Oleogels, Bigels, and Emulgels: Fabrication, Application and Research Trends
1. Introduction
2. Overview of the Publications in This Special Issue
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
List of Contributions
- Zampouni, K.; Dimakopoulou-Papazoglou, D.; Katsanidis, E. Food-Grade Bigel Systems: Formulation, Characterization, and Applications for Novel Food Product Development. Gels 2024, 10, 712. https://doi.org/10.3390/gels10110712.
- Mahmud, N.; Ferdaus, M.J.; Silva, R.C.d. Exploring the Feasibility of Direct-Dispersion Oleogels in Healthier Sausage Formulations. Gels 2024, 10, 819. https://doi.org/10.3390/gels10120819.
- Andriotis, E.G.; Paraskevopoulou, A.; Fatouros, D.G.; Zhang, H.; Ritzoulis, C. Design of Aerated Oleogel-Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles. Gels 2024, 10, 654. https://doi.org/10.3390/gels10100654.
- Sivakanthan, S.; Fawzia, S.; Mundree, S.; Madhujith, T.; Karim, A. Effect of Cooling Rate on Properties of Beeswax and Stearic Acid Oleogel Based on Rice Bran Oil and Sesame Oil. Gels 2024, 10, 697. https://doi.org/10.3390/gels10110697.
- Leahu, A.; Ghinea, C.; Ropciuc, S.; Damian, C. Textural, Color, and Sensory Analysis of Cookies Prepared with Hemp Oil-Based Oleogels. Gels 2025, 11, 46. https://doi.org/10.3390/gels11010046.
- Mu, B.; Lei, X.; Zhang, Y.; Zhang, J.; Du, Q.; Li, Y.; Huang, D.; Wang, L.; Li, J.; Li, Y.; et al. Injectable and Conductive Polyurethane Gel with Load-Responsive Antibiosis for Sustained Root Canal Disinfection. Gels 2025, 11, 346. https://doi.org/10.3390/gels11050346.
- Jiang, W.; Toufouki, S.; Mahmood, S.; Ahmad, A.; Yohannes, A.; Xiang, Y.; Yao, S. Development of Liposome-Based Hydrogel Patches Incorporating Essential Oils of African Plants and Deep Eutectic Solvents. Gels 2025, 11, 364. https://doi.org/10.3390/gels11050364.
- Yang, H.; Zhang, J.; Wang, Z.; Li, S.; Wei, Q.; He, Y.; Li, L.; Zhao, J.; Xu, C.; Zhang, Z. In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs. Gels 2025, 11, 405. https://doi.org/10.3390/gels11060405.
- Anantaworasakul, P.; Preedalikit, W.; Anantaworasakul, P.; Singh, S.; Intharuksa, A.; Arunotayanun, W.; Na Takuathung, M.; Yotsawimonwat, S.; Chittasupho, C. Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties. Gels 2025, 11, 494. https://doi.org/10.3390/gels11070494.
References
- Zampouni, K.; Mouzakitis, C.K.; Lazaridou, A.; Moschakis, T.; Katsanidis, E. Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocoll. 2023, 140, 108636. [Google Scholar] [CrossRef]
- Łętocha, A.; Miastkowska, M.; Sikora, E.; Michalczyk, A.; Liszka-Skoczylas, M.; Witczak, M. Hybrid Systems of Oleogels and Probiotic-Loaded Alginate Carriers for Potential Application in Cosmetics. Molecules 2024, 29, 5984. [Google Scholar] [CrossRef] [PubMed]
- Milutinov, J.; Krstonošić, V.; Ćirin, D.; Pavlović, N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers 2023, 15, 2302. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocoll. Health 2022, 2, 100058. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem. 2016, 199, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lim, J.; Lee, J.; Hwang, H.S.; Lee, S. Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization. J. Food Sci. 2017, 82, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Zetzl, A.K.; Marangoni, A.G.; Barbut, S. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 2012, 3, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Lee, J.; Lee, H.G.; Lee, S. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Res. Int. 2019, 122, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Rajarethinem, P.S.; Gredowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Si, H.; Cheong, L.-Z.; Huang, J.; Wang, X.; Zhang, H. Physical properties of soybean oleogels and oil migration evaluation in model praline system. J. Am. Oil Chem. Soc. 2016, 93, 1075–1084. [Google Scholar] [CrossRef]
- Park, C.; Bemer, H.L.; Maleky, F. Oxidative Stability of Rice Bran Wax Oleogels and an Oleogel Cream Cheese Product. J. Am. Oil Chem. Soc. 2018, 95, 1267–1275. [Google Scholar] [CrossRef]
- Ropciuc, S.; Ghinea, C.; Leahu, A.; Prisacaru, A.E.; Oroian, M.A.; Apostol, L.C.; Dranca, F. Development and Characterization of New Plant-Based Ice Cream Assortments Using Oleogels as Fat Source. Gels 2024, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.U.; Dessai, A.D.; Nayak, U.Y. Oleogels: Versatile novel semi-solid system for pharmaceuticals. AAPS PharmSciTech 2024, 25, 146. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, J.; Abdullah, R.; Cheah, W.Y.; Zhao, D.; Ling, T.C. Comprehensive Advancements in Hydrogel, and Its Application in Microalgae Cultivation and Wastewater Treatment. J. Microbiol. Biotechnol. 2024, 35, e2407038. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, A.; Corradini, M.G.; Joye, I.J. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Bruno, E.; Lupi, F.R.; Mammolenti, D.; Mileti, O.; Baldino, N.; Gabriele, D. Emulgels Structured with Dietary Fiber for Food Uses: A Rheological Model. Foods 2022, 11, 3866. [Google Scholar] [CrossRef]
- Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release 2013, 171, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Iskandar, M.M.; Baeghbali, V.; Kubow, S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023, 12, 3287. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghinea, C.; Leahu, A. Oleogels, Bigels, and Emulgels: Fabrication, Application and Research Trends. Gels 2025, 11, 816. https://doi.org/10.3390/gels11100816
Ghinea C, Leahu A. Oleogels, Bigels, and Emulgels: Fabrication, Application and Research Trends. Gels. 2025; 11(10):816. https://doi.org/10.3390/gels11100816
Chicago/Turabian StyleGhinea, Cristina, and Ana Leahu. 2025. "Oleogels, Bigels, and Emulgels: Fabrication, Application and Research Trends" Gels 11, no. 10: 816. https://doi.org/10.3390/gels11100816
APA StyleGhinea, C., & Leahu, A. (2025). Oleogels, Bigels, and Emulgels: Fabrication, Application and Research Trends. Gels, 11(10), 816. https://doi.org/10.3390/gels11100816