thickening agents to create stable thermal energy storage materials. Energies 2023, 16, 3306. [Google Scholar] [CrossRef]
- Chen, L.; Liu, D.; Yang, L. Progress of heat transfer enhancement technology in phase change energy storage process. Chem. Ind. Eng. Prog. 2017, 36, 291. [Google Scholar]
- Tang, A.; Chen, W.; Shao, X.; Jin, Y.; Li, J.; Xia, D. Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management. Int. J. Energy Res. 2022, 46, 12737–12757. [Google Scholar] [CrossRef]
- Fu, W.; Chen, L.; Lao, J.; He, Z.; Ma, J.; Peng, H.; Chen, W. AdjusLHCent of phase change temperature using KCl to develop composite phase change materials based on super absorbent polymer as carrier for use in building energy conservation. Polymer 2024, 301, 127066. [Google Scholar] [CrossRef]
- Lan, X.Z.; Tan, Z.C.; Shi, Q.; Yang, C.G. A novel gelling method for stabilization of phase change material Na2HPO4·12H2O with sodium alginate grafted sodium acrylate. Thermochim. Acta 2007, 463, 18–20. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Hua, W.; Zheng, L.; Liu, L.; Yu, C. Preparation and thermal properties of Na2HPO4·12H2O composite phase change material for thermal energy storage. Chem. Ind. Eng. Prog. 2019, 38, 5457. [Google Scholar] [CrossRef]
- Safari, A.; Saidur, R.; Sulaiman, F.A.; Xu, Y.; Dong, J. A review on supercooling of Phase Change Materials in thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 905–919. [Google Scholar] [CrossRef]
- Beaupere, N.; Soupremanien, U.; Zalewski, L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochim. Acta 2018, 670, 184–201. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.; Yang, Y. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties. Appl. Energy 2021, 292, 116845. [Google Scholar] [CrossRef]
- Devaraj, N.B.; Ramanjaneyulu, C.; Santhosh, R.V.; Sundara, R.R.; Suresh, B.G.; Vinoth, T.; Rava, K.K.; Saikiran, A. Synthesis and characteristic analysis of an inorganic composite phase change materials for medium-temperature thermal storage. Powder Technol. 2024, 434, 119381. [Google Scholar] [CrossRef]
- Anurita Selvarajoo, A.; Wong, Y.L.; Khoo, K.S.; Chen, W.-H.; Show, P.L. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere 2022, 294, 133671. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Park, J.H.; Wi, S.; Yang, S.; Ok, Y.S.; Kim, S. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Chemosphere 2019, 236, 124269. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yu, H.; Song, Y.; Wang, M.; Liu, Z. An-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy 2020, 145, 1465–1473. [Google Scholar]
- Wu, Y.; Wang, C.; Li, J.; Li, Y. Porous hydroxyapatite foams: Excellent carrier of hydrated salt with adjustable pores for thermal energy storage. Ind. Eng. Chem. Res. 2021, 60, 1259–1265. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Vijayan, N.; Ramesh Babu, R.; Gopalakrishnan, R.; Ramasamy, P.; Lan, C.W. Growth and characterization of di-sodium hydrogen phosphate. J. Cryst. Growth 2002, 244, 194–199. [Google Scholar] [CrossRef]
- Khan, M.A.S.; Ganguly, B. Can surface energy be a parameter to define morphological change of rock-salt crystals with additives? A first principles study. CrystEngComm 2013, 15, 2631. [Google Scholar] [CrossRef]
No. | CT (s) | ΔHm (J/g) | ΔT (°C) | Tm (°C) |
---|---|---|---|---|
1 | 5078 | 72.95 | 9.1 | 26.2 |
2 | 4940 | 60.51 | 8.7 | 27.2 |
3 | 4830 | 66.81 | 9.6 | 26.6 |
4 | 5550 | 80.88 | 6.8 | 34.2 |
5 | 4993 | 76.04 | 7.5 | 27.3 |
6 | 4852 | 64.35 | 7.3 | 25.7 |
7 | 5286 | 95.73 | 11 | 38.8 |
8 | 5083 | 72.13 | 9.1 | 31.7 |
9 | 4833 | 71.07 | 6.1 | 25.0 |
10 | 6608 | 62.68 | 10.8 | 20.9 |
11 | 5344 | 63.67 | 9.1 | 24.5 |
12 | 6927 | 78.73 | 10.3 | 34.3 |
13 | 5467 | 82.19 | 8.5 | 26.4 |
14 | 4955 | 87.42 | 5.3 | 34.6 |
15 | 6193 | 67.78 | 9.5 | 25.5 |
16 | 5724 | 65.29 | 9.5 | 25.9 |
17 | 6084 | 53.36 | 11.1 | 29.8 |
18 | 5284 | 70.53 | 9.1 | 32.9 |
19 | 5322 | 62.97 | 7.1 | 22.7 |
20 | 5933 | 78.46 | 2.6 | 25.5 |
21 | 6059 | 95.52 | 3.2 | 25.0 |
22 | 5654 | 86.14 | 2.7 | 24.1 |
23 | 5782 | 62.74 | 3.1 | 28.3 |
24 | 6838 | 76.46 | 10.0 | 27.2 |
25 | 6378 | 74.15 | 8.7 | 35.7 |
26 | 6290 | 95.52 | 9.3 | 38.2 |
27 | 6660 | 71.26 | 8.1 | 32.2 |
Level | A | B | A × B | C | A × C | B × C | D | A × D | B × D | C × D |
---|---|---|---|---|---|---|---|---|---|---|
1 | −74.06 | −75.01 | −74.88 | −74.97 | −75.05 | −75.25 | −75.23 | −74.98 | −74.75 | −75.25 |
2 | −75.28 | −74.89 | −75.43 | −74.83 | −74.75 | −75.23 | −74.80 | −75.26 | −75.06 | −74.83 |
3 | −75.68 | −75.12 | −74.71 | −75.23 | −75.22 | −74.54 | −75.00 | −74.79 | −75.22 | −74.94 |
Delta | 1.63 | 0.23 | 0.72 | 0.39 | 0.47 | 0.71 | 0.43 | 0.48 | 0.48 | 0.42 |
Rank | 1 | 10 | 2 | 9 | 6 | 3 | 7 | 5 | 4 | 8 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
A | 2 | 5,411,949 | 2,705,974 | 20.87 | 0.001 | HS |
B | 2 | 100,032 | 50,016 | 0.39 | 0.692 | |
A × B | 2 | 1,208,936 | 604,468 | 4.66 | 0.045 | HS |
C | 2 | 368,486 | 184,243 | 4.12 | 0.296 | |
A × C | 2 | 525,483 | 262,741 | 2.03 | 0.194 | |
B × C | 2 | 1,242,587 | 621,293 | 4.79 | 0.043 | HS |
D | 2 | 400,305 | 200,153 | 1.54 | 0.271 | |
A × D | 2 | 429,452 | 214,726 | 1.66 | 0.250 | |
B × D | 2 | 497,968 | 248,984 | 1.92 | 0.208 | |
Error | 8 | 1,037,279 | 129,660 | |||
Total | 26 | 11,222,476 |
Level | A | B | A × B | C | A × C | B × C | D | A × D | B × D | C × D |
---|---|---|---|---|---|---|---|---|---|---|
1 | −18.31 | −17.02 | −17.30 | −18.51 | −17.77 | −17.02 | −19.24 | −16.11 | −16.81 | −17.69 |
2 | −19.15 | −15.83 | −18.65 | −16.28 | −16.39 | −18.06 | −15.91 | −16.78 | −17.98 | −16.59 |
3 | −14.47 | −19.08 | −15.97 | −17.14 | −17.76 | −16.85 | −16.78 | −19.04 | −17.13 | −17.64 |
Delta | 4.68 | 3.24 | 2.68 | 2.23 | 1.37 | 1.21 | 3.33 | 2.92 | 1.17 | 1.10 |
Rank | 1 | 3 | 5 | 6 | 7 | 8 | 2 | 4 | 9 | 10 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
A | 2 | 47.656 | 23.828 | 11.76 | 0.004 | HS |
B | 2 | 25.259 | 12.629 | 6.23 | 0.023 | HS |
A × B | 2 | 13.907 | 6.954 | 3.43 | 0.084 | S |
C | 2 | 9.034 | 4.517 | 2.23 | 0.170 | |
A × C | 2 | 4.679 | 2.339 | 1.15 | 0.363 | |
B × C | 2 | 3.932 | 1.966 | 0.97 | 0.420 | |
D | 2 | 27.290 | 13.645 | 6.73 | 0.019 | HS |
A × D | 2 | 18.003 | 9.001 | 4.44 | 0.050 | HS |
B × D | 2 | 2.494 | 1.248 | 0.62 | 0.564 | |
Error | 8 | 16.216 | 2.027 | |||
Total | 26 | 168.470 |
Level | A | B | A × B | C | A × C | B × C | D | A × D | B × D | C × D |
---|---|---|---|---|---|---|---|---|---|---|
1 | 37.24 | 36.98 | 36.61 | 37.47 | 37.52 | 37.78 | 36.77 | 37.48 | 37.21 | 37.29 |
2 | 36.83 | 37.56 | 37.33 | 37.03 | 37.04 | 37.25 | 37.31 | 36.77 | 37.46 | 37.90 |
3 | 37.76 | 37.30 | 37.89 | 37.34 | 37.28 | 36.81 | 37.75 | 37.59 | 37.17 | 36.64 |
Delta | 0.93 | 0.58 | 1.28 | 0.44 | 0.48 | 0.97 | 0.98 | 0.83 | 0.29 | 1.25 |
Rank | 5 | 7 | 1 | 9 | 8 | 4 | 3 | 6 | 10 | 2 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
A | 2 | 288.16 | 144.08 | 1.48 | 0.285 | |
B | 2 | 99.17 | 49.59 | 0.51 | 0.620 | |
A × B | 2 | 539.58 | 269.79 | 2.76 | 0.122 | |
C | 2 | 57.04 | 28.52 | 0.29 | 0.754 | |
A × C | 2 | 62.11 | 31.05 | 0.32 | 0.736 | |
B × C | 2 | 300.68 | 150.34 | 1.54 | 0.272 | |
D | 2 | 306.14 | 153.07 | 1.57 | 0.266 | |
A × D | 2 | 230.78 | 115.39 | 1.18 | 0.355 | |
C × D | 2 | 611.47 | 305.73 | 3.13 | 0.099 | S |
Error | 8 | 780.81 | 97.60 | |||
Total | 26 | 3275.93 |
Level | A | B | A × B | C | A × C | B × C | D | A × D | B × D | C × D |
---|---|---|---|---|---|---|---|---|---|---|
1 | −29.21 | −28.18 | −28.78 | −29.53 | −28.86 | −29.87 | −28.67 | −29.14 | −29.02 | −29.06 |
2 | −28.93 | −28.92 | −29.48 | −28.77 | −29.37 | −28.59 | −28.87 | −28.82 | −29.39 | −29.27 |
3 | −29.05 | −30.08 | −28.92 | −28.89 | −28.96 | −28.72 | −29.64 | −29.22 | −28.77 | −28.85 |
Delta | 0.29 | 1.89 | 0.70 | 0.76 | 0.51 | 1.27 | 0.97 | 0.40 | 0.62 | 0.42 |
Rank | 10 | 1 | 5 | 4 | 7 | 2 | 3 | 9 | 6 | 8 |
Source | DoF | Adj SS | Adj MS | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
A | 2 | 3.469 | 1.734 | 0.10 | 0.903 | |
B | 2 | 187.447 | 93.723 | 5.58 | 0.030 | HS |
A × B | 2 | 36.329 | 18.164 | 1.08 | 0.384 | |
C | 2 | 33.609 | 16.804 | 1.00 | 0.410 | |
A × C | 2 | 11.496 | 5.748 | 0.34 | 0.720 | |
B × C | 2 | 106.336 | 53.168 | 3.16 | 0.097 | S |
D | 2 | 53.149 | 26.574 | 1.58 | 0.264 | |
B × D | 2 | 20.180 | 10.090 | 0.60 | 0.571 | |
C × D | 2 | 14.196 | 7.098 | 0.42 | 0.669 | |
Error | 8 | 134.398 | 16.800 | |||
Total | 26 | 600.607 |
Ranking#Parameters | CT | ΔT | ΔHm | Tm |
---|---|---|---|---|
1 | A, −ve | A, ±ve | C × D | B, −ve |
2 | A × B | B, ±ve | - | B × C |
3 | B × C | D, ±ve | - | - |
4 | - | A × B | - | - |
5 | - | A × D | - | - |
No. | Peak Location | Component |
---|---|---|
1 | 532 cm−1 | HPO42−, C-H, XG |
2 | 630 cm−1 | HPO42−, C-H, XG |
3 | 960 cm−1 | HPO42− |
4 | 1060 cm−1 | HPO42− |
5 | 1130 cm−1 | C-O |
6 | 1260 cm−1 | O-H |
7 | 1350 cm−1 | -CH3 |
8 | 1600 cm−1 | SiO32− |
Level | Element | |||
---|---|---|---|---|
A Na2SiO3·9H2O | B KCI | C Nano-α-Fe2O3 | D XG | |
(wt%) | (wt%) | (wt%) | (wt%) | |
1 | 3 | 12 | 0.1 | 2 |
2 | 4 | 14 | 0.2 | 3 |
3 | 5 | 16 | 0.3 | 4 |
No. | A | B | A × B | C | A × C | B × C | Blank Column | D | A × D | B × D | Blank Column | C × D | Blank Column |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 12 | 1 | 0.1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
2 | 3 | 12 | 1 | 0.1 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 |
3 | 3 | 12 | 1 | 0.1 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 |
4 | 3 | 14 | 2 | 0.2 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 3 |
5 | 3 | 14 | 2 | 0.2 | 2 | 2 | 2 | 4 | 3 | 3 | 1 | 1 | 1 |
6 | 3 | 14 | 2 | 0.2 | 3 | 3 | 3 | 2 | 1 | 1 | 2 | 2 | 2 |
7 | 3 | 16 | 3 | 0.3 | 1 | 1 | 1 | 4 | 3 | 3 | 2 | 2 | 2 |
8 | 3 | 16 | 3 | 0.3 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 3 |
9 | 3 | 16 | 3 | 0.3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 |
10 | 4 | 12 | 2 | 0.3 | 1 | 2 | 3 | 2 | 2 | 3 | 1 | 2 | 3 |
11 | 4 | 12 | 2 | 0.3 | 2 | 3 | 1 | 3 | 3 | 1 | 2 | 3 | 1 |
12 | 4 | 12 | 2 | 0.3 | 3 | 1 | 2 | 4 | 1 | 2 | 3 | 1 | 2 |
13 | 4 | 14 | 3 | 0.1 | 1 | 2 | 3 | 3 | 3 | 1 | 3 | 1 | 2 |
14 | 4 | 14 | 3 | 0.1 | 2 | 3 | 1 | 4 | 1 | 2 | 1 | 2 | 3 |
15 | 4 | 14 | 3 | 0.1 | 3 | 1 | 2 | 2 | 2 | 3 | 2 | 3 | 1 |
16 | 4 | 16 | 1 | 0.2 | 1 | 2 | 3 | 4 | 1 | 2 | 2 | 3 | 1 |
17 | 4 | 16 | 1 | 0.2 | 2 | 3 | 1 | 2 | 2 | 3 | 3 | 1 | 2 |
18 | 4 | 16 | 1 | 0.2 | 3 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 3 |
19 | 5 | 12 | 3 | 0.2 | 1 | 3 | 2 | 2 | 3 | 2 | 1 | 3 | 2 |
20 | 5 | 12 | 3 | 0.2 | 2 | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 3 |
21 | 5 | 12 | 3 | 0.2 | 3 | 2 | 1 | 4 | 2 | 1 | 3 | 2 | 1 |
22 | 5 | 14 | 1 | 0.3 | 1 | 3 | 2 | 3 | 1 | 3 | 3 | 2 | 1 |
23 | 5 | 14 | 1 | 0.3 | 2 | 1 | 3 | 4 | 2 | 1 | 1 | 3 | 2 |
24 | 5 | 14 | 1 | 0.3 | 3 | 2 | 1 | 2 | 3 | 2 | 2 | 1 | 3 |
25 | 5 | 16 | 2 | 0.1 | 1 | 3 | 2 | 4 | 2 | 1 | 2 | 1 | 3 |
26 | 5 | 16 | 2 | 0.1 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 1 |
27 | 5 | 16 | 2 | 0.1 | 3 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Liu, G.; Shi, W.; Tang, X.; Wu, X.; Wu, J.; Xu, Z.; Zhang, F.; Yang, M. Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse. Gels 2025, 11, 434. https://doi.org/10.3390/gels11060434
Liu W, Liu G, Shi W, Tang X, Wu X, Wu J, Xu Z, Zhang F, Yang M. Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse. Gels. 2025; 11(6):434. https://doi.org/10.3390/gels11060434
Chicago/Turabian StyleLiu, Wenhe, Gui Liu, Wenlu Shi, Xinyang Tang, Xuhui Wu, Jiayang Wu, Zhanyang Xu, Feng Zhang, and Mengmeng Yang. 2025. "Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse" Gels 11, no. 6: 434. https://doi.org/10.3390/gels11060434
APA StyleLiu, W., Liu, G., Shi, W., Tang, X., Wu, X., Wu, J., Xu, Z., Zhang, F., & Yang, M. (2025). Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse. Gels, 11(6), 434. https://doi.org/10.3390/gels11060434