Physically Transient Gelatin-Based Memristors of Buildable Logic Gates
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Experimental Section
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurshan, E.; Li, H.; Seok, M.; Xie, Y. A Case for 3D Integrated System Design for Neuromorphic Computing and AI Applications. Int. J. Semant. Comput. 2020, 14, 457–475. [Google Scholar] [CrossRef]
- Wang, L.; Ding, J.; Pan, L.; Cao, D.; Ding, X. Artificial Intelligence Facilitates Drug Design in the Big Data Era. Chemometr. Intell. Lab. 2019, 194, 103850. [Google Scholar] [CrossRef]
- Lu, Z.X.; Qian, P.; Bi, D.; Ye, Z.W.; He, X.; Zhao, Y.H.; Su, L.; Li, S.L.; Zhu, Z.L. Application of AI and IoT in Clinical Medicine: Summary and Challenges. Curr. Med. Sci. 2021, 41, 1134–1150. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Rahouti, M.; Ahmad, K.; Al-Fuqaha, A.; Guizani, M. The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions. IEEE Internet Things 2021, 9, 12861–12885. [Google Scholar] [CrossRef]
- Tripathi, N.; Goshisht, M.K.; Sahu, S.K.; Arora, C. Applications of Artificial Intelligence to Drug Design and Discovery in the Big Data Era: A Comprehensive Review. Mol. Divers. 2021, 25, 1643–1664. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, S.; Zeng, S.; Huang, X.; Zhou, P. Versatile Logic and Nonvolatile Memory Based on a Van Der Waals Heterojunction. ACS Appl. Electron. Mater. 2021, 3, 3079–3084. [Google Scholar] [CrossRef]
- Niu, X.; Tian, B.; Zhu, Q.; Dkhil, B.; Duan, C. Ferroelectric Polymers for Neuromorphic Computing. Appl. Phys. Rev. 2022, 9, 021309. [Google Scholar] [CrossRef]
- Carrillo, S.G.C.; Lugnan, A.; Gemo, E.; Bienstman, P.; Pernice, W.H.; Bhaskaran, H.; Wright, C.D. System-Level Simulation for Integrated Phase-Change Photonics. J. Light. Technol. 2021, 39, 6392–6402. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, D.; Liu, Y.; Fang, C.; Wang, S.; Wang, G.; Huang, Y.; Yu, X.; Han, G.; Hao, Y. All-Optical Synapse with Directional Coupler Structure Based on Phase Change Material. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Liao, K.; Chen, Y.; Yu, Z.; Hu, X.; Wang, X.; Lu, C.; Lin, H.; Du, Q.; Hu, J.; Gong, Q. All-Optical Computing Based on Convolutional Neural Networks. Opto-Electron. Adv. 2021, 4, 200060. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, P. The Road for 2D Semiconductors in the Silicon Age. Adv. Mater. 2021, 34, 2106886. [Google Scholar] [CrossRef] [PubMed]
- Coluccio, A.; Casale, U.; Guastamacchia, A.; Turvani, G.; Vacca, M.; Roch, M.R.; Zamboni, M.; Graziano, M. Hybrid-SIMD: A Modular and Reconfigurable Approach to Beyond von Neumann Computing. IEEE Trans. Comput. 2021, 71, 2287–2299. [Google Scholar] [CrossRef]
- Kundu, S.; Ganganaik, P.B.; Louis, J.; Chalamalasetty, H.; Rao, B.P. Memristors Enabled Computing Correlation Parameter In-Memory System: A Potential Alternative to von Neumann Architecture. IEEE Trans. VLSI. Syst. 2022, 30, 755–768. [Google Scholar] [CrossRef]
- He, Z.Y.; Wang, T.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Atomic Layer-Deposited HfAlOx-Based RRAM with Low Operating Voltage for Computing In-Memory Applications. Nanoscale Res. Lett. 2019, 14, 51. [Google Scholar] [CrossRef]
- Sung, S.H.; Kim, D.H.; Kim, T.J.; Kang, I.S.; Lee, K.J. Unconventional Inorganic—Based Memristive Devices for Advanced Intelligent Systems. Adv. Mater. Technol. 2019, 4, 1900080. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of Memristor Devices in Neuromorphic Computing: Materials Sciences and Device Challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Sun, K.; Chen, J.; Yan, X. The Future of Memristors: Materials Engineering and Neural Networks. Adv. Funct. Mater. 2021, 31, 2006773. [Google Scholar] [CrossRef]
- Kang, C.F.; Kuo, W.C.; Bao, W.; Ho, C.H.; Huang, C.W.; Wu, W.W.; Chu, Y.H.; Juang, J.Y.; Tseng, S.H.; Hu, L. Self-Formed Conductive Nanofilaments in (Bi, Mn) Ox for Ultralow-Power Memory Devices. Nano Energy 2015, 13, 283–290. [Google Scholar] [CrossRef]
- Bai, W.; Huang, R.; Cai, Y.; Tang, Y.; Zhang, X.; Wang, Y. Record Low-Power Organic RRAM with Sub20-nA Reset Current. IEEE Electr. Device Lett. 2013, 34, 223–225. [Google Scholar] [CrossRef]
- Ahn, S.E.; Lee, M.J.; Kang, B.S.; Lee, D.; Kim, C.J.; Kim, D.S.; Chung, U.I. Investigation for Resistive Switching by Controlling Overflow Current in Resistance Change Nonvolatile Memory. IEEE Trans. Nanotechnol. 2012, 11, 1122–1125. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.H.; Gao, B.; Deng, N.; Lu, Z.; Haukness, B.; Bronner, G.; Qian, H. Resistive Random Access Memory for Future Information Processing System. Proc. IEEE 2017, 105, 1770–1789. [Google Scholar] [CrossRef]
- Trotti, P.; Oukassi, S.; Molas, G.; Bernard, M.; Aussenac, F.; Pillonnet, G. In Memory Energy Application for Resistive Random Access Memory. Adv. Electron. Mater. 2021, 7, 2100297. [Google Scholar] [CrossRef]
- Covi, E.; Wang, W.; Lin, Y.-H.; Farronato, M.; Ambrosi, E.; Ielmini, D. Switching Dynamics of Ag-Based Filamentary Volatile Re-Sistive Switching Devices—Part I: Experimental Characterization. IEEE Trans. Electron Dev. 2021, 68, 4335–4341. [Google Scholar] [CrossRef]
- Wang, X.F.; Tian, H.; Zhao, H.M.; Zhang, T.Y.; Mao, W.Q.; Qiao, Y.C.; Pang, Y.; Li, Y.X.; Yang, Y.; Ren, T.L. Interface Engineering with MoS2–Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory. Small 2018, 14, 1702525. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Duan, W.; Wang, J.; Zhong, X. Electrically Controlled Nonlinear Switching and Multilevel Storage Characteristics in WOx Film-Based Memory Cells. J. Phys. Chem. Solids 2018, 116, 148–152. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wen, D. Flexible Nonvolatile Bioresistive Random Access Memory with an Adjustable Memory Mode Capable of Realizing Logic Functions. Nanomaterials 2021, 11, 1973. [Google Scholar] [CrossRef]
- Lin, F.; Cheng, Y.; Li, Z.; Wang, C.; Peng, W.; Cao, Z.; Gao, K.; Cui, Y.; Wang, S.; Lu, Q.; et al. Data encryption/decryption and medical image reconstruction based on a sustainable biomemristor designed logic gate circuit. Mater. Today Bio 2024, 29, 101257. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, S.; Niu, Q.; Fang, H.; Zhang, Y.P. Intrinsically ionic conductive nanofibrils for ultrathin biomemristor with low operating voltage. Sci. China Mater. 2022, 65, 3096–3104. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Li, D.; Wang, R.; Li, F.F.; Wu, M.Q.; Liang, K.; Ren, H.H.; Zheng, X.R.; Guo, C.C.; et al. Silk protein based volatile threshold switching memristors for neuromorphic computing. Adv. Electron. Mater. 2022, 8, 2101139. [Google Scholar] [CrossRef]
- Rong, H.H.; Zhang, M.C.; Liang, X.; Liu, C.; Saadi, M.; Chen, X.Y.; Yao, L.; Zhang, Y.R.; He, N.; Hu, E. Demonstration of electronic synapses using a sericin-based biomemristor. Appl. Phys. Express 2023, 16, 031007. [Google Scholar] [CrossRef]
- Tungkavet, T.; Pattavarakorn, D.; Sirivat, A. Biocompatible Gelatins (Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro-) and Electro-Mechanical Properties: Effects of Temperature and Electric Field. J. Polym. Res. 2012, 19, 9759. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Wald, N.; Satat, G.; Kolodny, A.; Weiser, U.C.; Friedman, E.G. MRL—Memristor Ratioed Logic. In Proceedings of the 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications, Turin, Italy, 29–31 August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
Device Structure | Switching Current Ratio | Retention Time (s) | Functions | References |
---|---|---|---|---|
Al/gelatin:Au NPs/ITO | ~7.68 × 106 | 104 | NAND and NOR | This paper |
Al/tussah hemolymph/ITO | ~102 | 104 | AND and OR | [27] |
Ag/mugwort:PVDF/ITO | ~3.6 | 105 | AND/OR/NAND/NOR/XOR | [28] |
Ag/silk nanofibrils/ITO | 102 | 105 | AND and OR | [29] |
Au/silk:AgNO3/Ag | 3 × 106 | 103 | short-term plasticity and paired-pulse facilitation | [30] |
Ag/sericin/W | 100 | / | spiking rate-dependent plasticity and spiking time-dependent plasticity | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, Y.; Li, W.; Gao, Z.; Han, Y.; Wen, D. Physically Transient Gelatin-Based Memristors of Buildable Logic Gates. Gels 2025, 11, 428. https://doi.org/10.3390/gels11060428
Wang L, Wang Y, Li W, Gao Z, Han Y, Wen D. Physically Transient Gelatin-Based Memristors of Buildable Logic Gates. Gels. 2025; 11(6):428. https://doi.org/10.3390/gels11060428
Chicago/Turabian StyleWang, Lu, Yuting Wang, Wenhao Li, Zhiqiang Gao, Yutong Han, and Dianzhong Wen. 2025. "Physically Transient Gelatin-Based Memristors of Buildable Logic Gates" Gels 11, no. 6: 428. https://doi.org/10.3390/gels11060428
APA StyleWang, L., Wang, Y., Li, W., Gao, Z., Han, Y., & Wen, D. (2025). Physically Transient Gelatin-Based Memristors of Buildable Logic Gates. Gels, 11(6), 428. https://doi.org/10.3390/gels11060428