Hydrophobic Silica Aerogel with Higher Flame Retardancy, Thermal Radiation Shielding, and High-Temperature Insulation Properties Through Introduction of TiO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Pore Structure
2.2. Basic Physicochemical Properties
2.3. Conbustion Behaviors
2.3.1. Thermal Analysis
2.3.2. Flame-Retardant Properties
2.3.3. Composition of Pyrolysis Products
2.4. SA/TiO2 Aerogel Composites
2.4.1. Density and Hydrophobicity
2.4.2. GCV and Thermal Insulation Performance
2.4.3. Flame-Retardant Mechanism
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of SA/TiO2 Aerogel Powders
4.3. Preparation of SA/TiO2 Aerogel Composites
4.4. Methods for Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hüsing, N.; Schubert, U. Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Gong, L.; Liu, Q.; Li, S. Enhanced Flame Retardancy of Hydrophobic Silica Aerogels by Using Sodium Silicate as Precursor and Phosphoric Acid as Catalyst. J. Non-Cryst. Solids 2018, 481, 267–275. [Google Scholar] [CrossRef]
- Wang, L.; Shen, A.; Li, Z.; Wang, C.; Liu, M.; Guo, Y. SiO2 Aerogel Modified Aggregates: Preparation, Heat Resistance and Improvement Mechanism. Constr. Build. Mater. 2024, 449, 138332. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Tudorache, D.-I.; Bocioagă, M.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials 2024, 14, 469. [Google Scholar] [CrossRef]
- Linhares, T.; Pessoa De Amorim, M.T.; Durães, L. Silica Aerogel Composites with Embedded Fibres: A Review on Their Preparation, Properties and Applications. J. Mater. Chem. A 2019, 7, 22768–22802. [Google Scholar] [CrossRef]
- Tai, M.H.; Kumar, P.S. Harnessing the Power of Silica Aerogels for Applications in Energy and Water Sustainability. J. Mater. Chem. A 2024, 12, 18879–18900. [Google Scholar] [CrossRef]
- Feng, L.; Cai, M.; Fu, Y.; Ma, Q.; Sun, B.; Waterhouse, G.I.N. Short Jute Fiber-Reinforced Silica Aerogel with Excellent Mechanical Properties. J. Mater. Sci. 2024, 59, 19892–19903. [Google Scholar] [CrossRef]
- Rao, A.P.; Rao, A.V.; Pajonk, G.M. Hydrophobic and Physical Properties of the Ambient Pressure Dried Silica Aerogels with Sodium Silicate Precursor Using Various Surface Modification Agents. Appl. Surf. Sci. 2007, 253, 6032–6040. [Google Scholar] [CrossRef]
- Rao, A.V.; Pajonk, G.M.; Bhagat, S.D.; Barboux, P. Comparative Studies on the Surface Chemical Modification of Silica Aerogels Based on Various Organosilane Compounds of the Type RnSiX4−n. J. Non-Cryst. Solids 2004, 350, 216–223. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Yang, H. Characteristics of Ambient-Pressure-Dried Aerogels Synthesized via Different Surface Modification Methods. J. Sol-Gel. Sci. Technol. 2015, 76, 138–149. [Google Scholar] [CrossRef]
- Halim, Z.A.A.; Yajid, M.A.M.; Hamdan, H. Effects of Solvent Exchange Period and Heat Treatment on Physical and Chemical Properties of Rice Husk Derived Silica Aerogels. Silicon 2021, 13, 251–257. [Google Scholar] [CrossRef]
- Guo, J.; Fu, S.; Deng, Y.; Xu, X.; Laima, S.; Liu, D.; Zhang, P.; Zhou, J.; Zhao, H.; Yu, H.; et al. Hypocrystalline Ceramic Aerogels for Thermal Insulation at Extreme Conditions. Nature 2022, 606, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiang, Y.; Feng, J.; Feng, J.; Yue, C. Infrared-Opacified Al2O3–SiO2 Aerogel Composites Reinforced by SiC-Coated Mullite Fibers for Thermal Insulations. Ceram. Int. 2015, 41, 437–442. [Google Scholar] [CrossRef]
- Lun, Z.; Gong, L.; Zhang, Z.; Deng, Y.; Zhou, Y.; Pan, Y.; Cheng, X. Improvement of the Thermal Insulation Performance of Silica Aerogel by Proper Heat Treatment: Microporous Structures Changes and Pyrolysis Mechanism. Gels 2022, 8, 141. [Google Scholar] [CrossRef]
- Baiker, A.; Dollenmeier, P.; Glinski, M.; Reller, A. Selective Catalytic Reduction of Nitric Oxide with Ammonia. Appl. Catal. 1987, 35, 365–380. [Google Scholar] [CrossRef]
- Xi, S.; Wang, Y.; Zhang, X.; Cao, K.; Su, J.; Shen, J.; Wang, X. Fire-Resistant Polyimide-Silica Aerogel Composite Aerogels with Low Shrinkage, Low Density and High Hydrophobicity for Aerospace Applications. Polym. Test. 2023, 129, 108259. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, S.; Li, K.; Zhang, Z.; Yang, F.; Li, X.; Song, Y.; Gan, Z.; Yang, Z. Large-Scale Production of Elastic SiC/SiO2 Nanofibrous Composite Aerogels with a Labyrinth Structure for High-Temperature Insulation, Fire Prevention, and Noise Absorption. Chem. Eng. J. 2025, 505, 159166. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Zhang, H.; Huang, S.; Wu, S.; Liang, Z. A Three-Dimensional Network Modifier (Dimethyldiethoxysilane) Makes ZrO2-SiO2 Aerogel with Excellent Thermal Insulation Performance and High-Temperature Stability. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131716. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Shen, K.; Liu, Q.; Li, M.; Chen, Z.; Cheng, X.; Wu, X. Tuning Thermal Stability and Fire Hazards of Hydrophobic Silica Aerogels via Doping Reduced Graphene Oxide. J. Non-Cryst. Solids 2024, 625, 122747. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Huber, L.; Wu, X.; Huang, S.; Zhang, Y.; Huang, R.; Liu, Q. Reducing the Thermal Hazard of Hydrophobic Silica Aerogels by Using Dimethyldichlorosilane as Modifier. J. Sol-Gel. Sci. Technol. 2020, 93, 111–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Deng, X.; Deng, Y.; Wu, X.; Shi, L.; Li, M.; Liu, Q.; Cheng, X.; Li, Z. Improving the Flame Retardance of Hydrophobic Silica Aerogels through a Facile Post-Doping of Magnesium Hydroxide. Adv. Powder Technol. 2021, 32, 1891–1901. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Zhang, Y.; Wu, X.; Shi, L.; Liu, Q.; Li, M. Assessment on Thermal Safety of Aluminum Hydroxide Doping Hydrophobic Silica Aerogels. J. Nanopart. Res. 2022, 24, 87. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Wang, X.; Liu, Q.; Li, M.; Shulga, Y.M.; Li, Z. In-Situ Synthesis of Layered Double Hydroxide/Silica Aerogel Composite and Its Thermal Safety Characteristics. Gels 2022, 8, 581. [Google Scholar] [CrossRef]
- Yang, S.; Strobach, E.; Bierman, D.; Zhao, L.; Bhatia, B.; Wang, E.N. Effect of Al2O3 ALD Coating on Thermal Stability of Silica Aerogel. J. Porous Mater. 2022, 29, 193–200. [Google Scholar] [CrossRef]
- Park, Y.S.; Choi, J.; Kim, B.S.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Synergistic Effects of P and Si on the Flame Retardancy in a Polymethylsilsesquioxane Aerogel Prepared under Ambient Pressure Drying. J. Therm. Anal Calorim. 2023, 148, 7623–7632. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Koebel, M.M.; Malfait, W.J. Silica Aerogels with Tailored Chemical Functionality. Mater. Des. 2020, 193, 108833. [Google Scholar] [CrossRef]
- Nie, L.; Li, S.; Cao, M.; Han, N.; Chen, Y. A Brief Review of Preparation and Applications of Monolithic Aerogels in Atmospheric Environmental Purification. J. Environ. Sci. 2025, 149, 209–220. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Z.; Kong, Y.; Zhu, K.; Jiang, W.; Yuan, M.; Tang, J.; Shen, X. General Approach to the Synthesis of Metal Hybrid Carbon/Titania Aerogel for the Oxygen Reduction Reaction. Energy Fuels 2024, 38, 8262–8276. [Google Scholar] [CrossRef]
- Rojas, F.; Kornhauser, I.; Felipe, C.; Esparza, J.M.; Cordero, S.; Domínguez, A.; Riccardo, J.L. Capillary Condensation in Heterogeneous Mesoporous Networks Consisting of Variable Connectivity and Pore-Size Correlation. Phys. Chem. Chem. Phys. 2002, 4, 2346–2355. [Google Scholar] [CrossRef]
- He, S.; Huang, D.; Bi, H.; Li, Z.; Yang, H.; Cheng, X. Synthesis and Characterization of Silica Aerogels Dried under Ambient Pressure Bed on Water Glass. J. Non-Cryst. Solids 2015, 410, 58–64. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, L.; Yang, M.; Chen, Z.; Song, K.; Wang, Y.; Erisen, D.E.; Xie, J.; Wu, Q.; Kou, Z. Electrospinning of SiO2-Based Composites Embedded TiO2 Nanoparticles with Ultra-Strong Suppression of Radiative Heat Transfer. J. Alloys Compd. 2023, 957, 170331. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mehmood, M.A.; Taqvi, S.T.H.; Elkamel, A.; Liu, C.-G.; Xu, J.; Rahimuddin, S.A.; Gull, M. Pyrolysis, Kinetics Analysis, Thermodynamics Parameters and Reaction Mechanism of Typha Latifolia to Evaluate Its Bioenergy Potential. Bioresour. Technol. 2017, 245, 491–501. [Google Scholar] [CrossRef]
- Yang, Z.L.; Walvekar, R.; Wong, W.P.; Sharma, R.K.; Dharaskar, S.; Khalid, M. Advances in Phase Change Materials, Heat Transfer Enhancement Techniques, and Their Applications in Thermal Energy Storage: A Comprehensive Review. J. Energy Storage 2024, 87, 111329. [Google Scholar] [CrossRef]
- Fan, C.; Lu, J.; Duan, C.; Wu, C.; Lin, J.; Qiu, R.; Zhang, Z.; Yang, J.; Zhou, B.; Du, A. Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels. Nanomaterials 2024, 14, 1304. [Google Scholar] [CrossRef]
- Yan, M.; Cheng, X.; Gong, L.; Lun, Z.; He, P.; Shi, L.; Liu, C.; Pan, Y. Growth Mechanism and Structure Regulation of Super-Elastic SiC Aerogels for Thermal Insulation and Electromagnetic Wave Absorption. Chem. Eng. J. 2023, 475, 146417. [Google Scholar] [CrossRef]
- Li, X.K.; Liu, L.; Zhang, Y.X.; Shen, S.D.; Ge, S.; Ling, L.C. Synthesis of Nanometre Silicon Carbide Whiskers from Binary Carbonaceous Silica Aerogels. Carbon 2001, 39, 159–165. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R′′Si(OR′)3 Precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Gurav, J.L.; Rao, A.V.; Rao, A.P.; Nadargi, D.Y.; Bhagat, S.D. Physical Properties of Sodium Silicate Based Silica Aerogels Prepared by Single Step Sol–Gel Process Dried at Ambient Pressure. J. Alloys Compd. 2009, 476, 397–402. [Google Scholar] [CrossRef]
- Li, Z.; Huang, S.; Shi, L.; Li, Z.; Liu, Q.; Li, M. Reducing the Flammability of Hydrophobic Silica Aerogels by Doping with Hydroxides. J. Hazard. Mater. 2019, 373, 536–546. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Shi, L.; Li, Z.; Luo, Y.; Liu, Q.; Huang, R. Methyltrichlorosilane Modified Hydrophobic Silica Aerogels and Their Kinetic and Thermodynamic Behaviors: Graphical Abstract. J. Sol-Gel. Sci. Technol. 2019, 89, 448–457. [Google Scholar] [CrossRef]
- Matin, S.S.; Chelgani, S.C. Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method. Fuel 2016, 177, 274–278. [Google Scholar] [CrossRef]
- Bangi, U.K.H.; Park, C.-S.; Baek, S.; Park, H.-H. Improvement in Optical and Physical Properties of TEOS Based Aerogels Using Acetonitrile via Ambient Pressure Drying. Ceram. Int. 2012, 38, 6883–6888. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Lee, Y.K.; Chavan, N.K.; Mahadik, S.A.; Park, H.-H. Monolithic and Shrinkage-Free Hydrophobic Silica Aerogels via New Rapid Supercritical Extraction Process. J. Supercrit. Fluids 2016, 107, 84–91. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Shi, L.; He, S.; Gong, L.; Li, C.; Zhang, H. Flammability and Oxidation Kinetics of Hydrophobic Silica Aerogels. J. Hazard. Mater. 2016, 320, 350–358. [Google Scholar] [CrossRef]
- Lyon, R.E.; Walters, R.N.; Stoliarov, S.I. Screening Flame Retardants for Plastics Using Microscale Combustion Calorimetry. Polym. Eng. Sci 2007, 47, 1501–1510. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Vagner, C.; Bier, F.; Six, J.-L.; Durand, A.; Vahabi, H. Exploring the Contribution of Two Phosphorus-Based Groups to Polymer Flammability via Pyrolysis–Combustion Flow Calorimetry. Materials 2019, 12, 2961. [Google Scholar] [CrossRef]
- Huang, D.; Guo, C.; Zhang, M.; Shi, L. Characteristics of Nanoporous Silica Aerogel under High Temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- GB 8624-2012; Classification for Burning Behavior of Building Materials and Products. China Standards Press: Beijing, China, 2012. (In Chinese)
- Singh, H.; Geisler, M.; Menzel, F. Experimental Investigations into Thermal Transport Phenomena in Vacuum Insulation Panels (VIPs) Using Fumed Silica Cores. Energy Build. 2015, 107, 76–83. [Google Scholar] [CrossRef]
- Pan, Y.; Jin, X.; Wang, H.; Huang, H.; Wu, C.; Yan, X.; Hong, C.; Zhang, X. Nano-TiO2 Coated Needle Carbon Fiber Reinforced Phenolic Aerogel Composite with Low Density, Excellent Heat-Insulating and Infrared Radiation Shielding Performance. J. Mater. Sci. Technol. 2023, 152, 181–189. [Google Scholar] [CrossRef]
- ISO 1716:2002; Reaction to Fire Tests for Building Products—Determination of the Heat of Combustion. ISO: Geneva, Switzerland, 2002.
Samples | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
Pure SA | 682.89 | 0.11 | 9.38 |
5% TiO2/SA | 658.28 | 0.14 | 10.82 |
10% TiO2/SA | 370.57 | 0.14 | 13.22 |
15% TiO2/SA | 361.59 | 0.24 | 13.29 |
20% TiO2/SA | 275.46 | 0.25 | 13.34 |
TiO2 | 5 | 0.03 | 42.44 |
Concentration of TiO2 (%) | Thermal Conductivity (W/mK) | Infrared Transmittance (%, at 3 μm) | Specific Extinction Coefficient (m2/kg, at 3 μm) |
---|---|---|---|
2.5 | 0.017 | 92 | 98 |
5 | 0.019 | 88 | 142 |
7.5 | 0.018 | 76 | 189 |
10 | 0.018 | 68 | 282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Pan, Y.; He, S.; Gong, L.; Zhang, Z.; Cheng, X.; Zhang, H. Hydrophobic Silica Aerogel with Higher Flame Retardancy, Thermal Radiation Shielding, and High-Temperature Insulation Properties Through Introduction of TiO2. Gels 2025, 11, 249. https://doi.org/10.3390/gels11040249
Sun H, Pan Y, He S, Gong L, Zhang Z, Cheng X, Zhang H. Hydrophobic Silica Aerogel with Higher Flame Retardancy, Thermal Radiation Shielding, and High-Temperature Insulation Properties Through Introduction of TiO2. Gels. 2025; 11(4):249. https://doi.org/10.3390/gels11040249
Chicago/Turabian StyleSun, Huiying, Yuelei Pan, Song He, Lunlun Gong, Zhongxin Zhang, Xudong Cheng, and Heping Zhang. 2025. "Hydrophobic Silica Aerogel with Higher Flame Retardancy, Thermal Radiation Shielding, and High-Temperature Insulation Properties Through Introduction of TiO2" Gels 11, no. 4: 249. https://doi.org/10.3390/gels11040249
APA StyleSun, H., Pan, Y., He, S., Gong, L., Zhang, Z., Cheng, X., & Zhang, H. (2025). Hydrophobic Silica Aerogel with Higher Flame Retardancy, Thermal Radiation Shielding, and High-Temperature Insulation Properties Through Introduction of TiO2. Gels, 11(4), 249. https://doi.org/10.3390/gels11040249