Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared Nano-Sized Polyacrylic Acid Brushes
2.2. Effects of Brush Length and Concentration on the Self-Assembly and Properties of the Molecular Hydrogels
2.3. Effects of the Brush Concentration on the Network Morphologies of the Molecular Hydrogels
2.4. Location of the Self-Assembled Hydrogel Fibers with Respect to the Nano-Sized Polymer Brushes
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Concentration Measurement of the Prepared Particle Solutions
4.3. Nanoparticle Size Distribution and Zeta Potential
4.4. Transmission Electron Microscopy
4.5. Rheological Analysis
4.6. Confocal Laser Scanning Microscopy
4.7. Scanning Electron Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HA3 | Hydrazone Gelators |
H | Hydrazide |
A | Aldehyde |
PAA | Polyacrylic Acid |
TEM | Transmission Electron Microscopy |
CLSM | Confocal Laser Scanning Microscopy |
FITC | Fluorescein Aldehyde Derivative |
SEM | Scanning Electron Microscopy |
References
- Stuart, M.A.; Huck, W.T.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J.P.; Aono, M. Nanoarchitectonics: A new materials horizon for nanotechnology. Mater. Horiz. 2015, 2, 406–413. [Google Scholar] [CrossRef]
- Woods, J.F.; Gallego, L.; Pfister, P.; Maaloum, M.; Vargas Jentzsch, A.; Rickhaus, M. Shape-assisted self-assembly. Nat. Commun. 2022, 13, 3681. [Google Scholar] [CrossRef] [PubMed]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzan, L.M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Herbaj, S.; Dunne, N.J. Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials 2019, 9, 1570. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wen, Z.; Yang, S.; Wang, J.; Zhang, Q. Controllable self-assembly of mesoporous hydroxyapatite. Colloids Surf. B Biointerfaces 2015, 127, 47–53. [Google Scholar] [CrossRef]
- Vigier-Carrière, C.; Boulmedais, F.; Schaaf, P.; Jierry, L. Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew. Chem. Int. Ed. 2018, 57, 1448–1456. [Google Scholar] [CrossRef]
- Li, L.; Zheng, R.; Sun, R. Understanding multicomponent low molecular weight gels from gelators to networks. J. Adv. Res. 2025, 69, 91–106. [Google Scholar] [CrossRef]
- Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065. [Google Scholar] [CrossRef]
- Muheyati, M.; Wu, G.; Li, Y.; Pan, Z.; Chen, Y. Supramolecular nanotherapeutics based on cucurbiturils. J. Nanobiotechnol. 2024, 22, 790. [Google Scholar] [CrossRef]
- Li, Y.; Tian, R.; Zou, Y.; Wang, T.; Liu, J. Strategies and applications for supramolecular protein self-assembly. Chem. Eur. J. 2024, 30, e202402624. [Google Scholar] [CrossRef] [PubMed]
- Hirao, T.; Haino, T. Development of Supramolecular Polymers with Unique Chain Structures. In Supramolecular Nanotechnology: Advanced Design of Self-Assembled Functional Materials; Azzaroni, O., Conda-Sheridan, M., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Lei, Z.; Wu, P.A. Supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018, 9, 1134. [Google Scholar] [CrossRef] [PubMed]
- Tekin, C.; Caroprese, V.; Bastings, M.M.C. Dynamic surface interactions enable the self-assembly of perfect supramolecular crystals. ACS Appl. Mater. Interfaces 2024, 16, 59040–59048. [Google Scholar] [CrossRef] [PubMed]
- El Hasnaoui, N.; Fatimi, A.; Benjalal, Y. Self-assembly of molecular landers equipped with functional moieties on the surface: A mini review. Int. J. Mol. Sci. 2024, 25, 6277. [Google Scholar] [CrossRef]
- Olive, A.G.; Abdullah, N.H.; Ziemecka, I.; Mendes, E.; Eelkema, R.; van Esch, J.H. Spatial and directional control over self-assembly using catalytic micropatterned surfaces. Angew. Chem. Int. Ed. 2014, 53, 4132–4136. [Google Scholar] [CrossRef]
- Johnson, E.K.; Adams, D.J.; Cameron, P.J. Directed self-assembly of dipeptides to form ultrathin hydrogel membranes. J. Am. Chem. Soc. 2010, 132, 5130–5136. [Google Scholar] [CrossRef]
- Rodon Fores, J.; Martinez Mendez, M.L.; Mao, X.; Wagner, D.; Schmutz, M.; Rabineau, M.; Lavalle, P.; Schaaf, P.; Boulmedais, F.; Jierry, L. Localized supramolecular peptide self-assembly directed by enzyme-induced proton gradients. Angew. Chem. Int. Ed. 2017, 56, 15984–15988. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.G.; Shang, J.; Li, J.L.; Hu, X.Q.; Teo, B.K.; Wu, K. Proton-assisted self-assemblies of linear di-pyridyl polyaromatic molecules at solid/liquid interface. J. Phys. Chem. C. 2012, 116, 21753–21761. [Google Scholar] [CrossRef]
- Yang, X.; Lu, H.; Tao, Y.; Zhou, L.; Wang, H. Spatiotemporal control over chemical assembly in living cells by integration of acid-catalyzed hydrolysis and enzymatic reactions. Angew. Chem. 2021, 60, 23797–23804. [Google Scholar] [CrossRef]
- Williams, R.J.; Smith, A.M.; Collins, R.; Hodson, N.; Das, A.K.; Ulijn, R.V. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 2009, 4, 19–24. [Google Scholar] [CrossRef]
- Zhan, J.; Cai, Y.; He, S.; Wang, L.; Yang, Z. Tandem molecular self-assembly in liver cancer cells. Angew. Chem. Int. Ed. 2018, 57, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Pappas, C.G.; Shafi, R.; Sasselli, I.R.; Siccardi, H.; Wang, T.; Narang, V.; Abzalimov, R.; Wijerathne, N.; Ulijn, R.V. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 2016, 11, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; de Kruijff, R.M.; Lovrak, M.; Guo, X.; Eelkema, R.; van Esch, J.H. Access to metastable gel states using seeded self-assembly of low-molecular-weight gelators. Angew. Chem. Int. Ed. 2019, 58, 3800–3803. [Google Scholar] [CrossRef] [PubMed]
- Fukui, T.; Kawai, S.; Fujinuma, S.; Matsushita, Y.; Yasuda, T.; Sakurai, T.; Seki, S.; Takeuchi, M.; Sugiyasu, K. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 2017, 9, 493–499. [Google Scholar] [CrossRef]
- Cai, P.; Wang, H.; Gao, Y.; Li, Z.; Guo, X.; Wang, Y.J.C. Effects of nucleophilic catalysts on the self-assembly of hydrazone-based supramolecular hydrogels. ChemistrySelect 2024, 9, e202402920. [Google Scholar] [CrossRef]
- Tait, S.L.; Langner, A.; Lin, N.; Stepanow, S.; Rajadurai, C.; Ruben, M.; Kern, K. One-dimensional self-assembled molecular chains on Cu(100): Interplay between surface-assisted coordination chemistry and substrate commensurability. J. Phys. Chem. C. 2007, 111, 10982–10987. [Google Scholar] [CrossRef]
- Yang, G.; Wong, M.K.; Lin, L.E.; Yip, C.M. Nucleation and growth of elastin-like peptide fibril multilayers: An in situ atomic force microscopy study. Nanotechnology 2011, 22, 494018. [Google Scholar] [CrossRef]
- Datar, A.; Gross, D.E.; Balakrishnan, K.; Yang, X.; Moore, J.S.; Zang, L. Ultrafine nanofibers fabricated from an arylene–ethynylene macrocyclic molecule using surface assisted self-assembly. Chem. Commun. 2012, 48, 8904–8906. [Google Scholar] [CrossRef]
- Ciesielski, A.; Samori, P. Supramolecular approaches to graphene: From self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. 2016, 28, 6030–6051. [Google Scholar] [CrossRef]
- Vigier-Carrière, C.; Garnier, T.; Wagner, D.; Lavalle, P.; Rabineau, M.; Hemmerlé, J.; Senger, B.; Schaaf, P.; Boulmedais, F.; Jierry, L.J.A.C. Bioactive seed layer for surface-confined self-assembly of peptides. Angew. Chem. Int. Ed. 2015, 127, 10336–10339. [Google Scholar] [CrossRef]
- Frisch, H.; Fritz, E.C.; Stricker, F.; Schmuser, L.; Spitzer, D.; Weidner, T.; Ravoo, B.J.; Besenius, P. Kinetically controlled sequential growth of surface-grafted chiral supramolecular copolymers. Angew. Chem. Int. Ed. 2016, 55, 7242–7246. [Google Scholar] [CrossRef] [PubMed]
- La Manna, S.; Florio, D.; Panzetta, V.; Roviello, V.; Netti, P.A.; Di Natale, C.; Marasco, D. Hydrogelation tunability of bioinspired short peptides. Soft Matter 2022, 18, 8418–8426. [Google Scholar] [CrossRef]
- Diaferia, C.; Gallo, E.; Cimmino, L.; Laurenzi, V.; De Marco, A.; Morelli, G.; Stornaiuolo, M.; Accardo, A. Fluorescence of aggregated aromatic peptides for studying the kinetics of aggregation and hardening of amyloid-like structures. Chem. Eur. J. 2024, 30, e202401998. [Google Scholar] [CrossRef] [PubMed]
- Naydenov, B.; Torsney, S.; Bonilla, A.S.; El Garah, M.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Cozzi, P.G.; Gutierrez, R.; Samori, P.; et al. Self-assembled two-dimensional supramolecular networks characterized by scanning tunneling microscopy and spectroscopy in ar and under vacuum. Langmuir 2018, 34, 7698–7707. [Google Scholar] [CrossRef]
- Spitzer, D.; Marichez, V.; Formon, G.J.M.; Besenius, P.; Hermans, T.M. Surface-assisted self-assembly of a hydrogel by proton diffusion. Angew. Chem. Int. Ed. 2018, 57, 11349–11353. [Google Scholar] [CrossRef]
- Dergham, M.; Lin, S.; Geng, J. Supramolecular self-assembly in living cells. Angew. Chem. Int. Ed. 2022, 134, e202114267. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, H.; Yan, Y.; Zhu, Z.; Zheng, F.; Sun, Q. High-throughput preparation of supramolecular nanostructures on metal surfaces. ACS Nano 2022, 16, 13160–13167. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Yin, C. Manipulating molecular self-assembly process at the solid–liquid interface probed by scanning tunneling microscopy. Polymers 2023, 15, 4176. [Google Scholar] [CrossRef]
- Yao, Z.F.; Cordova, D.L.M.; Milligan, G.M.; Lopez, D.; Allison, S.J.; Kuang, Y.; Ardona, H.A.M.; Arguilla, M.Q. Lattice-guided assembly of optoelectronically active pi-conjugated peptides on 1D van der Waals single crystals. Sci. Adv. 2024, 10, eadl2402. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Luo, Z.; Li, M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023, 26, 106279. [Google Scholar] [CrossRef]
- Chang, S.W.; Ginzburg, V.V.; Kramer, J.W.; Lee, C.; Li, M.; Murray, D.J.; Park, J.; Roy, R.; Sharma, R.; Trefonas, P., III; et al. Opportunities and challenges for directed self-assembly for advanced patterning. J. Photopolym. Sci. Technol. 2013, 26, 31–37. [Google Scholar] [CrossRef]
- Boekhoven, J.; Poolman, J.M.; Maity, C.; Li, F.; van der Mee, L.; Minkenberg, C.B.; Mendes, E.; van Esch, J.H.; Eelkema, R. Catalytic control over supramolecular gel formation. Nat. Chem. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Weiss, A.; Ballauff, M. Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecues 1999, 32, 6043–6046. [Google Scholar] [CrossRef]
- Maity, C.; Hendriksen, W.E.; van Esch, J.H.; Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 2015, 54, 998–1001. [Google Scholar] [CrossRef]
- Wang, Y.; Oldenhof, S.; Versluis, F.; Shah, M.; Zhang, K.; van Steijn, V.; Guo, X.; Eelkema, R.; van Esch, J.H. Controlled fabrication of micropatterned supramolecular gels by directed self-assembly of small molecular gelators. Small 2019, 15, 1804154. [Google Scholar] [CrossRef]
- Poolman, J.M.; Boekhoven, J.; Besselink, A.; Olive, A.G.; van Esch, J.H.; Eelkema, R. Variable gelation time and stiffness of low-molecular-weight hydrogels through catalytic control over self-assembly. Nat. Protoc. 2014, 9, 977–988. [Google Scholar] [CrossRef]
- Wang, Y.; Versluis, F.; Oldenhof, S.; Lakshminarayanan, V.; Zhang, K.; Wang, Y.; Wang, J.; Eelkema, R.; Guo, X.; Van Esch, J.H. Directed nanoscale self-assembly of low molecular weight hydrogelators using catalytic nanoparticles. Adv. Mater. 2018, 30, 1707408. [Google Scholar] [CrossRef]
- Qin, X.; Chen, K.; Cao, L.; Zhang, Y.; Li, L.; Guo, X. Antifouling performance of nano-sized spherical poly(N-hydroxyethyl acrylamide) brush. Colloids Surf. B Biointerfaces 2017, 155, 408–414. [Google Scholar] [CrossRef]
- Li, T.; Zhu, C.; Liang, C.; Deng, T.; Wu, X.; Wen, K.; Feng, X.; Yuan, D.; Xu, B.; Shi, J. Surface-induced peptide nanofibers for selective bacteria trapping. ACS Appl. Nano Mater. 2023, 6, 7785–7793. [Google Scholar] [CrossRef]
Sample No | Core Size | Particle Size | Brush Length | Zeta Potential |
---|---|---|---|---|
1 | 96 nm | 271 nm | 175 nm | −12.3 |
2 | 96 nm | 264 nm | 168 nm | −8.4 |
3 | 96 nm | 252 nm | 156 nm | −7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh Idris, S.; Wang, H.; Gao, Y.; Cai, P.; Wang, Y.; Zhao, S. Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators. Gels 2025, 11, 289. https://doi.org/10.3390/gels11040289
Sheikh Idris S, Wang H, Gao Y, Cai P, Wang Y, Zhao S. Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators. Gels. 2025; 11(4):289. https://doi.org/10.3390/gels11040289
Chicago/Turabian StyleSheikh Idris, Samahir, Hucheng Wang, Yuliang Gao, Peiwen Cai, Yiming Wang, and Shicheng Zhao. 2025. "Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators" Gels 11, no. 4: 289. https://doi.org/10.3390/gels11040289
APA StyleSheikh Idris, S., Wang, H., Gao, Y., Cai, P., Wang, Y., & Zhao, S. (2025). Nanoscale Spatial Control over the Self-Assembly of Small Molecule Hydrogelators. Gels, 11(4), 289. https://doi.org/10.3390/gels11040289