Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels
Abstract
:1. Introduction
2. Surimi
2.1. Surimi Processing
2.2. Surimi Quality
3. Surimi Gelation
3.1. Main Factors Affecting Gelation Process
3.1.1. Protein Content
3.1.2. Salt Content
3.1.3. pH
3.1.4. Effect of Endogenous Transglutaminase (TGe)
3.2. Thermal Gelation of Myofibrillar Proteins
3.2.1. Denaturation Process of Myofibrillar Proteins
3.2.2. Myofibrillar Protein Aggregation Process
4. Using Gelation Enhancers as a Strategy for Surimi Gelation with a Low Salt Content
4.1. Substitution of NaCl with Other Salts
4.2. Incorporation of Different Gelation Enhancers in Low-Salt Surimi Gels
4.2.1. Addition of Microbial Transglutaminase
4.2.2. Addition of Polyphenols
4.2.3. Addition of Phosphates
4.2.4. Addition of Hydrocolloids
4.2.5. Addition of Amino Acids
4.2.6. Addition of Proteins
5. Techno-Functional Properties of Low-Salt Surimi Gels
5.1. Texture
5.2. Water-Holding Capacity (WHC)
5.3. Colour
5.4. Flavour
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, T.; Tsuchiya, T. Nutrition and health benefits of surimi seafood. In Surimi and Surimi Seafood, 3rd ed.; Park, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2013; Section III; p. 603. [Google Scholar]
- Ojima, F. Effect of the Steamed Fish Paste Products on Dementia Prevention by Stimulating the Production of Nerve Growth Factor (NGF) Research Report on Health Benefit of Surimi Seafood; ZENKAMA: Tokyo, Japan, 2010; pp. 66–67. [Google Scholar]
- Fukunaga, K. Colon Cancer Inhibition Derived from Eating to the Kamaboko and Identified the Inhibiting Component Research Report on Health Benefit of Surimi Seafood; ZENKAMA: Tokyo, Japan, 2010; pp. 23–31. [Google Scholar]
- Yazawa, K.; Yamaguchi, K. Effect of Surimi Seafood on Life Style Related Disease in Mice Research Report on Health Benefit of Surimi Seafood; ZENKAMA: Tokyo, Japan, 2010; pp. 44–49. [Google Scholar]
- Cando, D.; Herranz, B.; Borderías, J.A.; Moreno, H.M. Different additives to enhance the gelation of surimi gel with reduced sodium content. Food Chem. 2016, 196, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.H.; Unanua, A.P. Arterial hypertension: Everest. 2002. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 16 December 2024).
- Nurmilah, S.; Cahyana, Y.; Utama, G.L.; Aït-Kaddour, A. Strategies to reduce salt content and its effect on food characteristics and acceptance: A review. Foods 2022, 11, 3120. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006. Regulation of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- Wang, X.; Luo, N.; Guo, C.; Wang, X.; Xia, S. Enhancing gel strength and saltiness perception of low-salt surimi gels: Synergistic effects of lysine assisted with water bath-microwave heating. Food Biosci. 2024, 61, 104827. [Google Scholar] [CrossRef]
- Hu, Y.; Badar, I.H.; Liu, Y.; Zhu, Y.; Yang, L.; Kong, B.; Xu, B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem. 2024, 453, 139664. [Google Scholar] [CrossRef] [PubMed]
- Seafood News. 2023. Available online: https://www.seafoodnews.com/Story/1276788/Maruha-Nichiro-Estimates-Worldwide-Surimi-Production-in-2023-Reached-800000-Tons (accessed on 15 December 2024).
- Surimi Market Analysis. Surimi Market Size, Share & Trends Analysis Report By Source (Tropical, Cold Water), By Form (Frozen, Fresh), By Distribution Channel (B2B, B2C), By Region, And Segment Forecasts, 2023–2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/surimi-market-report (accessed on 15 December 2024).
- Market Research Survey. Surimi Market Study by Fish Surimi and Meat Surimi for HoReCa, Food Processing, Households, Pahrmacutical, and Animal Feed, 2023–2033. 2023. Available online: https://www.factmr.com/report/5014/surimi-market (accessed on 15 December 2024).
- Park, J.W.; Nozaki, H.; Suzuki, T.; Beliveau, J. Historical review of Surimi technology and market developments. In Surimi and Surimi Seafood, 3rd ed.; Park, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2013; Section I; p. 3. [Google Scholar]
- Kim, Y.; Park, J. Negative roles of salt in gelation properties of fish protein isolate. J. Food Sci. 2008, 73, C585–C588. [Google Scholar] [CrossRef] [PubMed]
- Lanier, T.C.; Carvajal-Rondanelli, P.; Vadlamudi, R.K. Surimi gelation chemistry. In Surimi and Surimi Seafood, 3rd ed.; Park, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2013; Section I; p. 101. [Google Scholar]
- Shimada, M.; Takai, E.; Ejima, D.; Arakawa, T.; Shiraki, K. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution. Int. J. Biol. Macromol. 2015, 73, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Borderías, A.J.; Tovar, C.; Domínguez-Timón, F.; Díaz, M.T.; Pedrosa, M.M.; Moreno, H.M. Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates. Food Hydrocoll. 2020, 107, 105976. [Google Scholar] [CrossRef]
- Cando, D.; Herranz, B.; Borderías, A.J.; Moreno, H.M. Effect of high pressure on reduced sodium chloride surimi gels. Food Hydrocoll. 2015, 51, 176–187. [Google Scholar] [CrossRef]
- Hongviangjan, W.; Sompongse, W. Combined effects of high-pressure processing and polysaccharides on the characteristics and microstructure of low-salt threadfin bream surimi gel. Int. J. Food Sci. Technol. 2024, 59, 8312–8320. [Google Scholar] [CrossRef]
- Li, Q.; Jin, H.; Xia, M.; Sun, H.; Zeng, T.; Wang, Y.; Lu, L.; Cai, Z. Sucrose-phosphate osmotic system improves the quality characteristics of reduced-salt salted egg yolk: Profiling from protein structure and lipid distribution perspective. Food Chem. 2024, 445, 138750. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Wang, Y.; Tian, Y.; Zhuang, Y.; Yang, H. Effects of anthocyanins and microbial transglutaminase on the physicochemical properties of silver carp surimi gel. J. Texture Stud. 2023, 54, 541–549. [Google Scholar] [CrossRef]
- Vidal-Giraud, B.; Chateau, D. World surimi market. In GLOBEFISH Research Programme; FAO: Rome, Italy, 2007; Volume 89, p. 125. [Google Scholar]
- Park, J.W.; Graves, D.; Draves, R.; Yongsawatdigul, J. Manufacture of Surimi: Harvest to Frozen Block. In Surimi and Surimi Seafood, 3rd ed.; Park, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2013; Section I; p. 55. [Google Scholar]
- Lanier, T.C. New tecnologies in surimi manufacture. In Surimi Technology; Lanier, T.C., Lee, C.M., Eds.; Marcel Dekker Inc: New York, NY, USA, 1992; pp. 167–207. [Google Scholar]
- Chen, W.L.; Chow, C.J.; Ochiai, Y. Effects of some food additives on the gel-forming ability and color of milkfish meat paste. Fish. Sci. 1999, 65, 777–783. [Google Scholar] [CrossRef]
- Sánchez-Alonso, I.; Haji-Maleki, R.; Borderias, A.J. Wheat fiber as a functional ingredient in restructured fish products. Food Chem. 2007, 100, 1037–1043. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Park, J.W. Biochemical and physical characterizations of fish protein isolate and surimi prepared from fresh and frozen whole fish. LWT-Food Sci. Technol. 2017, 77, 200–207. [Google Scholar] [CrossRef]
- Zayas, J.F. Solubility of proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Chapter 2; pp. 6–75. [Google Scholar]
- Zhang, C.; Lu, M.; Ai, C.; Cao, H.; Xiao, J.; Imran, M.; Chen, L.; Teng, H. Ultrasonic treatment combined with curdlan improves the gelation properties of low-salt Nemipterus virgatus surimi. Int. J. Biol. Macromol. 2023, 248, 125899. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.J.; Zhang, W.W.; Wang, J.J.; Thakur, K.; Hu, F.; Khan, M.R.; Zhang, J.G.; Wei, Z.J. Effect of κ-carrageenan on the quality of crayfish surimi gels. Food Chem. X 2024, 22, 101497. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Shi, J.; Zhu, B.; Luo, Y. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solutions. Food Hydrocoll. 2018, 75, 116–124. [Google Scholar] [CrossRef]
- Wang, G.; Liu, M.; Cao, L.; Yongsawatdigul, J.; Xiong, S.; Liu, R. Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Biosci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, X.; Bai, W.; Zhao, W.; Zhang, Y.; Dong, H.; Pan, Z. Effect of microwave ultrasonic combination treatment on heating-induced gel properties of low-sodium tilapia surimi during gel setting stage and comparative analysis. LWT-Food Sci. Technol. 2022, 161, 113386. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, Y.; Ouyang, Z.; Yang, Y.; Ma, L.; Wang, H.; Zhang, Y. 3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocoll. 2023, 140, 108600. [Google Scholar] [CrossRef]
- Yongsawatdigul, J.; Worratao, A.; Park, J. Effect of endogenous transglutaminase on threadfin bream surimi gelation. J. Food Sci. 2002, 67, 3258–3263. [Google Scholar] [CrossRef]
- Núñez-Flores, R.; Cando, D.; Borderías, A.J.; Moreno, H.M. Importance of salt and temperature in myosin polymerization during surimi gelation. Food Chem. 2018, 239, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, H.G.; Hultin, H.O. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. J. Agric. Food Chem. 2003, 24, 7187–7196. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yin, T.; Hu, Y.; You, J.; Xiong, S.; Liu, R. Effect of high intensity ultrasound on gelation properties of silver carp surimi with different salt contents. Ultrason. Sonochem. 2021, 70, 105326. [Google Scholar] [CrossRef] [PubMed]
- Zayas, J.F. Gelling properties of proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Chapter 7; pp. 310–366. [Google Scholar]
- Messens, W.; Van Camp, J.; Huyghebaert, A. The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Technol. 1997, 8, 107–112. [Google Scholar] [CrossRef]
- Visschers, R.W.; de Jongh, H.H.J. Disulphide bond formation in food protein aggregation and gelation. Biotechnol. Adv. 2005, 23, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Pan, L.; Yang, X.; Sun, J.; Xu, X.; Zhou, G. Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations. LWT-Food Sci. Technol. 2018, 87, 361–367. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, G.; Jin, G.; Wang, Y.; Wang, J.; Puolanne, E.; Cao, J. Role of low molecular additives in the myofibrillar protein gelation: Underlying mechanisms and recent applications. Crit. Rev. Food Sci. Nutr. 2022, 64, 3604–3622. [Google Scholar] [CrossRef]
- Gilleland, G.; Lanier, T.C.; Hamann, D. Covalent bonding in pressure induced fish protein gels. J. Food Sci. 1997, 62, 713–733. [Google Scholar] [CrossRef]
- Balange, A.K. Enhancement of Gel Strength of Surimi Using Oxidized Phenolic Compound; Food Science and Technology Prince of Songkla University: Tambon Ruesamilae, Thailand, 2009. [Google Scholar]
- Walayat, N.; Liu, J.; Nawaz, A.; Aadil, R.M.; López-Pedrouso, M.; Lorenzo, J.M. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants 2022, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Shi, L.; Xiong, S.; Hu, Y.; You, J.; Huang, Q.; Yin, T. Gelling properties of vacuum-freeze dried surimi powder as influenced by heating method and microbial transglutaminase. LWT-Food Sci. Technol. 2019, 99, 105–111. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Lang, H.; Hu, Z.; Wang, X.; Guo, Z.; Jiang, L. Effects of microwave on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Food Chem. X 2023, 19, 100861. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, K.; Yang, F.; Shu, W.; Ma, J.; Huang, Y.; Cao, X.; Liu, Q.; Yuan, Y. Modification of myofibrillar protein structural characteristics: Effect of ultrasound-assisted first stage thermal treatment on unwashed Silver Carp surimi gel. Ultrason. Sonochem. 2024, 107, 106911. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Lin, S.; Chen, T.; Li, S.; Wang, S.; Li, C.; Wang, R.; Sun, N. Evaluation of the texture characteristics and taste of shrimp surimi with partial replacement of NaCl by non-sodium metal salts. Food Chem. 2024, 459, 140403. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Han, Y.; Ge, G.; Zhao, M.; Sun, W. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocoll. 2019, 96, 36–42. [Google Scholar] [CrossRef]
- Moreno, H.M.; Carballo, J.; Borderías, A.J. Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. J. Sci. Food Agric. 2008, 88, 1529–1536. [Google Scholar] [CrossRef]
- Dong, X.; Pan, Y.; Zhao, W.; Huang, Y.; Qu, W.; Pan, J.; Qui, H.; Prakash, S. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi. LWT-Food Sci. Technol. 2020, 124, 109123. [Google Scholar] [CrossRef]
- Seighalani, F.Z.B.; Bakar, J.; Saari, N.; Khoddami, A. Thermal and physicochemical properties of red tilapia (Oreochromis niloticus) surimi gel as affected by microbial transglutaminase. Anim. Prod. Sci. 2017, 57, 993. [Google Scholar] [CrossRef]
- Sharma, S.; Majumdar, R.K.; Mehta, N.K. Gelling properties and microstructure of the silver carp surimi treated with pomegranate (Punica granatum L.) peel extract. J. Food Sci. Technol. 2022, 59, 4210–4220. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Thavaraj, P.; Yang, X.; Guo, Y. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem. 2017, 224, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, C.; Li Li Laihao Yang, X.; Wang, Y.; Zhou, W. Improved physicochemical properties and product characteristics of tilapia surimi by tea polyphenols during chilled storage. LWT-Food Sci. Technol. 2022, 167, 113822. [Google Scholar] [CrossRef]
- Arsyad, M.A.; Akazawa, T.; Ogawa, M. Effects of Olive Leaf Powder on Mechanical Properties of Heat-Induced Surimi Gel. J. Aquat. Food Prod. 2018, 28, 2–13. [Google Scholar] [CrossRef]
- Julavittayanukul, O.; Benjakul, S.; Visessanguan, W. Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocoll. 2006, 20, 1153–1163. [Google Scholar] [CrossRef]
- Zheng, M.; Hong, J.; Chuai, P.; Chen, Y.; Ni, H.; Li, Q.; Jiang, Z. Impacts of agar gum and fucoidan on gel properties of surimi products without phosphate. Food Sci. Nutr. 2022, 10, 3759–3771. [Google Scholar] [CrossRef] [PubMed]
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef]
- Lee, J.; Yuan, P.; Heidolph, B.B.; Park, J.W. Physicochemical properties of frozen Alaska Pollock fillets and surimi as affected by various sodium phosphates. J. Food Process. Preserv. 2018, 42, e13530. [Google Scholar] [CrossRef]
- Díaz-Vela, J.; Pérez-Chabela, M.D.L.; Totosaus, A. Efecto del pH y de la adición de fosfatos de sodio sobre las propiedades de gelificación y emulsión de surimi de trucha arco-iris (Oncorhynchus mykiss). Food Sci. Technol. 2008, 28, 691–695. [Google Scholar] [CrossRef]
- Iglesias-Otero, M.A.; Borderias, J.; Tovar, C.A. Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi. J. Food Eng. 2010, 101, 281–288. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, X.; Cheng, C.; Liu, C.; Wang, Q.; Han, X. The structural characteristics of seaweed polysaccharides and their application in gel drug delivery systems. Mar. Drugs 2020, 18, 658. [Google Scholar] [CrossRef]
- Chen, J.; Deng, T.; Wang, C.; Mi, H.; Yi, S.; Li, X.; Li, J. Effect of hydrocolloids on gel properties and protein secondary structure of silver carp surimi. J. Sci. Food Agric. 2020, 100, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Xue, C. Effect of hydrocolloids on the gel properties of horse-mackerel surimi. Trans. Chin. Soc. Agric. 2009, 40, 119–125. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem. 2015, 179, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, W.; Yuan, C.; Morioka, K.; Chen, S.; Liu, D.; Ye, X. Enhancement of the gelation properties of hairtail (Trichiurus haumela) muscle protein with curdlan and transglutaminase. Food Chem. 2015, 176, 115–122. [Google Scholar] [CrossRef]
- He, X.; Lv, Y.; Li, X.; Yi, S.; Zhao, H.; Xu, Y.; Li, J. Effect of oat β-glucan on gel properties and protein conformation of silver carp surimi. J. Sci. Food Agric. 2023, 103, 3367–3375. [Google Scholar] [CrossRef]
- Kaewudom, P.; Benjakul, S.; Kijroongrojana, K. Properties of surimi gel as influenced by fish gelatin and microbial transglutaminase. Food Biosci. 2013, 1, 39–47. [Google Scholar] [CrossRef]
- Chen, H.H. Thermal gelation behaviors of surimi protein mixed with Hydroxypropylmethylcellulose. Fish. Sci. 2006, 72, 679–685. [Google Scholar] [CrossRef]
- Cando, D.; Borderías, A.J.; Moreno, H.M. Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing. Innov. Food Sci. Emerg. Technol. 2016, 36, 10–17. [Google Scholar] [CrossRef]
- Dai, H.; Chen, X.; Peng, L.; Ma, L.; Sun, Y.; Li, L.; Wan, Q.; Zhan, Y. The mechanism of improved myosin gel properties by low dose rosmarinic acid addition during gel formation. Food Hydrocoll. 2020, 106, 105869. [Google Scholar] [CrossRef]
- Wu, D.; Xiong, J.; Li, P.; Zhang, Y.; Li, F.; Yin, T.; Huang, Q. Dual enhancement effects of different yeast extract on gel properties and saltiness perception of low-salt surimi gel from silver carp. Food Hydrocoll. 2024, 152, 109925. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, N.; Gao, P.; Yu, D.; Yang, F.; Xu, Y.; Xia, W. Influence of L-arginine addition on the gel properties of reduced-salt white leg shrimp (Litopenaeus vannamei) surimi gel treated with microbial transglutaminase. LWT-Food Sci. Technol. 2023, 173, 114310. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Zhang, Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef] [PubMed]
- Takai, E.; Yoshizawa, S.; Ejima, D.; Arakawa, T.; Shiraki, K. Synergistic solubilization of porcine myosin in physiological salt solution by arginine. Int. J. Biol. Macromol. 2013, 62, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Shi, T.; Sun, Q.; Li, X.; McClements, D.J.; Yuan, L. Effects of L-arginine and L-histidine on heat-induced aggregation of fish myosin: Bighead carp (Aristichthys nobilis). Food Chem. 2019, 295, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Shi, T.; Zhang, W.; Kong, Y.; Yuan, L.; Gao, R. Improvement of gel properties of low salt surimi using low-dose l-arginine combined with oxidized caffeic acid. LWT-Food Sci. Technol. 2021, 145, 111303. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, K.; Chen, J.; Wei, G.; Li, J.; Zheng, B.; Song, Y.; Gao, P.; Zhou, R. Enhancement of myofibrillar protein gelation by plant proteins for improved surimi gel characteristics: Mechanisms and performance. LWT-Food Sci. Technol. 2024, 198, 116045. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Shi, W. Ultrasound-assisted processing: Changes in gel properties, water-holding capacity, and protein aggregation of low-salt Hypophthalmichthys molitrix surimi by soy protein isolate. Ultrason. Sonochem. 2023, 92, 106258. [Google Scholar] [CrossRef]
- Moreno, H.M.; Díaz, M.T.; Borderías, A.J.; Domínguez-Timón, F.; Varela, A.; Tovar, C.A.; Pedrosa, M.M. Effect of Different Technological Factors on the Gelation of a Low-Lectin Bean Protein Isolate. Plant Foods Hum. Nutr. 2022, 77, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, F.; Wang, X. Effects of hydrolyzed wheat gluten on the properties of high-temperature (≥100 °C) treated surimi gels. Food Hydrocoll. 2015, 45, 196–202. [Google Scholar] [CrossRef]
- Moreno, H.M.; Tovar, C.A.; Domínguez-Timón, F.; Cano-Báez, J.; Díaz, M.T.; Pedrosa, M.M.; Borderías, A.J. Gelation of commercial pea protein isolate: Effect of microbial transglutaminase and thermal processing. Food Sci. Technol. 2020, 40, 800–809. [Google Scholar] [CrossRef]
- Zayas, J.F. Water holding capacity of proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Chapter 3; p. 76. [Google Scholar]
- Liu, C.; Li, W.; Lin, B.; Yi, S.; Ye, B.; Mi, H.; Li, J.; Wang, J.; Li, X. Comprehensive analysis of ozone water rinsing on the water-holding capacity of grass carp surimi gel. LWT-Food Sci. Technol. 2021, 150, 111919. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Lu, M.; Ai, C.; Cao, H.; Xiao, J.; Zhong, S.; Teng, H. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: Physicochemical characteristics, water distribution and microstructure. Food Chem. X 2023, 19, 100820. [Google Scholar] [CrossRef] [PubMed]
- Cando, D.; Borderías, A.J.; Moreno, H.M. Influence of amino acid addition during the storage life of high pressure processed low salt surimi gels. LWT-Food Sci. Technol. 2017, 75, 599–607. [Google Scholar] [CrossRef]
- Luo, X.; Xiao, S.; Ruan, Q.; Gao, Q.; An, Y.; Hu, Y.; Xiong, S. Differences in flavor characteristics of frozen surimi products reheated by microwave, water boiling, steaming, and frying. Food Chem. 2022, 372, 131260. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations–A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walayat, N.; Blanch, M.; Moreno, H.M. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels 2025, 11, 142. https://doi.org/10.3390/gels11020142
Walayat N, Blanch M, Moreno HM. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels. 2025; 11(2):142. https://doi.org/10.3390/gels11020142
Chicago/Turabian StyleWalayat, Noman, María Blanch, and Helena M. Moreno. 2025. "Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels" Gels 11, no. 2: 142. https://doi.org/10.3390/gels11020142
APA StyleWalayat, N., Blanch, M., & Moreno, H. M. (2025). Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels, 11(2), 142. https://doi.org/10.3390/gels11020142